リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「骨インプラント用バイオポリマー/バイオセラミック複合材料の開発と評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

骨インプラント用バイオポリマー/バイオセラミック複合材料の開発と評価

ジョン, ジェームズ, ダックワース DUCKWORTH, JOHN, JAMES 九州大学

2020.09.25

概要

Biomaterials have been investigated in recent years with regards to many kinds of implant surgeries. Especially on surgeries involving bone repair, traditional materials such as stainless steel, titanium and polyethylene have proven extremely useful, and have served remarkably well over the last century. However, these materials do have many shortcomings, such as low bioactivity, poor osseointegration, internal loosing and displacement, stress shielding, and no bioresorbability. There are many reasons to believe that biomaterials, specifically composites of biopolymers and bioceramics, are well suited to overcome these limitations. These problems and the biomaterials which show promise for overcoming them are fully explained in Chapter 1.

In Chapter 2, a series of biomaterial composites were successfully fabricated using calcium phosphate microbeads and three kinds of biopolymer as the matrix; PLLA, PCL and a 50:50 blend of the two. The methods for fabricating calcium phosphate beads were optimized and the beads characterized using XRD and SEM imaging. Investigations into the material properties of the novel biomaterials showed that microbead inclusion caused a slight increase in stiffness for PLLA and PCL, but instead a sharp decrease in stiffness for the blend. Fracture toughness as measured by KIC and Gin slightly decreased for the PLLA and blended polymer with microbead inclusion, however for PCL the value of KIC barely changed at all.

The mechanism of fracture for each material was also investigated, revealing that each biocomposite fractured under different conditions. Once microbeads were added, PLLA fractured by a two phase mechanism caused by intrusion of the polymer into the microbead. In PCL and the blended polymer, microbeads pulled out during fracture as the polymer did not intrude upon them, and both showed ductile fracture characteristics. The reduced fracture toughness of the blended polymer was hypothesized to be caused by the distinct boundary layer which was seen to form at the bead interface in only this material. This layer was absent from the bead interfaces with PCL. This system was also investigated using FE analysis to help establish the fracture mechanism, and fracture locations and SED supported the theory. Overall, this research shows that inclusion of microbeads into biopolymers is a promising avenue for research. By understanding the difference in mechanisms of fracture caused in different materials, we can understand which might be used to improve in the future.

In Chapter 3, a different application of biopolymer/bioceramic composites was investigated. PLCL fibres of four different average lengths were produced, and successfully incorporated into a dicalcium phosphate dihydrate matrix to be investigated as a potential novel biomaterial for kyphoplasty surgery. Fibres were characterized by length using SEM imaging, and the effect of fibre length on compressive strength and compressive elastic modulus of the biocomposite was investigated. . It was shown that by including PLCL fibres of average length 400µm into the bioceramic, the compressive strength of the material doubled. The fibres also had the effect of reducing the compressive elastic modulus drastically, making the material as flexible as cancellous bone. This is another excellent result, as the high stiffness of materials used for kyphoplasty has previously been blamed for many complications after surgery. Secondarily, the packing of the fibres within the material was investigated. A parameter, ρ, was established to represent fibre packing within the material. Micro-CT scans and FE modelling were used to successfully correlate ρ with fibre length, and suggest a mechanism for why the compressive elastic modulus of the composite material dropped so significantly.

この論文で使われている画像

参考文献

[1] H. Ellis, A History of Surgery, Greenwich Medical Media Ltd., London, 2001.

[2] B. Browner, Skeletal Trauma: Basic Science, Management and Reconstruction Volume 2, Saunders Elsevier, Philadelphia, 2009.

[3] A. Swanson, S. Jaeger, D. la Rochelle, Comminuted fractures of the radial head. The role of silicone-implant replacement arthroplasty, J. Bone Joint Surg. Am. 63 (1981) 1039-1049. PMID: 7276041

[4] M. Haseeb, M. Butt, T. Altaf, K. Muzaffar, A. Gupta, A. Jallu, Indications of implant removal: A study of 83 cases, Int. J. Health. Sci. 11 (2017) 1-7. PMID: 28293156

[5] F. Kovar, E. Strasser, M. Jaindl, G. Endler, G. Oberleitner, Complications following implant removal in patients with proximal femur fractures – An observational study over 16 years, Orthop. Traumatol. Sur. 101 (2015) 785-789. DOI: 10.1016/j.otsr.2015.07.021

[6] C. Wong, M. McGirt, Vertebral compression fractures: a review of current management and multimodal therapy, J. Multidiscip. Healthc. 6 (2013) 205-214. DOI: 10.2147/JMDH.S31659

[7] V. Denaro, U. Longo, N. Maffulli, L. Denaro, Vertebroplasty and kyphoplasty, Clin. Cases Miner. Bone Metab. 6 (2009) 125-130. PMCID: PMC2781232

[8] S. Bonnick, Osteoporosis in men and woman, Clin. Cornerstone 8 (2006) 28-39. DOI: 10.1016/s1098-3597(06)80063-3

[9] C. David, C. Confavreux, N. Mehsen, J. Paccou, A. Leboime, E. Legrand, Severity of osteoporosis: What is the impact of co-morbidities?, Joint. Bone Spine 77 (2010) 103-106. DOI: 10.1016/S1297-319X(10)70003-8

[10] E. Dennison, C. Cooper, Epidemiology of osteoporotic fractures, Horm. Res. 54 (2000) 58-63. DOI: 10.1159/000063449

[11] A. Rapado, General management of vertebral fractures, Bone 18 (1996) 191-196. DOI: 10.1016/8756-3282(95)00501-3

[12] S. Garfin, H. Yuan, M. Reiley, New technologies in spine: Kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures, Spine 26 (2001) 1511-1515. DOI: 10.1097/00007632-200107150-00002

[13] H. Chen, H. Yang, P. Jia, L. Bao, H. Tang, Effectiveness of kyphoplasty in the treatment of osteoporotic vertebral compression fracture patients with chronic kidney disease, J. Orthoped. Sci. 21 (2016) 571-578. DOI: 10.1016/j.jos.2016.05.004

[14] C. Xu, H. Liu, H. Xu, Analysis of related factors on the deformity correction of balloon kyphoplasty, Am. J. Neuroradiol. 35 (2013) 202-206. DOI: 10.3174/ajnr.a3617

[15] M. Bozkurt, G. Kahilogullari, M. Ozdemir, O. Ozgural, A. Attar, S. Caglar, C. Ates, Comparative analysis of vertebroplasty and kyphoplasty for osteoporotic vertebral compression fractures, Asian Spine J. 8 (2014) 27-34. PMCID: PMC3939366

[16] A. Mudano, J. Bian, J. Cope, J. Curtis, T. Gross, J. Allison, Y. Kim, D. Briggs, M. Melton, J. Xi, K. Saag, Vertebroplasty and kyphoplasty are associated with an increased risk of secondary vertebral compression fractures: A population-based cohort study, Osteoporosis Int. 20 (2009) 819- 826. DOI: 10.1007/s00198-008-0745-5

[17] J. Wu, Y. Guan, S. Fan, Analysis of risk factors of secondary adjacent vertebral fracture after percutaneous kyphoplasty, Biomed. Res. 28 (2017) 1956-1961.

[18] M. Liebschner, W. Rosenberg, T. Keaveny, Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty, Spine 26 (2001) 1547-1554. DOI: 10.1097/00007632-200107150-00009

[19] B. Dickey, M. Tyndyk, D. Doman, D. Boyd, In silico evaluation of stress distribution after vertebral body augmentation with conventional acrylics, composites and glass polyalkenoate cements, J. Mech. Behav. Biomed. Mater. 5 (2012) 283-290. DOI: 10.1016/j.jmbbm.2011.08.007

[20] A. Polikeit, P. Nolte, S. Ferguson, The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis, Spine 28 (2003) 991-996. DOI: 10.1097/01.BRS.0000061987.71624.17

[21] P. Alexander, T. Fathima, R. Jeniffa, P. Praseetha, Scaffolds used for bone tissue regeneration: Review, Res. J. Pharm. Biol. Chem. Sci. 7 (2016) 1624- 1636.

[22] U. Sampath, Y. Ching, C. Chuah, J. Sabariah, P. Lin, Fabrication of porous materials from natural/synthetic biopolymers and their composites, Materials 9 (2016) 991, DOI: 10.3390/ma9120991

[23] K. Burg, S. Porter, J. Kellam, Biomaterial developments for bone tissue engineering, Biomaterials 21 (2000) 2347-2359. DOI: 10.1016/s0142-9612(00)00102-2

[24] J. Fernandez, A. Etxeberria, J. Sarasua, Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers, J. Mech. Behav. Biomed. Mater. 9 (2012) 100-112. DOI: 10.1016/j.jmbbm.2012.01.003

[25] C. Harper, Modern Plastics Handbook, McGraw-Hill, New York, 1999.

[26] A. Sodergard, M. Stolt, Properties of lactic acid based polymers and their correlation with composition, Prog. Polym. Sci. 27 (2002) 1123-1163. DOI: 10.1016/S0079-6700(02)00012-6

[27] C. Chu, Materials for absorbable and nonabsorbable surgical sutures. In: Biotextiles as Medical Implants, Woodhead Publishing Ltd., Cambridge, 2013.

[28] J. Middleton, A. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335-2346. DOI: 10.1016/s0142-9612(00)00101-0

[29] D. Rosa, I. Neto, M. Cail, A. Pedroso, C. Fonseca, S. Neves, Evaluation of the thermal and mechanical properties of poly(epsilon-caprolactone), low- density polyethylene, and their blends, J. Appl. Polym. Sci. 91 (2004) 3909- 3914. DOI: 10.1002/app.13596

[30] J. Fernandez, A. Etxeberria, J. Sarasua, Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers, J. Mech. Behav. Biomed 9 (2012) 100-112. DOI: 10.1016/j.jmbbm.2012.01.003

[31] J. Fernandez, A. Larranaga, A. Etxeberria, W. Wang, J. Sarasusa, A new generation of poly(lactide/ε-caprolactone) polymeric materials for application in the medical field, J. Biomed. Mater. Res. A, 102 (2013) 3573- 3584. DOI: 10.1002/jbm.a.35036

[32] J. Pan, N. Liu, H. Sun, F. Xu, Preparation and characterization of electrospun PLCL/poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering, PLoS ONE 9 (2014) e112885. DOI: 10.1371/journal.pone.0112885

[33] W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: Materials for the future?, Mater. Today 19 (2016) 69-87. DOI: 10.1016/j.mattod.2015.10.008

[34] M. Hu, P. Lee, W. Chen, J. Hu, Incorporation of collagen in calcium phosphate cements for controlling osseointegration, Materials 10 (2017) E910. DOI: 10.3390/ma10080910

[35] C. Klein, K. de Groot, A. Drissen, H. van der Lubbe, Interaction of biodegradable β-whitlockite ceramics with bone tissue: an in vivo study, Biomaterials 6 (1985) 189-192. DOI: 10.1016/0142-9612(85)90008-0

[36] K. Jeong, S. Kim, S. Moon, J. Oh, J. Jo, H. Lim, J. Kim, S. Lim, M. Jeong, Experimental study of osseointegration and stability of intentionally exposed hydroxyapatite coating implants, J. Korean Assoc. Maxillofac. Plast. Reconstr. Surg. 34 (2012) 12-16.

[37] G. Krishnamurithy, A review on hydroxyapatite-based scaffolds as a potential bone graft substitute for bone tissue engineering applications, J. Univ. Malaya Med. Cent. 16 (2013) 1-6. DOI: 10.22452/jummec.vol16no2.4

[38] H. Yi, F. Rehman, C. Zhao, B. Liu, N. He, Recent advances in nano scaffolds for bone repair, Bone Res. 4 (2016) 16050. DOI: 10.1038/boneres.2016.50

[39] J. Zhang, W. Liu, V. Schnitzler, F. Trancet, J. Bouler, Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties, Acta Biomater. 10 (2014) 1035-1049. DOI: 10.1016/j.actbio.2013.11.001

[40] A. Amir, J. Lemaitre, Calcium phosphate cements: study of the β-tricalcium phosphate – monocalcium phosphate system, Biomaterials 10 (1989) 475-480. DOI: 10.1016/0142-9612(89)90089

[41] E. Charriere, S. Terrazzoni, C. Pittet, P. Mordasini, M. Dutoit, Mechanical characterization of brushite and hydroxyapatite cements, Biomaterials 22 (2001) 2937-2945. DOI: 10.1016/S0142-9612(01)00041-2

[42] M. Ginebra, Calcium Phosphate Bone Cements, Woodhead Publishing Ltd., Cambridge, 2008.

[43] D. Carter, W. Hayes, The compressive behaviour of bone as a two phase structure, J. Bone Joint Surg. Am. 59 (1977) 954-962. PMID: 561786

[44] A. Burstein, D. Reilly, M. Martens, Aging of bone tissue: Mechanical properties, J. Bone Joint Surg. 58 (1976) 82-86. PMID: 1249116

[45] C. Misch, Z. Qu, M. Bidez, Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgery placement, J. Oral Maxillofac. Surg. 57 (1999) 700-706. DOI: 10.1016/S0278-2391(99)90438-X

[46] P. Gao, H. Zhang, Y. Liu, B. Fan, X. Li, X. Xiao, P. Lan, M. Li, L. Geng, D. Liu, Y. Yuan, Q. Lian, J. Lu, Z. Guo, Z. Wang, Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo- regenerators for bone tissue engineering in vivo, Sci. Rep. 6 (2016) 23367. DOI: 10.1038/srep23367

[47] R. Carrodeguas, S. de Aza, α-tricalcium phosphate: Synthesis, properties and biomedical applications, Acta Biomater. 7 (2011) 3536-3546. DOI: 10.1016/j.actbio.2011.06.019

[48] M. Bohner, Design of ceramic-based cements and putties for bone graft substitution, Eur. Cells Mater. 20 (2010) 1-12. DOI: 10.22203/ecm.v020a01

[49] M. Vallet-Regi, L. Rodriguez-Lorenzo, A. Salinas, Synthesis and characterisation of calcium deficient apatite, Solid State Ion. 101 (1997) 1279-1285. DOI: 10.1016/S0167-2738(97)00213-0

[50] R. Harrison, Z. Criss, L. Feller, S. Modi, J. Hardy, C. Schmidt, L. Suggs, M. Murphy, Mechanical properties of tricalcium phosphate based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads, J. Biomed. Mater. Res. B Appl. Biomater. 104 (2016) 149-157. DOI:10.1002/jbm.b.33362

[51] C. Hernandez, G. Beaupre, T. Keller, D. Carter, The influence of bone volume fraction and ash fraction on bone strength and modulus, Bone 29 (2001) 74-78. DOI: 10.1016/s8756-3282(01)00467-7

[52] T. Keaveny, E. Morgan, G. Niebur, O. Yeh, Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3 (2001) 307-333. DOI: 10.1146/annurev.bioeng.3.1.307

[53] European Chemicals Agency, Pentacalcium hydroxide tris(orthophosphate), REACH Registered Substance Factsheets (2020) echa.europa.eu/registration- dossier/-/registered-dossier/15208

[54] European Chemicals Agency, Tricalcium bis(orthophosphate), REACH Registered Substance Factsheets (2020) echa.europa.eu/registration-dossier/-/registered-dossier/13654/1

[55] European Chemicals Agency, Calcium bis(dihydrogenorthophosphate), REACH Registered Substance Factsheets (2020) echa.europa.eu/registration- dossier/-/registered-dossier/15399/4/9

[56] European Chemicals Agency, Calcium hydrogenorthophosphate, REACH Registered Substance Factsheets (2020) echa.europa.eu/registration-dossier/-/registered-dossier/15458/4/9

[57] R. Rebelo, M. Fernandes, R. Fangueiro, Biopolymers in medical implants: A brief review, Procedia Eng. 200 (2017) 236-243. DOI:10.1016/j.proeng.2017.07.034

[58] K. Masutani, Y. Kimura, Chapter 1: PLA synthesis from the monomer to polymer. In: Poly(lactic acid) science and technology: Processing, properties, additives and applications (2014) 1-36. DOI: 10.1039/9781782624806-00001

[59] A. Majola, S. Vainionpaa, P. Rokkanen, H. Mikkola, P. Tormala, Absorbable self-reinforced polylactide (SR-PLA) composite rods for fracture fixation- strength and strength retention in the bone and subcutaneous tissue of rabbits, J. Mater. Sci. mater. Med. 3 (1992) 43-47. DOI: 10.1007/BF00702943

[60] J. Middleton, A. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (2000) 2335-2346. DOI: 10.1016/s0142-9612(00)00101-0

[61] M. Simion, U. Misitiano, L. Gionso, A. Salvato, Treatment of dehiscences and fenestrations around dental implants using resorbable and nonresorbable membranes associated with bone autografts: A comparative clinical study, Int. J. Oral Maxillofac. Implants 12 (1997) 159-167. PMID: 9109265

[62] K. Tappa, U. Jammalamadaka, J. Weisman, D. Ballard, D. Wolford, C. Pascual-Garrido, L. Wolford, P. Woodard, D. Mills, 3D printed custom bioactive and absorbable surgical crews, pins, and bone plates for localized drug delivery, J. Func. Biomater. 10 (2019) 2. DOI:10.3390/jfb10020017

[63] G. Giammona, E. Craparo, Polymer-based systems for controlled release and targeting of drugs, Polymers 11 (2019) 2066-2069. DOI:10.3390/polym11122066

[64] M. Benmassaoud, C. Kohama, T. Kim, J. Kadlowec, B. Foltiny, T. Mercurio, S. Ranganathan, Efficacy of eluted antibiotics through 3D printed femoral implants, Miomed. Microdevices 21 (2019) 51. DOI: 10.1007/s10544-019-0395-8

[65] B. Shafer, P. Simonian, Broken poly-L-lactic acid screw after ligament reconstruction, J. Arthrosc. Relat. Surg. 18 (2002) E35. DOI: 10.1053/jars.2002.32197

[66] M. Kosaka, F. Uemura, S. Tomemori, H. Kamiishi, Scanning electron microscope observations of ‘fractured’ biodegradable plates and screws, J. Craniomaxillofac. Surg. 31 (2003) 10-14. DOI: 10.1016/s1010- 5182(02)00166-x

[67] Z. Wang, Y. Wang, Y. Ito, P. Zhang, X. Chen, A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation, Sci. Rep. 6 (2016) 20770. DOI: 10.1038/srep20770

[68] Medtronic Plc, Wound Closure Catalogue (2019) 4-93.

[69] Y. Kim, K. Lee, S. Kim, Y. Jang, J. Kim, M. Lee, Improvement of osteogenesis by a uniform PCL coating on a magnesium screw for biodegradable applications, Sci. Rep. 8 (2018) 13264. DOI:10.1038/s41598-018-31359-9

[70] D. Milovac, T. Gamboa-Martinez, M. Ivankovic, G. Ferrer, H. Ivankovic, PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: In vitro cell culture studies, Mater. Sci. Eng. C 42 (2014) 264-272. DOI:10.1016/j.msec.2014.05.034

[71] S. Gomes, G. Rodrigues, G. Martins, M. Roberto, M. Mafra, C. Henriques, J. Silva, In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study, Mater. Sci. Eng. C 46 (2015) 348-358. DOI: 10.1016/j.msec.2014.10.051

[72] A. Pangesty, M. Todo, Development of cylindrical microfibrous scaffold using melt-spinning method for vascular engineering, Mater. Lett. 228 (2018) 334-338. DOI:10.1016/j.matlet.2018.06.046

[73] D. Marcellin-Little, B. Sutherland, O. Harrysson, E. Lee, In vitro evaluation of free-form biodegradable bone plates for fixation of distal femoral physeal fractures in dogs, Am. J. Vet. Res. 71 (2010) 1508-15. DOI: 10.2460/ajvr.71.12.1508

[74] P. Lin, H. Fang, T. Tseng, W. Lee, Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials, Mater. Lett. 61 (2007) 3009-3013. DOI: 10.1016/j.matlet.2006.10.064

[75] S. Mondal, T. Nguyen, V. Pham, G. Hoang, P. Manivasagan, M. Kim, S. Nam, J. Oh, Hydroxyapatite nano bio-ceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application, Ceram. Int. 46 (2020) 3443-3455. DOI: 10.1016/j.ceramint.2019.10.057

[76] N. Ranjan, R. Singh, I. Ahuja, Development of PLA-HAp-CS-based biocompatible functional prototype: A case study, J/ Thermoplast. Compos. 33 (2020) 305-323. DOI: 10.1177/0892705718805531

[77] E. Backes, L. Pires, C. Beatrice, L. Costa, F. Passador, L. Pessan, Fabrication of biocompatible composites of poly(lactic acid)/ hydroxyapatite envisioning medical applications, Polym. Eng. Sci. 60 (2020) 636-644. DOI: 10.1002/pen.25322

[78] J. Kane, H. Weiss-Bilka, M. Meagher, Y. Liu, J. Gargac, G. Niebur, D. Wagner, R. Roeder, Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties, Acta Biomater. 17 (2015) 16-25. DOI: 10.1016/j.actbio.2015.01.031

[79] M. Todo, S. Park, K. Arakawa, Y. Takenoshita, Relationship between microstructure and fracture behavior of bioabsorbable HA/PLLA composites, Compos. Pat. A Appl. Sci. 37 (2006) 2221-2225. DOI:10.1016/j.compositesa.2005.10.001

[80] B. Rai, J. Lin, Z. Lim, R. Guldberg, D. Hutmacher, S. Cool, Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds, Biomat. 31 (2010) 7960-7970. DOI:10.1016/j.biomaterials.2010.07.001

[81] E. Gonçalves, F. Oliviera, R. Silva, M. Neto, M. Fernandes, M. Amaral, M. Vallet-Regi, M. Vila, Three-dimensional printed hydroxyapatite scaffolds filled with CNTs for bone cell growth simulation, J. Biomed. Mater. Res. B 104 (2019) 6. DOI: 10.1002/jbm.b.33432

[82] A. Bruyas, F. Lou, A. Stahl, M. Gardner, W. Maloney, S. Goodman, Y. Yang, Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: Influence of composition and porosity, J. Mater. Res. 33 (2018) 1948-1959. DOI: 10.1557/jmr.2018.112

[83] W. Bonfield, M. Wang, C. Au, P. Lai, Tensile and compressive behaviours and properties of a bone analogue biomaterial, Key Eng. Mater. 284-286 (2005) 693-696. DOI: 10.4028/www.scientific.net/KEM.284-286.693

[84] X. Fan, L. Guo, T. Liu, Preparation and mechanical properties of PLGA/β- TCP composites, Polym. Plas. Technol. Eng. 52 (2013) 621-625. DOI: 10.1080/03602559.2012.762661

[85] M. Todo, S. Park, T. Takayama, K. Arakawa, Fracture mechanisms of bioabsorbable PLLA/PCL polymer blends, Eng. Fract. Mech. 74 (2006) 1872-1883. DOI: 10.1016/j.engfracmech.2006.05.021

[86] M. Wang, Y. Liu, C. Au, P. Lai, L. Leung, B. Chua, Deformation and fracture of bone analogue materials having different polymer matrices, Open J. Adv. Mater. Res. 47-50 (2008) 1391-1394. DOI: 10.4028/www.scientific.net/AMR.47-50.1391

[87] Y. Liu, M. Wang, Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial, J. Appl. Polym. Sci. 106 (2007) 2780-2790. DOI: 10.1002/app.26917

[88] P. Kazimierczak, A. Benko, K. Palka, C. Canal, D. Kolodynska, A. Przekora, Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds, J. Mater. Sci. Technol. 43 (2020) 52-63. DOI: 10.1016/j.jmst.2020.01.006

[89] R. Ma, L. Fang, Z. Luo, L. Weng, S. Song, R. Zheng, H. Sun, H. Fu, Mechanical performance and in vivo bioactivity of functionally graded PEEK-HA biocomposite materials, J. Sol Gel Sci. Technol. 70 (2014) 339-345. DOI: 10.1007/s10971-014-3287-7

[90] R. De Silva, P. Pasbakhsh, A. Qureshi, A. Gibson, K. Goh, Stress transfer and fracture in nanostructured particulate-reinforced chitosan biopolymer composites: influence of interfacial shear stress and particle slenderness, Compos. Interfaces 21 (2014) 807-818. DOI: 10.1080/15685543.2014.960334

[91] M. Abadi, I Ghasemi, A. Khavandi, M. Shokrgozar, M. Farokhi, S. Homaeigohar, A. Eslamifar, Synthesis of nano β-TCP and the effects on the mechanical and biological properties of β-TCP/HDPE/UHMWPE nanocomposites, Polym. Compos. 31 (2010) 1745-1753. DOI: 10.1002/pc.20965

[92] G. Perumal, B. Ramasamy, A. Nandkumar, M. Doble, Influence of magnesium particles and pluronic F127 on compressive strength and cytocompatability of nanocomposite injectable and boldable beads for bone regeneration, J. Mech. Behav. Biomed. 88 (2018) 453-462. DOI: 10.1016/j.jmbbm.2018.08.002

[93] G. Converse, W. Yue, R. Roeder, Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone, Biomaterials 28 (2007) 927-935. DOI: 10.1016/j.biomaterials.2006.10.031

[94] H. Wu, D. Pang, C. Ma, Q. Li, C. Xiong, Composites of hydrosyapatite whiskers/poly(L-lactide-co-glycolide) with high tensile plasticity, J. Macromol. Sci. B 51 (2012) 1242-1255. DOI: 10.1080/00222348.2011.627824

[95] A. Teo, A. Mishra, I. Park, Y. Kim, W. Park, Y. Yoon, Polymeric biomaterials for medical implants and devices, ACS Biomater. Sci. Eng. 2 (2016) 454-472. DOI: 10.1021/acsbiomaterials.5b00429

[96] C. Wallace, C. Tsao, F. Wei, Mandibular reconstruction. In: Plastic and Reconstructive Surgery: Approaches and Techniques, John Wiley & Sons Ltd., Chichester UK, 2015.

[97] J. Jones, Chapter 9: Hierarchical Porous Scaffolds for Bone Regeneration. In: New Materials and Technologies for Healthcare, Imperial College Press, London, 2012.

[98] P. Patil, D. Chavanke, M. Wagh, A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres, Int. J. Pharm. 4 (2012) 27-32.

[99] T. Giri, Alginate containing nanoarchitectonics for improved cancer therapy. In: Nanoarchitectonics for Smart Delivery and Drug Targeting, William Andrew Applied Science Publishers, Oxford, 2016.

[100] S. Pedroso-Santana, N. Fleitas-Salazar, Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes, Polym. Int. 69 (2020) 443-447. DOI: 10.1002/pi.5970

[101] ASTM Standard E399-17, Standard test method for linear elastic plane-strain fracture toughness KIC of metallic materials, ASTM International, West Conshohocken, PA, 2017.

[102] Mechanical Finder v7.0, Research Centre of Computational Mechanics Inc., 2019

[103] SketchUp Pro 3D Modeling Software, Trimble Inc., 2020.

[104] S. Sakka, J. Bouaziz, F. Ben Ayed, Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. In: Advances in biomaterials science and biomedical applications, IntechOpen, Rijeka, 2013.

[105] S. Laasri, M. Taha, A. Hajjaji, A. Laghzizil, E. Hlil, Mechanical properties of calcium phosphate biomaterials, Mol. Cryst. Liq. Cryst. 628 (2016) 198-203. DOI: 10.1080/15421406.2015.1137270

[106] S. Farah, D. Anderson, R. Langer, Physical and mechanical properties of PLA and their functions in widespread applications – a comprehensive review, Adv. Drug Deliv. Rev. 107 (2016) 367-392. DOI: 10.1016/j.addr.2016.06.012

[107] D. Metsger, M. Rieger, D. Foreman, Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic, J. Mater. Sci. Mater. Med. 10 (1999) 9-17. DOI: 10.1023/a:1008883809160

[108] S. Chung, N. Ingle, G. Montero, S. Kim, M. King, Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning, Acta Biomaterialia 6 (2010) 1958-1967. DOI: 10.1016/j.actbio.2009.12.007

[109] A. Pangesty, M. Todo, Development of cylindrical microfibrous scaffold using melt-spinning method for vascular tissue engineering, Mater. Lett. 228 (2018) 334-338. DOI: 10.1016/j.matlet.2018.06.046

[110] T. Tran, Z. Hamid, N. Lai, K. Cheong, M. Todo, Development and mechanical characterization of bilayer tubular scaffolds for vascular tissue engineering applications, J. Mater. Sci. 55 (2020) 2516-2529. DOI: 10.1007/s10853-019-04159-3

[111] B. Han, P. Ma, L. Zhang, Y. Yin, K. Tao, F. Zhang, Y. Zhang, X. Li, W. Nie, β-TCP/MCPM-based premixed calcium phosphate cements, Acta Biomater. 5 (2009) 3165-3177. DOI: 10.1016/j.actbio.2009.04.024

[112] W. He, Y. Fu, M. Andersson, Morphological control of calcium phosphate nanostructures using lyotropic liquid crystals, J. Mater. Chem. B 2 (2014) 3214. DOI: 10.1039/c4tb00095a

[113] B. Saad, U. Suter, Biodegradable polymeric materials. In: Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., Pergamon USA, 2001.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る