リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interannual variability of precipitation over the Maritime Continent」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interannual variability of precipitation over the Maritime Continent

Alsepan, Givo 北海道大学

2021.09.24

概要

Understanding the relationship between El Niño and the interannual climate variability over the Maritime Continent region has important socio-economic implications. Given that El Niño has tremendous impacts, studying how it affects the precipitation would create better awareness and preparedness for the potential impacts if El Niño is predicted. This thesis describes a comprehensive understanding of the role of El Niño to the precipitation variability by analyzing a high-resolution gauge-based precipitation dataset as well as numerical experiments to investigate the precipitation responses to local and remote sea surface temperature (SST) anomalies during the El Niño events.

Regional-scale precipitation responses over Indonesia to major climate modes in the tropical Indo–Pacific Oceans, namely, canonical El Niño, El Niño Modoki, and the Indian Ocean Dipole (IOD), and how the responses are related to large-scale moisture convergences are investigated. The precipitation responses, analyzed using a high- spatial-resolution (0.5°  0.5°) terrestrial precipitation dataset for the period 1960–2007, exhibit differences between the dry (July–September) and wet (November–April) seasons. Canonical El Niño strongly reduces precipitation in central to eastern Indonesia from the dry season to the early wet season and northern Indonesia in the wet season. El Niño Modoki also reduces precipitation in central to eastern Indonesia during the dry season, but conversely increases precipitation in western Indonesia in the wet season. Moisture flux analysis indicates that corresponding to the dry (wet) season precipitation reduction due to the canonical El Niño and El Niño Modoki anomalous divergence occurs around the southern (northern) edge of the convergence zone when one of the two edges is located near the equator (10°S–15°N) associated with their seasonal migration. This largely explains the seasonality and regionality of precipitation responses to canonical El Niño and El Niño Modoki. IOD reduces precipitation in southwestern Indonesia in the dry season, associated with anomalous moisture flux divergence. The seasonality of precipitation response to IOD is likely to be controlled by the seasonality of local sea surface temperature anomalies in the eastern pole of the IOD.

The contribution of remote and local SST forcing during El Niño in shaping the interannual variations of large-scale precipitation over the Maritime Continent (MC) during July-October (JASO) and January-April (JFMA) season is investigated by using an atmospheric general circulation model (AGCM). Two idealized AGCM experiments are designed to isolate the effect of anomalous SST forcing from the tropical central-eastern Pacific (CEP) and tropical western Pacific (WP). In the first experiment climatological monthly mean SST is specified in the tropical CEP, while observed SST is specified elsewhere. In the second experiment, the climatological SST is specified in the tropical WP, while observed SST is specified elsewhere. Our numerical experiments indicate that, in the JASO season, the precipitation reduction over the southern hemisphere (SH) side of MC is likely explained as a direct influence of El Niño. In response to El Niño-related positive SST anomalies over the tropical CEP, twin Rossby wave cyclonic anomalies are generated to the tropical WP. The southern branch of the twin cyclonic anomalies advects dry air into the SH side of MC, which suppresses convection and precipitation there. In the JFMA season, the reduced precipitation over the northern hemisphere (NH) side of MC is likely induced by both the in-situ ocean surface cooling and remote warming forcing. The local cooling (remote warming) forcing promotes the generation of the Philippine Sea anticyclonic (Rossby wave cyclonic) anomalies in the NH. The combined eastern flank of the anomalous anticyclone and western flank of the anomalous cyclone transfer dry air into the NH side of MC, and reduce local precipitation.

この論文で使われている画像

参考文献

Adler, R. F., and Coauthors, 2003: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167.

Aldrian, E., and R. D. Susanto, 2003: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 1425–1452.

Alsepan, G., and S. Minobe, 2020: Relations between interannual variability of regional-scale Indonesian precipitation and large-scale climate modes during 1960–2007. J. Climate, 33, 5271–5291.

Amien, I., P. Redjakiningrum, B. Kartiwa, and W. Estiningtyas, 1999: Simulated rice yields as affected by interannual climate variability and possible climate change in Java. Climate Res., 12, 145–152.

An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 2399–2412.

Ashok, K., Z. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 41–56.

Ashok, K., Z. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821, doi:10.1029/2003GL017926.

Ashok, K., Z. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J. Climate, 17, 3141–3155.

——, S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

——, and N. H. Saji, 2007: On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall. Nat. Hazards, 42, 273–285.

——, and T. Yamagata, 2009: The El Niño with a difference. Nature, 461, 481–484.

As-syakur, A. R., and Coauthors, 2014: Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int. J. Climatol., 34, 3825–3839.

Baba, Y., 2020: Shallow convective closure in a spectral cumulus parameterization. Atmos. Res., 233, 104707.

Bellenger, H., E. G. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018.

Bjerkness, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163–172.

Burgers, G., and D. B. Stephenson, 1999: The normality of El Niño. Geophys. Res. Lett., 26, 1027–1030.

Burton, C., R. A. Betts, C. D. Jones, T. R. Feldpausch, M. Cardoso, and L. O. Anderson, 2020: El Niño driven changes in global fire 2015/16. Front. Earth Sci., 8, 199.

Cai, W., T. Cowan, and M. Raupach, 2009: Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, doi:10.1029/2009GL039902.

Chang, C-P, Z. Wang, J. Ju, and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665–672.

Chen, D., T. Lian, C. Fu, M. A. Cane, Y. Tang, R. Murtugudde, X. Song, Q. Wu, and L. Zhou, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8, 339–345.

Chen, M., and T. Li, 2021: ENSO evolution asymmetry: EP versus CP El Niño. Climate Dyn., 56, 3569–3579.

——, X.-Y. Shen, and B. Wu, 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J. Climate., 29, 2201–2220.

D‘Arrigo, R., and R. Wilson, 2008: El Niño and Indian Ocean influences on Indonesian drought: implication for forecasting rainfall and crop productivity. Int. J. Climatol., 28, 611–616.

——, R. Allan, R. Wilson, J. Palmer, J. Sakulich, J. E. Smerdon, S. Bijaksana, and L. O. Ngkoimani, 2008: Pacific and Indian Ocean climate signals in a tree-ring record of Java monsoon drought. Int. J. Climatol., 28, 1889–1901.

Dai, A., K. E. Trenberth, and T. R. Karl, 1998: Global variations in droughts and wet spells: 1900–1995. Geophys. Res. Lett., 25, 3367–3370.

Delman, A. S., J. L. McClean, J. Sprintall, L. D. Talley, and F. O. Byan, 2018: Process-specific contributions to anomalous Java mixed layer cooling during positive IOD events. J. Geophys. Res., 123, 4153–4176.

Desser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115–143.

Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Climate Dyn., 38, 1965–1972.

Doi, T., S. K. Behera, and T. Yamagata, 2016: Improved seasonal prediction using the SINTEX-F2 coupled model. J. Adv. Model. Earth Syst., 8, 1847–1867.

Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313–2335.

——, and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782.

Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi, 2008: Description of AFES 2: Improvements for high-resolution and coupled simulations. High Resolution Numerical Modeling of the Atmosphere and Ocean, H. Kevin and O. Wataru, Eds., Springer, 77–97.

FAO, 2016: El Niño: Preparedness and response. Situation Report March 2016, retrieved on 14th June 2021 from http:/www.fao.org/fileadmin/user_upload/emergencies/docs/1_FAO%20El%20Nino%20Sit%20Rep_Ma rch%202016.pdf.

Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the south Pacific convergence zone. Geophys. Res. Lett. 29, 1643, doi:10.1029/2001GL014201.

Freitas, A. C. V., L. Aimola, T. Ambrizzi, and C. P. de Oliveira, 2017: Extreme intertropical convergence zone shifts over southern maritime continent. Atmos. Sci. Lett. 18, 2–10.

Giannini, A., A. W. Robertson, and J-H. Qian, 2007: A role for tropical tropospheric temperature adjustments to El Niño–Southern Oscillation in the seasonality of monsoonal Indonesia precipitation predictability. J. Geophys. Res., doi:10.1029/2007JD008519.

Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

Good, P., R. Chadwick, C. E. Holloway, J. Kennedy, J. A. Lowe, R. Roehrig, and S. S. Rushley, 2020: High sensitivity of tropical precipitation to local sea-surface temperature. Nature, 589, 408–414.

Guan, Z., K. Ashok, and T. Yamagata, 2003: Summertime response of the tropical atmosphere to the Indian Ocean Dipole sea surface temperature anomalies. J. Meteor. Soc. Japan, 81, 533–561.

Gutman, G., I. Csiszar, and P. Romanov, 2000: Using NOAA/AVHRR products to monitor El Niño impacts: focus on Indonesia in 1997–98. Bull. Amer. Meteor. Soc., 81, 1189–1205.

Haarsma, R. J., and Coauthors, 2016: High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci. Model. Dev., 9, 4185–4208.

Hamada, A., O. Arakawa, and A. Yatagai, 2011: An automated quality control method for daily rain-gauge data. Glob. Environ. Res., 15, 165–172.

Hamada, J.-I., S. Mori, H. Kubota, M. D. Yamanaka, U. Haryoko, S. Lestari, R. Sulistyowati, and F. Syamsudin, 2012: Interannual rainfall variability over northwestern Jawa and its relation to the Indian Ocean Dipole and El Niño-Southern Oscillation events. SOLA, 8, 69–72.

Harada, Y., H. Kamahori, C. Kobayashi, and H. Endo, 2016: The JRA-55 Reanalysis: representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269–302.

Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. Int. J. Climatol., 34, 623 – 642, doi:101002/joc.3711.

Haylock, M., and J. L. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14, 3882–3887.

Hendon, H. H., 2003: Indonesian rainfall variability: impacts of ENSO and local air-sea interaction. J. Climate, 16, 1775–1790.

Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 1769–1786.

Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.

Hui, C., and X.-T. Zheng, 2018: Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability. Climate Dyn., 51, 3597–3611.

Huijnen, V., and Coauthors, 2016: Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997. Sci. Rep., 6, 26886, doi:10.1038/srep26886.

Hung, C. W., X. Liu, and M. Yanai, 2004: Symmetry and asymmetry of the Asian and Australian summer monsoons. J. Climate, 17, 2413–2426.

Iizumi, T., J.-J. Luo, A. J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. E. Brown, and T. Yamagata, 2014: Impacts of El Niño Southern Oscillation on the global yields of major crops. Nat. Commun., 5, 3712.

Jia, X., J. Ge, S. Wang, 2016: Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent: DIVERSE IMPACT OF ENSO. Int. J. Climatol., 36, 3384–3397.

Jiang, L., and T. Li, 2018: Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer. Climate Dyn., 51, 1465–1483.

Jin, F.-F., S.-I. An, A. Timmermann, and J. Zhao, 2003: Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., doi:10.1029/2002GL016356.

Ju, J., and J. M. Slingo, 1995: The Asian summer monsoon and ENSO. Quart. J. Roy. Meteor. Soc., 121, 1133–1168.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

Kang, L.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., doi:10.1029/2001JD000393.

Klein, S. A., B. J. Soden, and N-C. Lau, 1999: Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932. Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: general specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48.

Kodama, C., A. Kuwano-Yoshida, S. Watanabe, T. Doi, H. Kashimura, and T. Nasuno, 2019: JASMTEC model intercomparison project (JMIP). JASMTEC Rep. Res. Dev., 28, 5–34.

Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nature Geoscience, 9, 669–674.

Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2007: Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: the ―weakening‖ of the 1980s and 1990s. J. Climate, 20, 4255–4266.

Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi, 2010: An improved PDF cloud scheme for climate simulations. Quart. J. Roy. Meteor. Soc., 136, 1583–1597.

——, ——, 2013: Predictability of explosive cyclogenesis over the Northwestern Pacific region using ensemble reanalysis. Mon. Wea. Rev., 141, 3769–3785.

——, S. Minobe, 2017: Strom-track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 1081–1102.

Lawrimore, J. H., and Coauthors, 2001: Climate assessment for 2000. Bull. Amer. Meteor. Soc., 82, S1–S55.

Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo–Pacific sector during ENSO episodes. J. Climate, 16, 3–20.

Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

Lee, S-K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272–284.

Lestari, D. O., E. Sutriyono, Sabaruddin, and I. Iskandar, 2018: Respective influences of Indian Ocean Dipole and El Niño-Southern Oscillation on Indonesian precipitation. J. Math. Fund. Sci., 50, 257–272.

Li, T., Y.-C. Tung, and J.-W. Hwu, 2005: Remote and local SST forcing in shaping Asian–Australian monsoon anomalies. J. Meteor. Soc. Japan, 83, 153–167.

Liang, X.-Z., W.-C. Wang, and J. S. Boyle, 1997: Atmospheric ozone climatology for use in general circulation models. Retrieved on 14th June 2021 from https://pcmdi.llnl.gov/report/ab43.html.

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079.

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–42.

Matthews, A. J., and G. N. Kiladis, 1999: Interactions between ENSO, transient circulation, and tropical convection over the Pacific. J. Climate, 12, 3062–3086.

——, 2012: A multiscale framework for the origin and variability of the South Pacific Convergence Zone. Quart. J. Roy. Meteor. Soc., 138, 1165–1178.

McPhaden, M. J., 1999: Genesis and evolution of the 1997–1998 El Niño. Science, 283, 950–954.

Meyers, G., O. McIntosh, L. Pigot, and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 2872–2880.

Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Let., 24, 683–686.

——, A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206–209.

Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 7213–7217.

Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 3841–3861.

——, ——, T. Enomoto, 2007: The AFES-LETKF experimental ensemble reanalysis: ALERA. SOLA, 3, 45–48.

Nakanishi, M., and H. Niino, 2004: An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification. Boundary-Layer Meteorol., 112, 1–31.

Naylor, R., W. Falcon, D. Rochberg, and N. Wada, 2001: Using El Niño/Southern Oscillation climate data to predict rice production in Indonesia. Climatic Change, 50, 255–265.

Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: a GCM study. J. Climate, 16, 834–848.

Ngo-duc, T., and Coauthors, 2017: Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX-Southeast Asia region. Int. J. Climatol., 37, 1634–1647.

Noojipady, P., and Coauthors, 2017: Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth Sys. Dyn., 8, 749–771.

Numaguti, A., M. Takahashi, T. Nakajima, and A. Sumi, 1997: Description of CCSR/NIES atmospheric general circulation model. Study on the climate system and mass transport by a climate model, CGER‘s Supercomputer Monograph Report No. 3, 1–48.

Nur‘utami, M. N., and R. Hidayat, 2016: Influences of IOD and ENSO to Indonesian rainfall variability: role of atmosphere-ocean interaction in the Indo-Pacific sector. Procedia Environ. Sci., 33, 196–203.

Ogata, T., B. Taguchi, A. Yamamoto, and M. Nonaka, 2021: Potential predictability of the tropical cyclone frequency over the western north pacific with 50-km AGCM ensemble experiments. J. Geophys. Res. Atmos., 126, e2020JD034206.

Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic font. Geophys. Res. Lett., 39, doi:10.1029/2011GL049922.

Ohfuchi, W., and Coauthors, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator–preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simul. 1, 8–34.

Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, A. Kuwano-Yoshida, B. Taguchi, M. Mori, and Y. Kosaka, 2018: Mechanisms for the maintenance of the wintertime basin-scale atmospheric response to decadal SST variability in the North Pacific subarctic frontal zone. J. Climate, 31, 297–315.

Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor. Soc. Japan, 84, 259–276.

Page, S. E., F. Siegert, J. O. Rieley, H. D. V. Boehm, A. Jaya, and S. Limin, 2002: The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.

Palmer, T. M., and J. A. Owen, 1986: A possible relationship between some ―severe‖ winters in North America and enhanced convective activity over the tropical west Pacific. Mon. Wea. Rev., 114, 648–651.

Pan, X., M. Chin, C. M. Ichoku, and R. D. Field, 2018: Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979–2016. J. Geophys. Res., 123, 7974–7988.

Peng, M. S., J. A. Ridout, and T. F., Hogan, 2004: Recent modifications of the Emanuel convective scheme in the navy operational global atmospheric prediction system. Mon. Wea. Rev., 132, 1254–1268.

Philander, S. G. H., 1983a: El Niño southern oscillation phenomena. Nature, 302, 295–301.

——, 1983b: Anomalous El Niño of 1982–83. Nature, 305, 16.

——, 1990: El Niño, La Niña, and the Southern Oscillation. Academic Press, 293 pp.

Preethi, B., T. P. Sabin, J. A. Adedoyin, and K. Ashok, 2015: Impacts of the ENSO Modoki and other tropical Indo-Pacific climate-drivers on African rainfall. Sci. Rep., 5, 16653, doi:10.1038/srep16653.

Qian, W., Y. Deng, Y. Zhu, and W Dong, 2002: Demarcating the worldwide monsoon. Theor. Appl. Climatol., 71, 1–16.

Qian, J. H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 1428–1441.

Quinn, W., D. Zopf, K. Short, and R. Yang, 1978: Historical trends and statistics of the Southern Oscillation, El Niño, and Indonesian drought, Fish. Bull., 76, 663–678.

Ramage, C. S., 1968: Role of a tropical ―Maritime Continent‖ in the atmospheric circulation. Mon. Wea. Rev., 96, 365–370.

Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/ El Niño. Mon. Wea. Rev., 110, 354–384.

Ratnam, J. V., S. K. Behera, Y. Masumoto, and T. Yamagata, 2014: Remote effects of El Niño and Modoki events on the austral summer precipitation of southern Africa. J. Climate, 27, 3802–3815.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496.

Roberts, M. J., and Coauthors, 2018: The benefits of global high resolution for climate simulation: process understanding and the enabling of stakeholder decisions at the regional scale. Bull. Amer. Meteor. Soc., 99, 2341–2359.

Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, T. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades?. Geophys. Res. Lett., 36, L20705, doi:10.1029/2009GL040048.

Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 1606–1626.

Saji, N. H., B. N. Goswani, P. N. Vinayachandran, T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

——, and T. Yamagata, 2003b: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Res., 25, 151–169.

——, S. P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC twentieth-century climate simulations. J. Climate, 19, 4397–4417.

Sato, K., J. Inoue, A. Yamazaki, J.-H. Kim, M. Maturilli, K. Dethloff, S. R. Hudson, and M. A. Granskog, 2017: Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations. J. Geophys. Res. Oceans, 122, 775–787.

Schaake, J., 2004: Application of prism climatologies for hydrologic modeling and forecasting in the western U.S. Proc. 18th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 5.3, http://ams.confex.com/ams/pdfpapers/72159.pdf.

Schneider, U., T. Fuchs, A. Meyer-Christoffer, and B. Rudolf, 2008: Global Precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, DWD, 13 pp. [Available online at ftp://ftp.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf].

Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model, J. Quant. Spectrosc. Radiat. Transfr, 109, 2779–2793.

Siegert, F., G. Ruecker, A. Hinrichs, and A. A. Hoffmann, 2001: Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414, 437–440.

Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 1093–1111.

Su, H., J. D. Neelin, and C. Chou, 2001: Tropical teleconnection and local response to SST anomalies during the 1997–1998 El Niño. J. Geophys. Res., 106, 20025–20043.

Takata, K., S. Emori, and T. Watanabe, 2003: Development of the minimal advanced treatments of surface interaction and runoff. Glob. Planet. Change, 38, 209–222.

Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperature. J. Geophys. Res., 103, 14291–14324.

Villafuerte, M. Q., and J. Matsumoto, 2015: Significant influences of global mean temperature and ENSO on extreme rainfall in southeast Asia. J. Climate, 28, 1905–1919.

Vinayachandran, P. N., J. Kurian, and C. P. Neema, 2007: Indian Ocean response to anomalous conditions in 2006. Geophys. Res. Lett., 34, L15602, doi:10.1029/2007GL030194.

Vincent, D. G., 1994: The south Pacific convergence zone (SPCZ): A review. Mon. Wea. Rev., 122, 1949–1970.

Walker, G. T., 1923: Correlations in seasonal variations of weather. VIII, A further study of world weather. Men. Indian Meteor. Dept., 24, 75–131.

——, 1924: Correlations in seasonal variations of weather. VIII, A further study of world weather. Men. Indian Meteor. Dept., 24, 275–332.

Wallace, J. M., E. M. Rasmusson, T. P. Mitchell, V. E. Kousky, E. S. Sarachik, and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA, J. Geophys. Res., 103, 14241–14260.

Wang, B., R. Wu, and X. Fu, 2000: Pacific–east Asian teleconnection: How does ENSO affect east Asian Climate?. J. Climate, 13, 1517–1536.

——, R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 1195–1211.

——, I.-S. Kang, and J.-Y. Lee, 2004: Ensemble simulation of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803–818.

Wang, C. H., S.-P. Xie, and Y. Kosaka, 2018: Indo-western Pacific climate variability: ENSO forcing and internal dynamics in a tropical Pacific pacemaker simulation. J. Climate, 31, 10123–10139.

Waple, A. M., and J. H. Lawrimore, 2003: State of the climate in 2002. Bull. Amer. Meteor. Soc., 84, S1–S68.

Webster, P. J., V. O. Magaña, T. N. Palmer, R. A. Thomas, M. Yanai, and T. Yasunari, 1998: Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14451–14510.

Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129.

——, S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663–674.

Whetton, P., and I. Rutherfurd, 1994: Historical ENSO teleconnections in the eastern hemisphere. Climatic Change, 28, 221–253.

Wu, B., T. Li, T. Zhou, 2010: Asymmetry of atmosphere circulation anomalies over the western north Pacific between El Niño and La Niña. J. Climate, 23, 4807–4822.

——, T. Zhou, and T. Li, 2012: Two distinct modes of tropical Indian Ocean precipitation in boreal winter and their impacts on equatorial western Pacific. J. Climate., 25, 921–938.

——, 2017a: Atmospheric dynamics and thermodynamics processes driving the western north Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621–9635.

——, 2017b: Atmospheric dynamics and thermodynamics processes driving the western north Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 9637–9650.

Wu, R., and B. P. Kirtman, 2005: Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability. Climate Dyn., 25, 155–170.

——, 2006: Changes in spread and predictability associated with ENSO in an ensemble coupled CGM. J. Climate, 19, 4378–4396.

Xie, P. P., and P. A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

Xie, S-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747.

——, Y. Kosaka, Y. Du, K. Hu, J. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432.

——, and Z.-Q Zhou, 2017: Seasonal modulations of El Niño–related atmospheric variability: Indo–western Pacific ocean feedback. J. Climate, 30, 3461–3472.

Xu, Q., Z. Guan, D. Jin, and D. Hu, 2019: Regional characteristics of interannual variability of summer rainfall in the Maritime Continent and their related anomalous circulation patters. J. Climate, 32, 4179–4192.

Yamagata, T., S. K . Behera, J. J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Geophys. Monogr. Ser., 147, 189–211.

Yang, J., Q. Liu, S-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian ocean SST basin wide mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

Yanto, B. Rajagopalan, and E. Zagona, 2016: Space-time variability of Indonesian rainfall at inter-annual and multi-decadal time scales. Climate Dyn., 47, 2975–2989.

Yatagai, A., P. Xie, and A. Kitoh, 2005: Utilization of a new gauge-based daily precipitation dataset over monsoon Asia for validation of the daily precipitation climatology simulated by the MRI/JMA 20-km-mesh AGCM. SOLA, 1, 193–196.

——, O. Arakawa, K. Kamiguchi, H. Kawamoto, M. I. Nodzu, and A. Hamada, 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA, 5, 137–140.

——, K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network on rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415.

——, T. N. Krishnamurti, V. Kumar, A. K. Mishra, and A. Simon, 2014: Use of APHRODITE rain gauge-based precipitation and TRMM 3B43 products for improving Asian monsoon seasonal precipitation forecasts by the superensemble method. J. Climate, 27, 1062–1069.

Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511–514.

Yoshioka, M. K., Y. Kurihara, and W. Ohfuchi, 2005: Effect of the thermal tidal oscillation of the atmosphere on tropical cyclones. Geophys. Res. Lett., 32, L16802.

——, ——, 2008: Influence of the equatorial warm water pool on the tropical cyclogenesis: an aqua planet experiment. Atmos. Sci. Lett., 9, 248–254.

Zhang, T., S. Yang, X. Jiang, and B. Huang, 2016: Roles of remote and local forcings in the variation and prediction of regional Maritime Continent rainfall in wet and dry seasons. J. Climate, 29, 8871–8879.

Zebiak, S. E., 1993: Air-sea interaction in the equatorial Atlantic region. J. Climate, 6, 1567–1586.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る