リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interannual variability of Indonesian rainfall related to the tropical Indo-Pacific climate modes and its future projections in CMIP6」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interannual variability of Indonesian rainfall related to the tropical Indo-Pacific climate modes and its future projections in CMIP6

Nur'utami Murni Ngestu 東北大学

2021.09.24

概要

Understanding rainfall variability is very important for tropical countries, especially for Indonesia. Climatic variations in rainfall anomalies can cause severe hydrological disasters and cause socioeconomic problems. This study analyzes the Indonesian rainfall variability in the past- current and the future projection associated with the interannual/interdecadal climate modes for the dry season from June to November (JJASON) by using observation and simulation model data.

The interannual and interdecadal variabilities of Indonesian rainfall for the past-current condition are investigated by using two types of rainfall data input sources, i.e., the Climate Research Unit (CRU) from 1901 to 2016 and the Global Precipitation Climatology Project (GPCP) from 1979 to 2016. We apply the Empirical Orthogonal Function (EOF) to these data. The first principal component (PC1) of both CRU and GPCP data shows that the canonical El Niño Southern Oscillation (canonical ENSO), ENSO Modoki, and Indian Ocean Dipole (IOD) are the major climate modes influencing the interannual variability of rainfall in Indonesia. In addition, the Interdecadal Pacific Oscillation (IPO) is the major decadal phenomenon affecting the decadal variability of rainfall. Three phases of the IPO have been identified, strongly related to Indonesian rainfall as determined by the PC1 of the CRU, i.e., two negative phases in 1939–1978 and 1998– 2016, and a positive phase in 1979–1997. The impact of IPO modulation on Indonesian rainfall response to canonical ENSO and ENSO Modoki is not significant. However, recently, the response of Indonesian rainfall to ENSO Modoki is more significant than canonical ENSO. Meanwhile, the IPO plays a role in modulating the impact of IOD on Indonesian rainfall, where the impact is weakened during the positive IPO phase and strengthened during the negative IPO phase.

Understanding the performance of the climate model in simulating the historical condition of Indonesian rainfall variability is needed before further analyzing the projection models. The sixth phase of Coupled Model Intercomparison Project (CMIP6) models are used. The performance of the 14 CMIP6 models for historical period is evaluated by observing the climatological conditions, the main pattern on rainfall variability, and the rainfall response to the interannual climate modes, compared to the observation from 1979 to 2014 for JJASON. The seasonality of Indonesian rainfall is successfully represented by CMIP6 models, although most models show larger rainfall than the observations. The regional differences vary among the CMIP6 models relative to the observation rainfall, especially over northern and eastern Indonesia. For the leading mode of Indonesian rainfall, several models show a similar condition as the observations, especially for the southern part of Indonesia. However, the difference is quite significant for the northern and northeastern parts of Indonesia. In evaluating Indonesian rainfall variability related to the interannual climate modes, each model has its limitations. For canonical ENSO, most CMIP6 models are difficult to distinguish its impacts on Indonesian rainfall. In contrast, some CMIP6 models can simulate the response of both rainfall and SST to ENSO Modoki and IOD as the observation. Based on the performance of CMIP6 in the three aspects, we found that the MPI-ESM1-2-HR and GFDL-ESM4 models have a better performance to simulate the Indonesian rainfall.

Simulation of Indonesian rainfall variability is performed by applying four future shared socio-economic pathway (SSP) radiative forcing scenarios, namely SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Future simulation is examined by focusing on MPI-ESM1-2-HR and GFDL-ESM4 models for two period times analysis, namely the near-term from 2029 to 2064 and the long-term from 2065 to 2100, for the dry season, JJASON. The simulation models are analyzed on the main pattern of rainfall variability and the rainfall response to the interannual climate modes. The MPI- ESM1-2-HR and GFDL-ESM4 models show a similar leading mode pattern of Indonesian rainfall variability as their historical result on each scenario and each period analysis, except for the MPI- ESM1-2-HR model with SSP5-8.5 in the long-term period. The changes of rainfall anomaly are enhanced for the future warming scenario, especially for SSP3-7.0 and SSP5-8.5 in each model. For the warmest scenario, the composite of rainfall anomaly and SST anomaly (SSTA) for the positive and negative phase PC1 of MPI-ESM1-2-HR rainfall model on both near-term and long-term periods shows that the positive IOD event might occur more frequently than the negative IOD. In addition, Indonesian rainfall variability is also influenced by climate variability over the Indian Ocean and the tropical central Pacific Ocean.

The response of Indonesian rainfall to the interannual climate modes in both the MPI- ESM1-2-HR and GFDL-ESM4 model shows a difficulty to distinguish the impacts of canonical ENSO. In contrast, the impacts area is clearly shown for ENSO Modoki and IOD. For ENSO Modoki, the MPI-ESM1-2-HR and GFDL-ESM4 models show a similar pattern for each scenario as shown in the observation for both near-term and long-term periods. During El Niño Modoki (La Niña Modoki), decreased (increased) rainfall over central-eastern Indonesia is strengthened in the future warming scenarios. The SSTA over the central Pacific shows a higher positive anomaly and narrower area than the observation. For IOD, the Indonesian rainfall responses in the MPI-ESM1- 2-HR and GFDL-ESM4 models show a different pattern to each other. During positive IOD (negative IOD), decreased (increased) rainfall in the MPI-ESM1-2-HR model for each scenario occurs over southwestern Indonesia, similar to the recent term. In addition, in some scenarios, a decreased rainfall occurs over central Indonesia but shows no consistency between near-term and long-term periods. For the GFDL-ESM4 model, decreased rainfall area expands over central Indonesia, accompanied by a positive SSTA in the central-eastern Pacific Ocean.

この論文で使われている画像

参考文献

Adhikari, P., Y. Hong, K.R. Douglas, D.B. Kirschbaum, J. Gourley, R. Adler, and G.R. Brakenridge, 2010: A digitized global flood inventory (1998–2008): compilation and preliminary results. Nat. Hazards, 55, 405-422.

Adler, R.F., G.J. Huffman, A. Chang, R. Ferraro, P.–P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, and P. Arkin, E. Nelkin, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979– present). J. Hydrometeor., 4, 1147–1167.

Akinsanola, A.A., G.J. Kooperman, A.G. Pendergrass, W.M. Hannah, and K.A. Reed, 2020: Seasonal representation of extreme precipitation indices over the United States in CMIP6 present- day simulations. Environ. Res. Lett. 15, 094003, https://doi.org/10.1088/1748- 9326/ab92c1.

Almazroui, M., F. Saeed, S. Saeed, S.M.N. Islam, M. Ismail, M.A.B. Klutse, and M.H. Siddiqui, 2020: Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth Syst. Environ. 4, 455–475.

Alsepan, G., and S. Minobe, 2020: Relations between interannual variability of regional–scale Indonesia precipitation and large–scale climate modes during 1960–2007. J. Climate, 33, 5271–5291.

Ashok, K., Z. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean Dipole. J. Meteor. Soc. Japan, 81, 41–56.

Ashok, K., S. K. Behera, Rao SA, Weng H and Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

Ashok, K., and N. H. Saji, 2007: On the impacts of ENSO and Indian Ocean dipole events on sub– regional Indian summer monsoon rainfall. Nat. Hazards, 42, 273–285.

Ashok, K., and T. Yamagata, 2009: The El Niño with a difference. Nature, 461, 481-484.

As–syakur, A.R., I. W. S. Adnyana, M. S. Mahendra, I. W. Arthana, I. N. Merit, I. W. Kasa, N. W. Ekayanti, I. W. Nuarsa, and I. N. Sunarta, 2014: Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int. J. Climatol, 34, 3825–3839.

As–syakur, A.R., T. Osawa, M. Fusanori, I. W. Nuarsa, N. W. Ekayanti, I. G. B. S. Dharma, I. W. S. Adnyana, I. W. Arthana, and T. Tanaka, 2016: Maritime Continent rainfall variability during the TRMM era: The role of monsoon, topography and El Niño Modoki. Dyn. Atmos. Oceans, 75, 58–77.

Beobide-Arsuaga, G., T. Bayr, A. Reintges, and M. Latif, 2021: Uncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 models. Climate Dyn. 56, 3875-3888.

Bjerknes, J: 1969. Atmospheric teleconnections from the equatorial pacific. J. Phys. Oceanogr., 97, 163–172.

Cai, W., P. Van Rensch, T. Cowan, and H. H. Hendon, 2011: Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Climate, 24, 3910– 3923.

Cai, W., X. –T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci., 6, 999–1007.

Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

Chen, H., and F. Jin, 2021: Simulations of ENSO phase-locking in CMIP5 and CMIP6. J. Climate, 34(12), 5135-5149.

Chiew, F. H. S., and M. J. Leahy, 2003: Interdecadal Pacific Oscillation modulation of the impact of El Niño/Southern Oscillation on Australian rainfall and streamflow. MODSIM 1–4, 100– 105.

Chikamoto, Y., T. Mochizuki, A. Timmermann, M. Kimoto, M. Watanabe, 2016: Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett., 43, 7143– 7151.

Choudhury, D., A. S. Gupta, A. Sharma, A. S. Taschetto, R. Mehrotra, B. Sivakumar, 2017: Impacts of the tropical trans-basin variability on Australian rainfall. Climate Dyn., 49, 1617–1629.

D’Arrigo, R., R. Allan, R. Wilson, J. Palmer, J. Sakulich, J.E. Smerdon, S. Bijaksana, and L.O. Ngkoimani, 2008: Pacific and Indian Ocean climate signals in a tree-ring record of Java monsoon drought. Int. J. Climatol., 28, 1889–1901.

Davies, S.J., and L.Unam, 1999: Smoke-haze from the 1997 Indonesian forest fires: effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. For. Ecology and Manage., 124, 137-144.

Doi, T., S. Behera, T. Yamagata, 2013: Predictability of the Ningaloo Niño/Niña. Sci. Rep., 3, 2892, https://doi.org/10.1038/srep02892.

Dong, B., and A. Dai, 2015: The influence of the Interdecadal Pacific Oscillation on Temperature and Precipitation over the Globe. Climate Dyn., 45, 2667–2681.

Dong, L., T. Zhou, A. Dai, F. Song, B. Wu, and X. Chen, 2016: The Footprint of the Interdecadal Pacific Oscillation in Indian Ocean Sea Surface Temperatures. Sci. Rep., 6, 21251, https://doi.org/10.1038/srep21251.

Edwards, R.B., R.L. Naylor, M.M. Higgins, and W.P. Falcon, 2020: Causes of Indonesia’s forest fires. World Dev., 127, 104717, https://doi.org/10.1016/j.worlddev.2019.104717.

Feng, J., and W. Chen, 2014: Influence of the IOD on the relationship between El Niño Modoki and the East Asian–western North Pacific summer monsoon. Int. J. Climatol., 34, 1729– 1736.

Field, R.D., G.R. van der Werf, T. Fanin, E.J. Fetzer, R. Fuller, H. Jethva, R. Levy, N.J. Livesey, M. luo, O. Torres, and H.M. Worden, 2016: Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A. (PNAS), 113, 9204-9209.

Folland, C.K., J.A. Renwick, M.J. Salinger, and A. B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett., 29, 21–1–21–4.

Fredriksen, H.-B., J. Berner, A.C. Subramanian, and A. Capotondi, 2020: How does El Niño– Southern Oscillation change under global warming—A first look at CMIP6. Geophys. Res. Lett., 47, e2020GL090640, https://doi.org/10.1029/2020GL090640.

Freund, M.B., J.R. Brown, D.J. Henley, D.J. Karoly, and J.N. Brown, 2020: Warming patterns affect El Niño diversity in CMIP5 and CMIP6 models. J. Climate, 33, 8237–8260.

Ge, L., S. Zhu, H. Luo, X. Zhi, and H. Wang, 2021: Future changes in precipitation extremes over Southeast Asia: insights from CMIP6 multi-model ensemble. Environ. Res. Lett. 16, 024013, https://doi.org/10.1088/1748-9326/abd7ad.

Grose, M.R., S. Narsey, F.P. Delage, A.J. Dowdy, M. Bador, G. Boschat, C. Chung, J.B. Kajtar, S. Rauniyar, M.B. Freund, K. Lyu, H. Rashid, X. Zhang, S. Wales, C. Trenham, N.J. Holbrook, T. Cowan, L. Alexander, J.M. Arblaster, and S. Power, 2020: Insights from CMIP6 for Australia's future climate. Earth's Future, 8(5), e2019EF001469, https://doi.org/10.1029/2019EF001469.

Gusaina, A., S. Ghosh, and S. Karmakar, 2020: Added value of CMIP6 over CMIP5 models in simulating Indian summer T monsoon rainfall. Atmos. Res., 232, 104680, doi:10.1016/j.atmosres.2019.104680.

Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 1119–1152.

Harada, Y., H. Kamahori, C. Kobayashi, and H. Endo, 2016: The JRA–55 Reanalysis: representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 49, 269–302.

Harris, I., P. D. Jones, T.J. Osborn, and D. H. Lister, 2014: Updated high–resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623–642.

Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shift in 1977 and 1989. Prog. Oceanogr., 47, 103–145.

Hayashi, M., F.F. Jin, and M.F. Stuecker, 2020: Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun., 11, 4230, https://doi.org/10.1038/s41467-020-17983-y.

Hanley, D. E., M. A. Bourassa, J.J. O’Brien, S. R. Smith, and E. R. Spade, 2003: A quantitative evaluation of ENSO indices. J. Climate, 16, 1249-1258.

Hendon, H.H., 2003: Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J. Climate, 16, 1775–1790.

Henley, B. J., J. Gergis, D. J. Karoly, S. B. Power, J. Kennedy, and C. K. Folland, 2015: A Tripole Index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 3077–3090.

Huang, B., and Co–authors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and inter–comparisons. J. Climate, 30, 8179–8205.

Hung, C., L. Xiaodong, and Y. Michio, 2004: Symmetry and Asymmetry of the Asian and Australian Summer Monsoons. J. Climate, 17, 2413–2426.

Jiang, D., D. Hu, Z. Tian, and X. Lang, 2020: Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian Monsoon. Adv. Atmos. Sci., 37(10), 1102−1118.

Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 2839-2851.

Jin, C., B. Wang, and J. Liu, 2020: Future changes and controlling factors of the eight regional monsoons projected by CMIP6 models. J. Climate, 33, 9307-9326.

Johnson, J. F., Y. Chikamoto, J.–J. Luo, T. Mochizuki, 2018: Ocean impacts on Australian Interannual to Decadal Precipitation Variability. Climate, 6, 61, https://doi.org/10.3390/cli6030061.

Katzenberger, A., J. Schwew, J. Pongratz, and A. Levermann, 2020: Robust increase od Indian monsoon rainfall and its variability under future warming in CMIP-6 models. Earth Syst. Dyn., 12(2), 367-386.

Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA–55 reanalysis: general specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48.

Krasting, J.P., J.G. John, C. Blanton, C. McHugh, S. Nikonov, A. Radhakrishnan, K. Rand, N.T. Zadeh, X. Balaji, J. Durachta, C. Dupuis, R. Menzel, T. Robinson, S. Underwood, H. Vahlenkamp, K.A. Dunne, P.P.G Gauthier, P. Ginoux, S.M. Griffies, R. Hallberg, M. Harrison, W. Hurlin, S. Malyshev, V. Naik, F. Paulot, D.J. Paynter, J. Ploshay, B.G. Reichl, D.M. Schwarzkopf, C.J. Seman, L. Silvers, B. Wyman, Y. Zeng, A. Adcroft, J.P. Dunne, R. Dussin, H. Guo, J. He, I.M. Held, L.W. Horowitz, P. Lin, P.C.D Milly, E. Shevliakova, C. Stock, M. Winton, A.T. Wittenberg, Y. Xie, and M. Zhao, 2018: NOAA-GFDL GFDL- ESM4 model output prepared for CMIP6 CMIP historical.Version YYYYMMDD[1]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8597.

Kucharski, F., F. Ikram, F. Molteni, R. Farneti, I.–S. Kang, H.–H. No, M. P. King, G. Giuliani, K. Mogensen, 2016: Atlantic forcing of Pacific decadal variability. Climate Dyn. 46, 2337– 2351.

Lawrimore, J. H., and Coauthors, 2001: Climate assessment for 2000. Bull. Amer. Meteor. Soc., 82, S1–S56, https://doi.org/ 10.1175/0003-0007-82.6.S1.

Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

Li, T, B Wang, Chang C and Zhang Y, 2003: A Theory for the Indian Ocean Dipole–Zonal Mode. J. Atmos. Sci., 60, 2119–2135.

Li, W., L. Laifang, and D. Yi, 2015: Impact of the Interdecadal Pacific Oscillation on Tropical Cyclone Activity in the North Atlantic and Eastern North Pacific. Sci. Rep., 5, 12358, https://doi.org/10.1038/srep12358.

Liao, H., C. Wang, and Z. Song, 2021: ENSO phase-locking biases from the CMIP5 to CMIP6 models and a possible explanation. Deep-Sea Res., Part II, 189-190, 104943, https://doi.org/10.1016/j.dsr2.2021.104943.

Liu, Z., 2012: Dynamics of interdecadal climate variability: a historical perspective. J. Climate, 25, 1963–1995.

Magee, A.D., C. Danielle, Verdon–Kidd, J.D. Howard, and A.S. Kiem, 2017: Influence of ENSO, ENSO Modoki, and the IPO on tropical cyclogenesis: a spatial analysis of the southwest Pacific region. Int. J. Climatol., 37, 1118–1137.

Mantua, N.J., S.R. Hare, Y. Zhang, J.M. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069– 1079.

Mantua, N., 2004: Methods for detecting regime shifts in large marine ecosystems: a review with approaches applied to North Pacific data. Prog. Ocean., 60, 165–182.

McKenna, S., A. Santoso, A. S. Gupta, A. S. Taschetto, and W. Cai, 2020: Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO. Sci. Rep., 10(1), 11500, doi: 10.1038/s41598-020-68268-9.

Minobe, S., 1997: A 50–70 year climatic oscillation over the North Pacific and North America. Geophys. Res. Lett., 24, 683–686.

Moon, S., and K.J. Ha, 2020: Future changes in monsoon duration and precipitation using CMIP6. npj Clim. Atmos. Sci., 3, 45, https://doi.org/10.1038/s41612-020-00151-w.

Müller, W. A., J.H. Jungclaus, T. Mauritsen, J. Baehr, M. Bittner, R. Budich, F. Bunzel, M. Esch, R. Ghosh, H. Haak, T. Ilyina, T. Kleine, L. Kornblueh, H. Li, K. Modali, D. Notz, H. Pohlmann, E. Roeckner, I. Stemmler, F. Tian, and J. Marotzke, 2018: A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst., 10, 1383–1413.

Newman, M., and Co–authors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 4399–4420.

Nicholls, N., 2008: Recent trends in the seasonal and temporal behaviour of the El Niño–Southern Oscillation. Geophys. Res. Lett., 35, L19703, doi:10.1029/2008GL034499.

Nur’utami, M.N., and R. Hidayat, 2016: Influences of IOD and ENSO to Indonesian rainfall variability: Role of atmosphere-ocean interaction in the Indo-Pacific sector. Procedia Environ. Sci., 33, 196-203.

O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482.

Page, S., F. Siegert, J.O. Rieley, H.-D.V. Boehm, A. Jaya, and S. Limin, 2002: The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.

Pan, X., M. Chin, C.M. Ichoku, andR.D. Field, R. D. (2018). Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean dipole during 1979–2016. J. Geophys. Res.: Atmos., 123, 7974–7988.

Planton, Y.Y., E. Guilyardi, A.T. Wittenberg, J. Lee, P.J. Gleckler, T. Bayr, S. McGregor, M.J. McPhaden, S. Power, R. Roehrig, J. Vialard, and A. Voldoire, 2021: Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Amer. Meteor. Soc., 102(2), E193-E217, https://doi.org/10.1175/BAMS-D-19-0337.1.

Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324.

Qian, W., Y. Deng, Y. Zhu, and W. Dong, 2002: Demarcating the worldwide monsoon. Theor. Appl. Climatol., 71, 1–16.

Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 1606-1626.

Saji, N.H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

Salinger, M.J., J. A. Renwick, and A. B. Mullan, 2001: Interdecadal Pacific Oscillation and South Pacific climate. Int. J. Climatol., 21, 1705–1721.

Tacconi, L, 2003: Fires in Indonesia: causes, cost and policy implications. Center for International Forestry Research. 24.

Tanuma, N., and T. Tozuka, 2020: Influences of the Interdecadal Pacific Oscillation on the locally amplified Ningaloo Niño. Geophys. Res. Lett., 47, e2020GL088712, doi:10.1029/2020gl088712.

Taschetto, A. S., and H. E. Matthew, 2009: El Niño Modoki Impacts on Australian Rainfall. J. Climate, 22, 3167–3174.

Trenberth, K. E, 1997: The definition of El Niño. Bull. Amer. Meteo. Soc., 78, 2771–2777. Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

Trenberth, K. E, 2017: El Niño Southern Oscillation (ENSO). Encyclopedia of Ocean Sciences, 3rd Edition. https://doi.org/10.1016/B978–0–12–409548–9.04082–3.

Wang, S., J. Huang, Y. He, and Y. Guan, 2014: Combined effects of the Pacific Decadal Oscillation and El Niño–Southern Oscillation on Global Land Dry–Wet Changes. Sci. Rep., 4, 6651, https://doi.org/10.1038/srep06651.

Wang, C, Deser C, Yu JY, DiNezio P and Clement A, 2017: El Niño and Southern Oscillation (ENSO): A Review. In: Glynn P, Manzello D, Enochs I (eds) Coral Reefs of the Eastern Tropical Pacific. Coral Reefs of the World, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978–94–017–7499–4_4.

Wang, B., C. Jin, and J. Liu, 2020: Understanding future change of global monsoon projected by CMIP6 models. J. Climate, 33, 6471-6489.

Wang, J., M. Wang, J.-S. Kim, J. Joiner, N. Zeng, F. Jiang, H. Wang, W. He, M. Wu, T. Chen, W. Ju, and J.M. Chen, 2021: Modulation of land photosynthesis by the Indian Ocean Dipole: Satellite-based observations and CMIP6 future projections. Earth's Future, 9, e2020EF001942, doi:10.1029/2020EF001942.

Wang, X-Y., J. Zhu, C-H. Chang, N.C. Johnson, H. Liu, Y. Li, C. Song, M. Xin, Y. Zhou, and X. Li, 2021: Underestimated responses of Walker circulation to ENSO-related SST anomaly in atmospheric and coupled models. Geosci. Lett., 8, 17, https://doi.org/10.1186/s40562-021- 00186-8.

Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129.

Yanto, B. Rajagopalan, and E. Zagona, 2016: Space–time variability of Indonesian rainfall at interannual and multi–decadal time scales. Climate Dyn., 47, 2975–2989.

Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511–514.

Yeh, S.-W., W. Cai, S.-K. Min, M.J. McPhaden, D. Dommenget, B. Dewitte, M. Collins, K. Ashok, S.-I. An, B.-Y. Yim, and J.-S. Kug, 2018: ENSO atmopheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56(1), 185-206.

Zhang, L., W. Han, Y. Li, and T. Shinoda, 2018: Mechanisms for generation and development of the Ningaloo Niño. J. Climate, 31, 9239-9259.

Zhu, Y., and S. Yang. 2020: Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int. J. Climatol., 42(S1), E1100-E1118, https://doi.org/10.1002/joc.6756.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る