リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Control of osteoblast arrangement by osteocyte mechanoresponse through prostaglandin E2 signaling under oscillatory fluid flow stimuli」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Control of osteoblast arrangement by osteocyte mechanoresponse through prostaglandin E2 signaling under oscillatory fluid flow stimuli

Matsuzaka, Tadaaki 大阪大学

2021.12.01

概要

Anisotropic collagen/apatite microstructure is a prominent determinant of bone tissue functionalization; in particular, bone matrix modulates its anisotropic microstructure depending on the surrounding mechanical condition. Although mechanotransduction in bones is governed by osteocyte function, the precise mechanisms linking mechanical stimuli and anisotropic formation of collagen/apatite microstructure are poorly understood. Here we developed a novel anisotropic mechano-coculture system which enables the understanding of the biological mechanisms regulating the oriented bone matrix formation, which is constructed by aligned osteoblasts. The developed model provides bone-mimetic coculture platform that enables simultaneous control of mechanical condition and osteoblast-osteocyte communication with an anisotropic culture scaffold. The engineered coculture device helps in understanding the relationship between osteocyte mechanoresponses and osteoblast arrangement, which is a significant contributor to anisotropic organization of bone tissue. Our study showed that osteocyte responses to oscillatory flow stimuli regulated osteoblast arrangement through soluble molecular interactions. Importantly, we found that prostaglandin E2 is a novel determinant for oriented collagen/apatite organization of bone matrix, through controlling osteoblast arrangement.

参考文献

[1] P.J. Ehrlich, L.E. Lanyon, Mechanical strain and bone cell function: a review, Osteoporos. Int. 13 (2002) 688–700.

[2] T. Nakano, K. Kaibara, T. Ishimoto, Y. Tabata, Y. Umakoshi, Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering, Bone 51 (2012) 741–747.

[3] T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa, Y. Umakoshi, Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system, Bone 31 (2002) 479–487.

[4] T. Ishimoto, T. Nakano, Y. Umakoshi, M. Yamamoto, Y. Tabata, Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2, J. Bone Miner. Res. 28 (2013) 1170–1179.

[5] T. Lang, A. LeBlanc, H. Evans, Y. Lu, H. Genant, A. Yu, Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight, J. Bone Miner. Res. 19 (2004) 1006–1012.

[6] J. Yang, J. Li, X. Cui, W. Li, Y. Xue, P. Shang, H. Zhang, Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss, Bone 130 (2020) 115108.

[7] J. Wang, T. Ishimoto, T. Nakano, Unloading-induced degradation of the anisotropic arrangement of collagen/apatite in rat femurs, Calcif. Tissue Int. 100 (2017) 87–94.

[8] A.G. Robling, L.F. Bonewald, The osteocyte: new insights, Annu. Rev. Physiol. 82 (2020) 485–506.

[9] L. Qin, W. Liu, H. Cao, G. Xiao, Molecular mechanosensors in osteocytes, Bone Res 8 (2020) 1–24.

[10] Y. Ishihara, Y. Sugawara, H. Kamioka, N. Kawanabe, H. Kurosaka, K. Naruse, T. Yamashiro, In situ imaging of the autonomous intracellular Ca2+ oscillations of osteoblasts and osteocytes in bone, Bone 50 (2012) 842–852.

[11] V.I. Sikavitsas, J.S. Temenoff, A.G. Mikos, Biomaterials and bone mechanotransduction, Biomaterials 22 (2001) 2581–2593.

[12] R. Ozasa, T. Ishimoto, S. Miyabe, J. Hashimoto, M. Hirao, H. Yoshikawa, T. Nakano, Osteoporosis changes collagen/apatite orientation and Young’s modulus in vertebral cortical bone of rat, Calcif. Tissue Int. 104 (2019) 449–460.

[13] M. Tanaka, A. Matsugaki, T. Ishimoto, T. Nakano, Evaluation of crystallographic orientation of biological apatite at vertebral cortical bone in ovariectomized cynomolgus monkey treated with minodronic acid and alendronate, J. Bone Miner. Metabol. 34 (2016) 234–241.

[14] A. Matsugaki, N. Fujiwara, T. Nakano, Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix, Acta Biomater. 9 (2013) 7227–7235.

[15] A. Matsugaki, G. Aramoto, T. Nakano, The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion, Biomaterials 33 (2012) 7327–7335.

[16] A. Matsugaki, Y. Isobe, T. Saku, T. Nakano, Quantitative regulation of bone- mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates, J. Biomed. Mater. Res. A. 103 (2015) 489–499.

[17] K.J. Lewis, D. Frikha-Benayed, J. Louie, S. Stephen, D.C. Spray, M.M. Thi, Z. Seref- Ferlengez, R.J. Majeska, S. Weinbaum, M.B. Schaffler, Osteocyte calcium signals encode strain magnitude and loading frequency in vivo, Proc. Natl. Acad. Sci. Unit. States Am. 114 (2017) 11775–11780.

[18] P.M. Govey, Y.I. Kawasawa, H.J. Donahue, Mapping the osteocytic cell response to fluid flow using RNA-Seq, J. Biomech. 48 (2015) 4327–4332.

[19] A.E. Morrell, G.N. Brown, S.T. Robinson, R.L. Sattler, A.D. Baik, G. Zhen, X. Cao, L. F. Bonewald, W. Jin, L.C. Kam, Mechanically induced Ca 2 oscillations in osteocytes release extracellular vesicles and enhance bone formation, Bone Res 6 (2018) 1–11.

[20] T. Ganesh, L.E. Laughrey, M. Niroobakhsh, N. Lara-Castillo, Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system, Bone (2020) 115328.

[21] T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, H. Kamioka, Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body, J. Biomech. 42 (2009) 1989–1995.

[22] M. Oishi, S. Munesue, A. Harashima, M. Nakada, Y. Yamamoto, Y. Hayashi, Aquaporin 1 elicits cell motility and coordinates vascular bed formation by downregulating thrombospondin type-1 domain-containing 7A in glioblastoma, Cancer Med 9 (2020) 3904–3917.

[23] T. Shimasaki, S. Yamamoto, T. Arisawa, Exosome Research and Co-culture study, Biol. Pharm. Bull. 41 (2018) 1311–1321.

[24] Y. Li, S. Yuan, X. Wang, S.K. Tan, J. Mao, Comparison of flow fields in a centrifugal pump among different tracer particles by particle image velocimetry, ASME. J. Fluids Eng. 138 (2016), 061105.

[25] J. Jiang, R. Dingledine, Prostaglandin receptor EP2 in the crosshairs of anti- inflammation, anti-cancer, and neuroprotection, Trends Pharmacol. Sci. 34 (2013) 413–423.

[26] D. Shamir, S. Keila, M. Weinreb, A selective EP4 receptor antagonist abrogates the stimulation of osteoblast recruitment from bone marrow stromal cells by prostaglandin E2 in vivo and in vitro, Bone 34 (2004) 157–162.

[27] A.R. Stern, M.M. Stern1, M.E.V. Dyke, K. Ja¨hn, M. Prideaux, L.F. Bonewald, Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice, Biotechniques 52 (2012) 361–373.

[28] A. Matsugaki, D. Yamazaki, T. Nakano, Selective patterning of netrin-1 as a novel guiding cue for anisotropic dendrogenesis in osteocytes, Mater. Sci. Eng. C 108 (2020) 110391.

[29] Y. Kato, J.J. Windle, B.A. Koop, G.R. Mundy, L.F. Bonewald, Establishment of an osteocyte-like cell line, MLO-Y4, J. Bone Miner. Res. 12 (1997) 2014–2023.

[30] L.H. Xu, H. Shao, Y.-H.V. Ma, L. You, OCY454 osteocytes as an in vitro cell model for bone remodeling under mechanical loading, J. Orthop. Res. 37 (2019) 1681–1689.

[31] S.M. Woo, J. Rosser, V. Dusevich, I. Kalajzic, L.F. Bonewald, Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo, J. Bone Miner. Res. 26 (2011) 2634–2646.

[32] G. Nasello, P. Alama´n-Díez, J. Schiavi, M. P´erez, L. McNamara, J.M. García-Aznar, Primary human osteoblasts cultured in a 3D microenvironment create a unique representative model of their differentiation into osteocytes, Front. Bioeng. Biotechnol. 8 (2020) 336.

[33] A. Matsugaki, T. Matuzaka, A. Murakami, P. Wang, T. Nakano, Three-dimensional printing of anisotropic bone mimetic structure with controlled fluid flow stimuli for osteocytes: flow orientation determines the elongation of dendrites, Int. J. Bioprint. 6 (2020) 293.

[34] J. Renaud, M.-G. Martinoli, Development of an insert co-culture system of two cellular types in the absence of cell-cell contact, JoVE J. Vis. Exp. (2016), e54356.

[35] L. Jia, W. Gu, Y. Zhang, Y. Ji, J. Liang, Y. Wen, X. Xu, The crosstalk between HDPSCs and HUCMSCs on proliferation and osteogenic genes expression in coculture system, Int. J. Med. Sci. 14 (2017) 1118–1129.

[36] C.D. Amo, V. Olivares, Matrix architecture plays a pivotal role in 3D osteoblast migration: the effect of interstitial fluid flow, J. Mech. Behav. Biomed. Mater. 83 (2018) 52–62.

[37] R. Ozasa, A. Matsugaki, T. Matsuzaka, T. Ishimoto, H.S. Yun, T. Nakano, Superior alignment of human iPSC-osteoblasts associated with focal adhesion formation stimulated by oriented collagen scaffold, Int. J. Mol. Sci. 22 (2021) 6232.

[38] X. Zhou, J.E. Novotny, L. Wang, Anatomic variations of the lacunar–canalicular system influence solute transport in bone, Bone 45 (2009) 704–710.

[39] C. Price, X. Zhou, W. Li, L. Wang, Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow, J. Bone Miner. Res. 26 (2011) 277–285.

[40] A. Matsugaki, G. Aramoto, T. Ninomiya, H. Sawada, S. Hata, T. Nakano, Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure, Biomaterials 37 (2015) 134–143.

[41] S.W. Verbruggen, T.J. Vaughan, L.M. McNamara, Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach, Biomech. Model. Mechanobiol. 13 (2014) 85–97.

[42] C.R. Jacobs, C.E. Yellowley, B.R. Davis, Z. Zhou, J.M. Cimbala, H.J. Donahue, Differential effect of steady versus oscillating flow on bone cells, J. Biomech. 31 (1998) 969–976.

[43] J. Li, E. Rose, D. Frances, Y. Sun, L. You, Effect of oscillating fluid flow stimulation on osteocyte mRNA expression, J. Biomech. 45 (2012) 247–251.

[44] M. Hu, G.-W. Tian, D.E. Gibbons, J. Jiao, Y.-X. Qin, Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations, Arch. Biochem. Biophys. 579 (2015) 55–61.

[45] S. Wang, S. Li, M. Hu, B. Huo, Calcium response in bone cells at different osteogenic stages under unidirectional or oscillatory flow, Biomicrofluidics 13 (2019), 064117.

[46] C. Wittkowske, G.C. Reilly, D. Lacroix, C.M. Perrault, In vitro bone cell models: impact of fluid shear stress on bone formation, Front. Bioeng. Biotechnol. 4 (2016) 87.

[47] I.P. Geoghegan, D.A. Hoey, L.M. McNamara, Estrogen deficiency impairs integrin αvβ3-mediated mechanosensation by osteocytes and alters osteoclastogenic paracrine signalling, Sci. Rep. 9 (2019) 1–15.

[48] M.M. Thi, S.O. Suadicani, M.B. Schaffler, S. Weinbaum, D.C. Spray, Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin, Proc. Natl. Acad. Sci. Unit. States Am. 110 (2013) 21012–21017.

[49] R.M. Delaine-Smith, A. Sittichokechaiwut, G.C. Reilly, Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts, Faseb. J. 28 (2014) 430–439.

[50] C. Galli, G. Passeri, G.M. Macaluso, Osteocytes and WNT: the mechanical control of bone formation, J. Dent. Res. 89 (2010) 331–343.

[51] D.A. Hoey, S. Tormey, S. Ramcharan, F.J. O’Brien, C.R. Jacobs, Primary cilia mediated mechanotransduction in human mesenchymal stem cells, Stem Cell. 30 (2012) 2561–2570.

[52] A.G. Robling, et al., Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin, J. Biol. Chem. 283 (2008) 5866–5875.

[53] M.A. Kamel, J.L. Picconi, N. Lara-Castillo, M.L. Johnson, Activation of β-catenin si3naling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone, Bone 47 (2010) 872–881.

[54] M.R. Forwood, Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo, J. Bone Miner. Res. 11 (1996) 1688–1693.

[55] P.P. Cherian, A.J. Siller-Jackson, S. Gu, X. Wang, L.F. Bonewald, E. Sprague, J. X. Jiang, Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin, Mol. Biol. Cell 16 (2005) 3100–3106.

[56] Y. Boie, R. Stocco, N. Sawyer, D.M. Slipetz, M.D. Ungrin, F. Neuscha¨fer-Rube, G. P. Püschel, K.M. Metters, M. Abramovitz, Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes, Eur. J. Pharmacol. 340 (1997) 227–241.

[57] R. Mizuno, K. Kawada, Y. Sakai, Prostaglandin E2/EP signaling in the tumor microenvironment of colorectal cancer, Int. J. Mol. Sci. 20 (2019) 6254.

[58] S. Graham, Z. Gamie, I. Polyzois, A.A. Narvani, K. Tzafetta, E. Tsiridis, M. Heliotis, A. Mantalaris, E. Tsiridis, Prostaglandin EP2 and EP4 receptor agonists in bone formation and bone healing: in vivo and in vitro evidence, Expet Opin. Invest. Drugs 18 (2009) 749–766.

[59] D. Shamir, S. Keila, M. Weinreb, A selective EP4 receptor antagonist abrogates the stimulation of osteoblast recruitment from bone marrow stromal cells by prostaglandin E2 in vivo and in vitro, Bone 34 (2004) 157–162.

[60] K. Müller-Decker, C. Leder, M. Neumann, G. Neufang, F. Marks, G. Fürstenberger, C. Bayerl, J. Schweizer, Expression of cyclooxygenase isozymes during morphogenesis and cycling of pelage hair follicles in mouse skin: precocious onset of the first catagen phase and alopecia upon cyclooxygenase-2 overexpression, J. Invest. Dermatol. 121 (2003) 661–668.

[61] J.J. Egan, G. Gronowicz, G.A. Rodan, Cell density-dependent decrease in cytoskeletal actin and myosin in cultured osteoblastic cells: correlation with cyclic AMP changes, J. Cell. Biochem. 45 (1991) 93–100.

[62] C.H. Tang, R.S. Yang, W.M. Fu, Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase C alpha, and c-Src pathway in primary cultured rat osteoblasts, J. Biol. Chem. 280 (2005) 22907–22916.

[63] A.V. Taubenberger, M.A. Woodruff, H. Bai, D.J. Muller, D.W. Hutmacher, The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation, Biomaterials 31 (2010) 2827–2835.

[64] A. Matsugaki, S. Matsumoto, T. Nakano, A novel role of interleukin-6 as a regulatory factor of inflammation-associated deterioration in osteoblast arrangement, Int. J. Mol. Sci. 21 (2020) 6659.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る