リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Selective patterning of netrin-1 as a novel guiding cue for anisotropic dendrogenesis in osteocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Selective patterning of netrin-1 as a novel guiding cue for anisotropic dendrogenesis in osteocytes

Matsugaki, Aira 大阪大学

2020.03.01

概要

Although protein patterning approaches have found widespread applications in tuning surface characteristics of biomaterials, selective control of growth in cell body and dendrites utilizing such platforms remains difficult. The functional roles assumed by cell body and dendrites in a physiological milieu have extremely high specificity. In particular, osteocytes embedded inside the mineralized bone matrix are interconnected via dendritic cell processes characterized by an anisotropic arrangement of the lacunar-canalicular system, where the fluid-flow inside the canaliculi system regulates the mechanoresponsive functionalization of bone. Control of cellular networks connected by dendritic cell processes is, therefore, imperative for constructing artificially controlled bone-mimetic structures and as an extension, for gaining insights into the molecular mechanisms underlying dendrogenesis inside the mineralized bone matrix. Here, we report an innovative strategy to induce controlled elongation of cell body or dendritic process structures in selective directions by using the inkjet printing technique. Artificial runways employing netrin-1, inspired by neural architecture, were utilized to trigger controlled elongation in the osteocyte dendritic processes in desired directions. This is the first report, to the best of our knowledge, demonstrating that anisotropic dendrogenesis of osteocytes can be controlled with selective patterning of extracellular proteins, specifically via the axon guidance ligand netrin-1.

この論文で使われている画像

参考文献

[1] T. Nakano, K. Kaibara, T. Ishimoto, Y. Tabata, Y. Umakoshi, Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering, Bone 51 (2012) 741–747, https://doi.org/10.1016/j.bone.2012.07.003.

[2] T. Ishimoto, T. Nakano, Y. Umakoshi, M. Yamamoto, Y. Tabata, Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2, J. Bone Miner. Res. 28 (2013) 1170–1179, https://doi.org/10.1002/jbmr.1825.

[3] A. Gupta, H. Anderson, A.M. Buo, M.C. Moorer, M. Ren, J.P. Stains, Communication of cAMP by connexin43 gap junctions regulates osteoblast signaling and gene ex- pression, Cell. Signal. 28 (2016) 1048–1057, https://doi.org/10.1016/j.cellsig. 2016.04.014.

[4] A. Matsugaki, N. Fujiwara, T. Nakano, Continuous cyclic stretch induces osteoblast alignment and formation of anisotropic collagen fiber matrix, Acta Biomater. 9 (2013) 7227–7235, https://doi.org/10.1016/j.actbio.2013.03.015.

[5] A. Matsugaki, G. Aramoto, T. Ninomiya, H. Sawada, S. Hata, T. Nakano, Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure, Biomaterials 37 (2015) 134–143, https://doi.org/10.1016/j.biomaterials.2014.10.025.

[6] R. Ozasa, A. Matsugaki, Y. Isobe, T. Saku, H.S. Yun, T. Nakano, Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model, J. Biomed. Mater. Res. A 106 (2018) 360–369, https://doi.org/10.1002/jbm.a.36238.

[7] A. Matsugaki, Y. Isobe, T. Saku, T. Nakano, Quantitative regulation of bone-mi- metic, oriented collagen/apatite matrix structure depends on the degree of osteo- blast alignment on oriented collagen substrates, J. Biomed. Mater. Res. A 103 (2015) 489–499, https://doi.org/10.1002/jbm.a.35189.

[8] M.B. Schamer, W.Y. Cheung, R. Majeska, O. Kennedy, Osteocytes: master orches- trators of bone, Calcif. Tissue Int. 94 (2014) 5–24, https://doi.org/10.1007/ s00223-013-9790-y.

[9] Y. Sugawara, H. Kamioka, Y. Ishihara, N. Fujisawa, N. Kawanabe, T. Yamashiro, The early mouse 3D osteocyte network in the presence and absence of mechanical loading, Bone 52 (2013) 189–196, https://doi.org/10.1016/j.bone.2012.09.033.

[10] L.F. Bonewald, Generation and function of osteocyte dendritic processes, J. Musculoskelet. Neuronal Interact. 5 (2005) 321–324.

[11] T. Nakano, T. Ishimoto, N. Ikeo, A. Matsugaki, Advanced analysis and control of bone microstructure based on a materials scientific study including microbeam X- ray diffraction, in: T. Kakeshita (Ed.), Progress in Advanced Structural and Functional Materials Design, Springer, Japan, 2013, pp. 155–167.

[12] A. Sekita, A. Matsugaki, T. Ishimoto, T. Nakano, Synchronous disruption of aniso- tropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis, J. Struct. Biol. 197 (2017) 260–270, https://doi.org/10.1016/j.jsb. 2016.12.003.

[13] A. Sivakumar, N.A. Kurpios, Transcriptional regulation of cell shape during organ morphogenesis, J. Cell Biol. 217 (2018) 2987–3005, https://doi.org/10.1083/jcb.201612115.

[14] F.J. Bustos, N. Jury, P. Martinez, E. Ampuero, M. Campos, S. Abarzúa, K. Jaramillo, S. Ibing, M.D. Mardones, H. Haensgen, J. Kzhyshkowska, M.F. Tevy, R. Neve, M. Sanhueza, L. Varela-Nallar, M. Montecino, B. van Zundert, NMDA receptor subunit composition controls dendritogenesis of hippocampal neurons through CAMKII, CREB-P, and H3K27ac, J. Cell. Physiol. 232 (2017) 3677–3692, https:// doi.org/10.1002/jcp.25843.

[15] B. Derby, Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures, J. Mater. Chem. 18 (2008) 5717–5721, https://doi.org/10.1039/ B807560C.

[16] K.L.W. Sun, J.P. Correia, T.E. Kennedy, Netrins: versatile extracellular cues with diverse functions, Development 138 (2011) 2153–2169, https://doi.org/10.1242/ dev.044529.

[17] J.B. Bongo, D.Q. Peng, The neuroimmune guidance cue netrin-1: a new therapeutic target in cardiovascular disease, J. Cardiol. 63 (2014) 95–98, https://doi.org/10. 1016/j.jjcc.2013.10.006.

[18] A.R. Stern, M.M. Stern, M.E. Van Dyke, K. Jähn, M. Prideaux, L.F. Bonewald, Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice, Biotechniques 52 (2012) 361–373, https://doi.org/10.2144/0000113876.

[19] C.-T. Ho, R.-Z. Lin, W.-Y. Chang, H.-Y. Chang, C.-H. Liu, Rapid heterogeneous liver- cell on-chip patterning via the enhanced field-induced dielectrophoresis trap, Lab Chip 6 (2006) 724–734, https://doi.org/10.1039/B602036D.

[20] X.L. Lu, B. Huo, M. Park, X.E. Guo, Calcium response in osteocytic networks under steady and oscillatory fluid flow, Bone 51 (2012) 466–473, https://doi.org/10. 1016/j.bone.2012.05.021.

[21] A. Mediero, B. Ramkhelawon, M. Perez-Aso, K.J. Moore, B.N. Cronstein, Netrin-1 is a critical autocrine/paracrine factor for osteoclast differentiation, J. Bone Miner. Res. 30 (2015) 837–854, https://doi.org/10.1002/jbmr.2421.

[22] K. Maruyama, T. Kawasaki, M. Hamaguchi, M. Hashimoto, M. Furu, H. Ito, T. Fujii, N. Takemura, T. Karuppuchamy, T. Kondo, T. Kawasaki, M. Fukasaka, T. Misawa, T. Saitoh, Y. Suzuki, M.M. Martino, Y. Kumagai, S. Akira, Bone-protective functions of netrin 1 protein, J. Biol. Chem. 291 (2016) 23854–23868, https://doi.org/10. 1074/jbc.M116.738518.

[23] C. Laumonnerie, R.V. Da Silva, A. Kania, S.I. Wilson, Netrin 1 and Dcc signalling are required for confinement of central axons within the central nervous system, Development 141 (2014) 594–603, https://doi.org/10.1242/dev.099606.

[24] G. Liu, H. Beggs, C. Jürgensen, H.-T. Park, H. Tang, J. Gorski, K.R. Jones, L.F. Reichardt, J. Wu, Y. Rao, Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction, Nat. Neurosci. 7 (2004) 1222–1232, https://doi.org/10.1038/nn1331.

[25] M. Shekarabi, T.E. Kennedy, The netrin-1 receptor DCC promotes filopodia for- mation and cell spreading by activating Cdc42 and Rac1, Mol. Cell. Neurosci. 19 (2002) 1–17, https://doi.org/10.1006/mcne.2001.1075.

[26] M. Meriane, J. Tcherkezian, C.A. Webber, E.I. Danek, I. Triki, S. McFarlane, E. Bloch-Gallego, N. Lamarche-Vane, Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance, J. Cell Biol. 167 (2004) 687–698, https://doi.org/10.1083/jcb.200405053.

[27] P. Dimitri, C. Rosen, The central nervous system and bone metabolism: an evolving story, Calcif. Tissue Int. 100 (2017) 476–485, https://doi.org/10.1007/s00223-016-0179-6.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る