リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「新規多孔質ハイドロキシアパタイト/バイオポリマー複合材料ビームの曲げ機械特性の評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

新規多孔質ハイドロキシアパタイト/バイオポリマー複合材料ビームの曲げ機械特性の評価

ファティン, ハズワニ, モハマド, アザハル HAZWANI MOHAMAD AZAHAR, FATIN 九州大学

2021.09.24

概要

近年、骨折固定用材料や骨再生用足場材料として、骨の無機成分に類似のバイオセラミックスや生体吸収性を有するバイオポリマーが広く使用されている。バイオセラミックスとしてはリンカルシウム系のハイドロキシアパタイト(HA)、生体吸収性ポリマーとしては、骨折固定用材料として利用されているポリL 乳酸(PLLA)が検討されている。特に最近、HA の多孔質焼成体と PLLA の多孔質構造体を複合化させた材料が開発され、HA 単体の力学特性を大きく向上させることに成功したが、それらの力学特性は主に圧縮特性であり、実際に骨折固定用材料や骨再生用足場材料として使用される可能性がある他の形状については、まったく評価されていないのが現状である。

本論文は、HA とPLLA に加えて、新しい複合化用生体吸収性ポリマー材料として、生体吸 収性縫合糸として使用されている乳酸カプロラクトン共重合体(PLCL)を導入し、HA 多孔質 焼成体の内部に多孔質ポリマー相が存在する2 相系多孔質複合構造体のビーム形状構造体を開 発している。また、曲げ力学特性を評価するとともに、変形・破壊メカニズムについて考察し ている。さらに、非線形弾性力学に基づく理論を導入し、新しい理論式を構築することで、 HA/PLLA および HA/PLCL ビーム構造体の非線形荷重-変位曲線の予測について検討している。また、多孔質ビーム構造体の曲げ特性のさらなる向上を目指して、3 層型サンドイッチ構造の 多孔質ビーム構造体の作製について検討し、その曲げ特性や変形・破壊メカニズムについて考 察している。

1章では、研究の背景と目的について述べている。まず、骨の構造と力学的特性について概説し、次に骨欠損に対する充填材を用いた治療方法について説明し、さらに新しい治療の試みとして、組織工学に基づいた再生医療的治療法について説明している。特に、骨再生治療用の足場材料について、その成分、構造、力学的特性について概説している。次に、骨治療用材料を中心に、生体材料について詳細に説明しており、生体吸収性ポリマー、リン酸カルシウム系バイオセラミックス、およびそれらの複合材料とその力学的特性について説明している。本研究は、このような背景の下、バイオセラミック材料と生体吸収性ポリマーを複合化した多孔質ビーム構造体を開発し、曲げ負荷下での力学特性の評価、および変形・破壊メカニズムの解明を目的としている。

2章では、HA の多孔質焼成体を作製後、その内部に PLLA あるいは PLCL の多孔質相を形成させる2層複合構造体の作製方法について詳細に説明し、さらにそのビーム構造体の作製方法について説明している。3点曲げ試験を行い曲げの力学的特性を測定した結果、弾性率や臨界応力はHA/PLLA の方がHA/PLCL より高い値を示したが、破壊吸収エネルギーについては、 HA/PLCL の方が高い値を示すことを見出している。また、変形・破壊挙動について詳細に調べた結果、最大引張応力が作用する底部でクラックが発生し、負荷点まで次第にクラックが進展することを明らかにしている。このような破壊挙動は、荷重-変位曲線上では、線形弾性変形終了後の非線形的変形として現れることを見出している。

3章では、2章で得られた荷重-変位曲線を予測するための理論モデルを3種類提案している。Model III では、荷重-変位挙動を線形弾性部分と非線形部分に分割し、非線形部分にLudwikの理論モデルを導入することで、高精度での荷重-変位曲線の予測が可能となることを見出している。さらに、構築した理論モデルを用いることで、連続体的な変形を仮定した場合の応力
-ひずみ関係の予測が可能となることを示している。

4章では、2章で開発した多孔質ビーム構造体の曲げ特性のさらなる向上を目指して、 HA/PLLA あるいは HA/PLCL のビーム構造体を PLLA あるいは PLCL の多孔質構造体でサンドイッチした3層構造の新規ビーム構造体の作製方法を確立している。弾性率は約4倍、臨界応力は約5倍、吸収破壊エネルギーは約5倍の向上を示していることが明らかになっている。変形・破壊挙動は、各層のクラッキングと密接に関係しており、たとえば HA/PLLA のサンドイッチ構造体では、多孔質 HA/PLLA の中間層におけるクラックの発生と進展が、荷重の最初のピークとその後の急激な低下と関連していることを見出している。急激な荷重低下後は上下のポリマー層の耐破壊特性により再び荷重は増加することが明らかになっている。

5章は総括であり、各解析から得られた重要事項について説明し、本研究のさらなる発展の可能性と今後の展開について説明している。

この論文で使われている画像

参考文献

[1] G. Karsenty, “The complexities of skeletal biology,” Nature, no. 423, pp. 316–318, 2003, doi: 10.1038/nature01654.

[2] D. Zhang, X. Wu, J. Chen, and K. Lin, “The development of collagen based composite scaffolds for bone regeneration,” Bioactive Materials, vol. 3, no. 1, pp. 129–138, Mar. 2018, doi: 10.1016/J.BIOACTMAT.2017.08.004.

[3] D. W. Sommerfeldt and C. T. Rubin, “O R I G I N A L A RT I C L E Biology of bone and how it orchestrates the form and function of the skeleton,” pp. 86–95, 2001, doi: 10.1007/s005860100283.

[4] G. A. Rodan, “Introduction to bone biology,” Bone, vol. 13, pp. S3–S6, Jan. 1992, doi: 10.1016/S8756-3282(09)80003-3.

[5] G. Mirjam Fröhlich, Warren L. Grayson, Leo Q. Wan, Darja Marolt1, Matej Drobnic, and Vunjak-Novakovic, “Tissue Engineered Bone Grafts : Biological Requirements, Tissue Culture and Clinical Relevance,” Curr Stem Cell Res Ther., pp. 254–264, 2008, doi: 10.1007/BF00392888.

[6] M. J. Olszta et al., “Bone structure and formation: A new perspective,” Materials Science and Engineering: R: Reports, vol. 58, no. 3–5, pp. 77–116, Nov. 2007, doi: 10.1016/J.MSER.2007.05.001.

[7] R. Baron, Diseases of Bone and Mineral Metabolism. Darmouth, MA: Endotext.com, 2008.

[8] R. Huiskes, B. Van Rietbergen, and V. Mow, Basic Orthopaedic Biomechanics and Mechano-Biology, 3rd Editio. Philadelphia: Lippincott Williams & Wilkins (LWW), 2004.

[9] L. L. Hench, An introduction to Bioceramics, 2nd Editio. Singapore: World Scientific Publishing Co. Pte. Ltd., 2013.

[10] M. Walden et al., “Bone Structure,” TeaxhPE.com. https://www.teachpe.com/anatomy-physiology/structure-of-bones (accessed May 05, 2021).

[11] P. J. Bishop et al., “Cancellous bone and theropod dinosaur locomotion. Part I-an examination of cancellous bone architecture in the hindlimb bones of theropods,” PeerJ, vol. 6, 2019, doi: 10.7717/peerj.5778.

[12] M. Bohner, “Resorbable biomaterials as bone graft substitutes,” Materials Today, vol. 13, no. 1–2, pp. 24–30, Jan. 2010, doi: 10.1016/S1369-7021(10)70014-6.

[13] A. J. Salgado, O. P. Coutinho, and R. L. Reis, “Bone tissue engineering: State of the art and future trends,” Macromolecular Bioscience, vol. 4, no. 8, pp. 743–765, 2004, doi: 10.1002/mabi.200400026.

[14] Timothy T. Roberts and Andrew J. Rosenbaum, “Bone grafts, bone substitutes and orthobiologics The bridge between basic science and clinical advancements in fracture healing,” Organogenesis, pp. 114–124, 2012, doi: 10.4161/org.23306.

[15] F. R. A. J. Rose and R. O. C. Oreffo, “Bone Tissue Engineering: Hope vs Hype,” Biochemical and Biophysical Research Communications, vol. 292, no. 1, pp. 1–7, Mar. 2002, doi: 10.1006/BBRC.2002.6519.

[16] C. G. Finkemeer, “Bone-grafting and Bone-graft Substitutes,” Journal of Bone and Joint Surgery, vol. 228, no. Table I, pp. 454–464, 2012, doi: 10.1016/j.ijcard.2016.11.017.

[17] R. Spitzer, C. Perka, K. Lindenhayn, and H. Zippel, “Matrix engineering for osteogenic differentiation of rabbit periosteal cells using ◻ -tricalcium phosphate particles in a three-dimensional fibrin culture,” 2001, doi: 10.1002/jbm.1277.

[18] R. Schnettler, J. P. Stahl, V. Alt, T. Pavlidis, E. Dingeldein, and S. Wenisch, “Calcium phosphate-based bone substitutes,” European Journal of Trauma, vol. 30, no. 4, pp. 219–229, 2004, doi: 10.1007/s00068-004-1393-x.

[19] Nather Abdul Aziz, Bone Grafts And Bone Substitutes: Basic Science And Clinical Applications. National University of Singapore, Singapore: World Scientific Publishing Co. Pte. Ltd., 2005.

[20] O. B. C. Delloye, O. Cornu, V. Druez, “Bone Allografts ; What they can offer and what they cannot,” The Bone and Joint Journal, 2007, doi: https://doi.org/10.1302/0301-620X.89B5.19039.

[21] D. M. Vasconcelos, S. G. Santos, M. Lamghari, and M. A. Barbosa, “The two faces of metal ions: From implants rejection to tissue repair/regeneration,” Biomaterials, vol. 84, pp. 262–275, Apr. 2016, doi: 10.1016/J.BIOMATERIALS.2016.01.046.

[22] K. Glenske et al., Applications of Metals for Bone Regeneration. .

[23] W. Wang and K. W. K. Yeung, “Bone grafts and biomaterials substitutes for bone defect repair: A review,” Bioactive Materials, vol. 2, no. 4, pp. 224–247, Dec. 2017, doi: 10.1016/J.BIOACTMAT.2017.05.007.

[24] T. Moriya, “Collaboration between Medicine and Engineering Promotes the Process of Practical Applications,” Bone and Joint Regeneration Technology, 2006.

[25] M. Bohner, “Bone Substitute Materials,” Encyclopedia of Biomedical Engineering, pp. 513–529, Jan. 2019, doi: 10.1016/B978-0-12-801238-3.00224-5.

[26] K. Uhthoff, “Cortical Porosis under plates :Reaction to unloading or to necrosis?,” The Journal of Bone and Joint Surgery. American Volume, 76(10), 1507-1512., vol. 76, no. 10, pp. 1507–1512, 1994.

[27] H. K. Uhthoff, P. Poitras, and D. S. Backman, “Internal plate fixation of fractures: short history and recent developments,” Journal of Orthopaedic Science, vol. 11, no. 2, pp. 118–126, Mar. 2006, doi: 10.1007/S00776-005-0984-7.

[28] S. E. Perren SM , Cordey J , Rahn BA , Gautier E, “Early temporary porosis of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection?,” Clinical Orthopaedics and Related Research , 1998.

[29] M. Plus, “Bone graft harvest,” U.S. National Library of Medicine. https://medlineplus.gov/ency/imagepages/8745.htm (accessed Jun. 10, 2021).

[30] X. Feng, “Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease,” Chemical Biology, 2010, doi: [10.2174/187231309788166398].

[31] J. H. Shepherd, R. J. Friederichs, and S. M. Best, “Synthetic hydroxyapatite for tissue engineering applications,” Hydroxyapatite (Hap) for Biomedical Applications, pp. 235–267, Jan. 2015, doi: 10.1016/B978-1-78242-033-0.00011-0.

[32] L. G. R. and T. J. M. John P. Bilezikian, Principles of Bone Biology, 3rd Editio. Academic Press, 2008.

[33] R. Yunus Basha, S. K. T.S., and M. Doble, “Design of biocomposite materials for bone tissue regeneration,” Materials Science and Engineering: C, vol. 57, pp. 452– 463, Dec. 2015, doi: 10.1016/J.MSEC.2015.07.016.

[34] P. V. Giannoudis, T. A. Einhorn, G. Schmidmaier, and D. Marsh, “The diamond concept – open questions,” Injury, vol. 39, pp. S5–S8, Sep. 2008, doi: 10.1016/S0020-1383(08)70010-X.

[35] P. V. Giannoudis, “Editorial,” Injury, vol. 38, no. 1, pp. S1–S2, Mar. 2007, doi: 10.1016/J.INJURY.2007.02.004.

[36] A. Ferrand et al., “Osteogenetic properties of electrospun nanofibrous PCL scaffolds equipped with chitosan-based nanoreservoirs of growth factors,” Macromolecular Bioscience, vol. 14, no. 1, pp. 45–55, 2014, doi: 10.1002/mabi.201300283.

[37] S. Bose, S. Vahabzadeh, and A. Bandyopadhyay, “Bone tissue engineering using 3D printing,” Materials Today, vol. 16, no. 12, pp. 496–504, Dec. 2013, doi: 10.1016/J.MATTOD.2013.11.017.

[38] T.-M. De Witte, L. E. Fratila-Apachitei, A. A. Zadpoor, and N. A. Peppas, “Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices,” Regenerative Biomaterials, no. June, pp. 197–211, 2018, doi: 10.1093/rb/rby013.

[39] Q. L. Loh, C. Choong, D. Oxon, M. Hons, and C. Mimmm, “Three-Dimensional Scaffolds for Tissue Engineering Applications :,” vol. 19, no. 6, 2013, doi: 10.1089/ten.teb.2012.0437.

[40] V. Jokanović et al., “Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation,” Biomedizinische Technik, vol. 62, no. 3, pp. 295–306, 2017, doi: 10.1515/bmt-2015-0164.

[41] L. of P. & Biomaterials, “Tissue Engineering,” Institute of Fundamental technological Research. http://polybiolab.ippt.pan.pl/tissue-engineering (accessed Jun. 10, 2021).

[42] D. Barati, “Biodegradable Hybrid Tissue Engineering Scaffolds For Reconstruction Of Large Bone Defects,” University of South Carolina, 2016.

[43] K. D. Hankenson, G. Zimmerman, and R. Marcucio, “Biological perspectives of delayed fracture healing,” Injury, vol. 45, pp. S8–S15, Jun. 2014, doi: 10.1016/J.INJURY.2014.04.003.

[44] A. Kolk et al., “Current trends and future perspectives of bone substitute materials– From space holders to innovative biomaterials,” Journal of Cranio-Maxillofacial Surgery, vol. 40, no. 8, pp. 706–718, Dec. 2012, doi: 10.1016/J.JCMS.2012.01.002.

[45] A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, “Bone Tissue Engineering: Recent Advances and Challenges,” Critical Reviews™ in Biomedical Engineering, vol. 40, no. 5, pp. 363–408, 2012, doi: 10.1615/CritRevBiomedEng.v40.i5.10.

[46] X. Y. Shuilin Wu, Xiangmei Liu, Kelvin W.K. Yeung, Changsheng Liu, “Biomimetic porous scaffolds for bone tissue engineering,” Materials Science and Engineering: R: Reports, 2014.

[47] S. I. Roohani-Esfahani, P. Newman, and H. Zreiqat, “Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects,” Scientific Reports, vol. 6, no. February 2015, pp. 1–8, 2016, doi: 10.1038/srep19468.

[48] Y. Liu, J. Lim, and S.-H. Teoh, “Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering,” Biotechnology Advances, vol. 31, no. 5, pp. 688–705, Sep. 2013, doi: 10.1016/J.BIOTECHADV.2012.10.003.

[49] I. Sabree, J. E. Gough, and B. Derby, “Mechanical properties of porous ceramic scaffolds: Influence of internal dimensions,” Ceramics International, vol. 41, no. 7, pp. 8425–8432, Aug. 2015, doi: 10.1016/J.CERAMINT.2015.03.044.

[50] S. M. Franca Nneka Alaribe, Shirley C K M Motaung, “Scaffolds from biomaterials : Advantages and limitations in bone and tissue engineering,” Biologia, 2016.

[51] T. Wu, S. Yu, D. Chen, and Y. Wang, “Bionic design, materials and performance of bone tissue scaffolds,” Materials, vol. 10, no. 10, 2017, doi: 10.3390/ma10101187.

[52] P. S. Lienemann, M. P. Lutolf, and M. Ehrbar, “Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration,” Advanced Drug Delivery Reviews, vol. 64, no. 12, pp. 1078–1089, Sep. 2012, doi: 10.1016/J.ADDR.2012.03.010.

[53] L. E. Freed and G. Vunjak-Novakovic, “Culture of organized cell communities,” Advanced Drug Delivery Reviews, vol. 33, no. 1–2, pp. 15–30, Aug. 1998, doi: 10.1016/S0169-409X(98)00017-9.

[54] Q. Chen, F. Baino, S. Spriano, N. M. Pungno, and C. Vitale-Brovarone, “Modeling of strength-porosity relationship in glass ceramic foam scaffolds for bone repair,” Journal of European Ceramics Society, pp. 2663–2673, 2014.

[55] M. R. D. . Thein-Han W.W., “Biomimetic Chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering,” Acta Biomaterial, vol. 5, pp. 1182–1197, 2009.

[56] T. Y. Watanabe K, Nakamura M, Okano H, “Establishment of three-dimensional culture of neural stem/progenitor cells in collagen Type-1 Gel.,” Restoration Neurol Neuroscience, pp. 109–117, 2007.

[57] H. J. Kim et al., “Bone tissue engineering with premineralized silk scaffolds,” Bone, vol. 42, no. 6, pp. 1226–1234, Jun. 2008, doi: 10.1016/J.BONE.2008.02.007.

[58] A. M. Ferreira, P. Gentile, V. Chiono, and G. Ciardelli, “Collagen for bone tissue regeneration,” Acta Biomaterialia, vol. 8, no. 9, pp. 3191–3200, Sep. 2012, doi: 10.1016/J.ACTBIO.2012.06.014.

[59] M. L. and M. Z. Soumen Jana, Stephen J. Florczyk, “High-strength pristine porous chitosan scaffolds for tissue engineering,” Journal of Materials Chemistry, no. 13, 2012.

[60] D. Grafahrend et al., “Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation,” Nature Materials, vol. 10, no. 1, pp. 67–73, 2011, doi: 10.1038/nmat2904.

[61] S. E. K. Tae-Hoon Kim, Young-Pil Yun, Young-Eun Park, Suk-Ha Lee, Woonjae Yong, Joydip Kundu, Jin Woo Jung, Jin-Hyung Shim, Dong-Woo Cho, “In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds,” Biomedical Materials, vol. 9, no. 2, 2014.

[62] and H. J. H. Hanna Tiainen, S. Petter Lyngstadaas, Jan Eirik Ellingsen, “Ultra- porous titanium oxide scaffold with high compressive strength,” Journal of Material Science. Material in Medicine, 2014.

[63] Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, “Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives,” Materials Science and Engineering: C, vol. 31, no. 7, pp. 1245–1256, Oct. 2011, doi: 10.1016/J.MSEC.2011.04.022.

[64] T. C. Seitz H, Rieder W, Irsen S, Leukers B, “Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.,” Journal of Biomedical Material Research B. Applied Biomaterial, 2005.

[65] S. Bose and S. Tarafder, “Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review,” Acta Biomaterialia, vol. 8, no. 4, pp. 1401–1421, Apr. 2012, doi: 10.1016/J.ACTBIO.2011.11.017.

[66] A. T. Silvia Panseri , Carla Cunha, Teresa D’Alessandro, Monica Sandri, Alessandro Russo, Gianluca Giavaresi, Maurilio Marcacci, Clark T. Hung, “Magnetic Hydroxyapatite Bone Substitutes to Enhance Tissue Regeneration: Evaluation In Vitro Using Osteoblast-Like Cells and In Vivo in a Bone Defect,” Plos One, 2012.

[67] W. Wang and K. W. K. Yeung, “Bone grafts and biomaterials substitutes for bone defect repair: A review,” Bioactive Materials, vol. 2, no. 4, pp. 224–247, Dec. 2017, doi: 10.1016/J.BIOACTMAT.2017.05.007.

[68] W. D. M.Chvapil, “Collagen sponge in gynecologic use,” obstetric Gynecology, 1981.

[69] H. M. Ahmed T., Dare E., “Fibrin: A versatile scaffold for tissue engineering applications,” Tissue Engineering, 2008.

[70] Y. K. M.Mizuno, R. Fujisawa, “Type 1 collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collage-alpha 2 beta 1 integrin interaction,” Journal of Cell Physiology, 2000.

[71] W. I. H. M. Otsuka, H. Nakagawa, K. Otsuka, A. Ito, “Effect of geometrical structure on the in vivo quality change of a three-dimensionally perforated porous bone cell scaffold made of apatite/collagen composite,” Journal of Biomedical Material Research B. Applied Biomaterial, 2013.

[72] A. Dhaliwal, “A compehensive review of methods for 3D cell culture,” Material Methods, 2012.

[73] L. L. Hench, “Bioceramics: from concept to clinic.,” Journal of the American Ceramic Society, vol. 74, no. 7, pp. 1487–1510, 1991, doi: 10.1111/j.1151- 2916.1991.tb07132.x.

[74] T. late T. Kitsugi, T. Yamamuro, T. Nakamura, and M. Oka, “Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios,” Biomaterials, vol. 16, no. 14, pp. 1101–1107, Sep. 1995, doi: 10.1016/0142-9612(95)98907-V.

[75] V. S. Kattimani, S. Kondaka, and K. P. Lingamaneni, “Hydroxyapatite–-Past, Present, and Future in Bone Regeneration,” Bone and Tissue Regeneration Insights, vol. 7, p. BTRI.S36138, 2016, doi: 10.4137/btri.s36138.

[76] P. Chocholata, V. Kulda, and V. Babuska, “Fabrication of scaffolds for bone-tissue regeneration,” Materials, vol. 12, no. 4, 2019, doi: 10.3390/ma12040568.

[77] U. G. T. M. Sampath, Y. C. Ching, C. H. Chuah, J. J. Sabariah, and P. C. Lin, “Fabrication of porous materials from natural/synthetic biopolymers and their composites,” Materials, vol. 9, no. 12, pp. 1–32, 2016, doi: 10.3390/ma9120991.

[78] W. Habraken, P. Habibovic, M. Epple, and M. Bohner, “Calcium phosphates in biomedical applications: Materials for the future?,” Materials Today, vol. 19, no. 2, pp. 69–87, 2016, doi: 10.1016/j.mattod.2015.10.008.

[79] A. M. Hezma, A. B. Abdelrazzak, and G. S. El-Bahy, “Preparation and spectroscopic investigations of hydroxyapatite-curcumin nanoparticles-loaded polylactic acid for biomedical application,” Egyptian Journal of Basic and Applied Sciences, vol. 6, no. 1, pp. 1–9, 2019, doi: 10.1080/2314808x.2019.1586358.

[80] C. Li, W. Qin, S. Lakshmanan, X. Ma, X. Sun, and B. Xu, “Hydroxyapatite based biocomposite scaffold: A highly biocompatible material for bone regeneration,” Saudi Journal of Biological Sciences, vol. 27, no. 8, pp. 2143–2148, 2020, doi: 10.1016/j.sjbs.2020.05.029.

[81] K. Nomura and P. Terwilliger, “Biocomposite scaffold preparation from hydroxyapatite extracted from waste bovine,” Green Processing and Synthesis, vol. 9, pp. 37–47, 2020, doi: 10.1515/gps-2020-0005.

[82] N. Ramesh, S. C. Moratti, and G. J. Dias, “Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends,” Journal of Biomedical Materials Research - Part B Applied Biomaterials, vol. 106, no. 5, pp. 2046–2057, 2018, doi: 10.1002/jbm.b.33950.

[83] H. Cao and N. Kuboyama, “A biodegradable porous composite scaffold of PGA/β- TCP for bone tissue engineering,” Bone, vol. 46, no. 2, pp. 386–395, 2010, doi: 10.1016/j.bone.2009.09.031.

[84] A. L. Myers, “Thermodynamics of adsorption in porous materials,” AIChE Journal, vol. 48, no. 1, pp. 145–160, 2002, doi: 10.1002/aic.690480115.

[85] V. Jokanović, B. Čolović, M. Popović-Bajić, and M. Živković-Sandić, “Informative article. Scaffold in bone tissue engineering,” Stomatoloski glasnik Srbije, vol. 64, no. 1, pp. 32–40, 2019, doi: 10.1515/sdj-2017-0004.

[86] A. M. Grumezescu, Nanobiomaterials in Hard Tissue Engineering : Applications of Nanobiomaterials Volume 4, 4th ed. Bucharest, Romania: Elsevier, 2016.

[87] S. Shahi and S. Karbasi, “Evaluation of physical and mechanical properties of fi-tri- calcium phosphate/poly-3-hydroxybutyrate nanocomposite scaffold for bone tissue engineering application,” Scientia Iranica, vol. 24, no. 3, pp. 1654–1668, 2017, doi: 10.24200/sci.2017.4142.

[88] V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005.

[89] X. Li, Q. Feng, and F. Cui, “In vitro degradation of porous nano- hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres,” Materials Science & Engineering C, vol. 26, no. 4, pp. 716–720, 2006.

[90] M. M. Stevens, “Biomaterials for bone tissue engineering,” Materials Today, vol. 11, no. 5, pp. 18–25, May 2008, doi: 10.1016/S1369-7021(08)70086-5.

[91] M. C. Hacker and A. G. Mikos, “Trends in Tissue Engineering Research,” Tissue Engineering, vol. 12, no. 8, pp. 2049–2057, 2006, doi: 10.1089/ten.2006.12.2049.

[92] R. Grundel, M. Chapman, T. Yee, and D. Moore, “Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna,” Clinical Orthopaedics and Related Research, pp. 244–258, 1991.

[93] S. F. Hulbert, F. A. Young, R. S. Mathews, J. . Klawitter, C. D. Talbert, and F. H. Stelling, “Potential of ceramics materials as permanently implantable skeletal prosthesis,” Journal of Biomedical Material Research, vol. 4, no. 3, pp. 433–456, 1970.

[94] B. Huang, G. Caetano, C. Vyas, J. J. Blaker, C. Diver, and P. Bártolo, “Polymer- ceramic composite scaffolds: The effect of hydroxyapatite and β-tri-calcium phosphate,” Materials, vol. 11, no. 1, 2018, doi: 10.3390/ma11010129.

[95] E. Charrière et al., “Mechanical characterization of brushite and hydroxyapatite cements,” Biomaterials, vol. 22, no. 21, pp. 2937–2945, 2001, doi: 10.1016/S0142-9612(01)00041-2.

[96] R. Harrison et al., “Mechanical properties of α-tricalcium phosphate-based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads,” Journal of Biomedical Materials Research - Part B Applied Biomaterials, vol. 104, no. 1, pp. 149–157, 2016, doi: 10.1002/jbm.b.33362.

[97] T. S. Keller, D. R. Carter, C. J. Hernandez, and G. S. Beaupre, “The Influence of Bone Volume Fraction and Ash Fraction on Bone Strength and Modulus,” Bone, vol. 29, no. 1, pp. 74–78, 2001.

[98] T. M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, “Biomechanics of Trabecular Bone,” Annual Review of Biomedical Engineering, vol. 3, no. 1, pp. 307– 333, 2001.

[99] European Chemicals Agency, “Pentacalcium hydroxide tris(orthophosphate),” REACH Registered Substance Factsheets, 2020. https://echa.europa.eu/substance- information/-/substanceinfo/100.032.106.

[100] European Chemicals Agency, “Tricalcium bis(orthophosphate),” REACH Registered Substance Factsheets, 2020. echa.europa.eu/registration-dossier/-/registered-dossier/13654/1.

[101] J. Fernández, A. Etxeberria, and J. R. Sarasua, “Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers,” Journal of the Mechanical Behaviour of Biomedical Materials, vol. 9, pp. 100–112, 2012, doi: 10.1016/j.jmbbm.2012.01.003.

[102] V. Mouriño and A. R. Boccaccini, “Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds,” Journal of the Royal Society Interface, vol. 7, no. 43, pp. 209–227, 2010, doi: 10.1098/rsif.2009.0379.

[103] M. C. Azevedo, R. L. Reis, M. B. Claase, D. W. Grijpma, and J. Feijen, “A L S I N M E D I C I N E 1 4 ( 2 0 0 3 ) 1 0 3 ± 1 0 7 Development and properties of polycaprolactone/ hydroxyapatite composite biomaterials,” vol. 4, pp. 103–107, 2003.

[104] K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2347–2359, 2000, doi: 10.1016/S0142-9612(00)00102-2.

[105] J. C. Middleton and A. J. Tipton, “Synthetic biodegradable polymers as orthopedic devices,” Biomaterials, vol. 21, no. 23, pp. 2335–2346, 2000, doi: 10.1016/S0142-9612(00)00101-0.

[106] A. Majola, S. Vainionpää, P. Rokkanen, H. M. Mikkola, and P. Törmälä, “Absorbable self-reinforced polylactide (SR-PLA) composite rods for fracture fixation: strength and strength retention in the bone and subcutaneous tissue of rabbits,” Journal of Materials Science: Materials in Medicine, vol. 3, no. 1, pp. 43– 47, 1992, doi: 10.1007/BF00702943.

[107] K. Tappa et al., “3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery,” Journal of Functional Biomaterials, vol. 10, no. 2, 2019, doi: 10.3390/jfb10020017.

[108] G. Giammona and E. F. Craparo, “Polymer-based systems for controlled release and targeting of drugs,” Polymers, vol. 11, no. 12, pp. 10–12, 2019, doi: 10.3390/polym11122066.

[109] B. L. Shafer and P. T. Simonian, “Broken Poly-L-lactic acid interference screw after ligament reconstruction,” Arthroscopy - Journal of Arthroscopic and Related Surgery, vol. 18, no. 7, pp. 1–4, 2002, doi: 10.1053/jars.2002.32197.

[110] M. Kosaka, F. Uemura, S. Tomemori, and H. Kamiishi, “Scanning electron microscopic observations of ‘fractured’ biodegradable plates and screws,” Journal of Cranio-Maxillofacial Surgery, vol. 31, no. 1, pp. 10–14, 2003, doi: 10.1016/S1010-5182(02)00166-X.

[111] Z. Wang, Y. Wang, Y. Ito, P. Zhang, and X. Chen, “A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation,” Scientific Reports, vol. 6, no. January, pp. 1–12, 2016, doi: 10.1038/srep20770.

[112] D. W. Weisgerber, K. Erning, C. L. Flanagan, S. J. Hollister, and B. A. Harley, “Evaluation of multi-scale mineralized collagen-polycaprolactone composites for bone tissue engineering,” Journal of Mechanics Behaviour Biomedical Material, 2016.

[113] A. Pangesty and M. Todo, “Development of cylindrical microfibrous scaffold using melt-spinning method for vascular tissue engineering,” Materials Letters, vol. 228, pp. 334–338, 2018, doi: 10.1016/j.matlet.2018.06.046.

[114] C. A. Harper, Modern Plastics Handbook. New York: The McGraw-Hill Companies, Inc, 2000.

[115] S. Cong, “Properties of polylactic acid fiber based polymers and their correlation with composition,” Proceedings of 2007 International Conference on Advanced Fibers and Polymer Materials, ICAFPM 2007, vol. 1, pp. 8–11, 2007.

[116] D. S. Rosa, I. C. Neto, M. R. Calil, A. G. Pedroso, C. P. Fonseca, and S. Neves, “Evaluation of the thermal and mechanical properties of poly(ε-caprolactone), low- density polyethylene, and their blends,” Journal of Applied Polymer Science, vol. 91, no. 6, pp. 3909–3914, 2004, doi: 10.1002/app.13596.

[117] J. Fernández, A. Larrañaga, A. Etxeberria, W. Wang, and J. R. Sarasua, “A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field,” Journal of Biomedical Materials Research - Part A, vol. 102, no. 10, pp. 3573–3584, 2014, doi: 10.1002/jbm.a.35036.

[118] J. F. Pan, N. H. Liu, H. Sun, and F. Xu, “Preparation and characterization of electrospun PLCL/ poloxamer nanofibers and Dextran/Gelatin Hydrogels for skin tissue engineering,” PLoS ONE, vol. 9, no. 11, pp. 1–12, 2014, doi: 10.1371/journal.pone.0112885.

[119] R. Rebelo, M. Fernandes, and R. Fangueiro, “Biopolymers in Medical Implants: A Brief Review,” Procedia Engineering, vol. 200, pp. 236–243, 2017, doi: 10.1016/j.proeng.2017.07.034.

[120] M. Filippi, G. Born, M. Chaaban, and A. Scherberich, “Natural Polymeric Scaffolds in Bone Regeneration,” Frontiers in Bioengineering and Biotechnology, vol. 8, no. May, 2020, doi: 10.3389/fbioe.2020.00474.

[121] B. Chuenjitkuntaworn, T. Osathanon, N. Nowwarote, P. Supaphol, and P. Pavasant, “The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering,” Journal of Biomedical Materials Research - Part A, vol. 104, no. 1, pp. 264–271, 2016, doi: 10.1002/jbm.a.35558.

[122] H. Yi, F. Ur Rehman, C. Zhao, B. Liu, and N. He, “Recent advances in nano scaffolds for bone repair,” Bone Research, vol. 4, no. September, 2016, doi: 10.1038/boneres.2016.50.

[123] M. Todo, H. Kuraoka, J.-W. Kim, K. Taki, and M. Ohshima, “Deformation behaviour and mechanism of porous PLLA under compression,” Journal of Material Science, vol. 43, no. 16, pp. 5644–5646, 2008.

[124] V. Mourinno and A. R. Boccaccini, “Bone tissue engineering therapeutics- controlled drug delivery in three dimensional scaffolds,” Journal of the Royal Society Interface, vol. 7, no. 43, pp. 209–227, 2010.

[125] Y. Phanny and M. Todo, “Development and characterization of poly(ε- caprolactone) reinforced porous hydroxyapatite for bone tissue engineering,” Key Engineering Materials, vol. 529–530, no. 1, pp. 447–452, 2013.

[126] M. Todo, P. Yos, T. Arahira, and A. Myoui, “Development and characterization of porous hydroxyapatite scaffolds reinforced with polymeric secondary phase for bone tissue engineering,” Biomaterials and Tissue Technology, vol. 2, no. 1, pp. 1– 8, 2018.

[127] J. Wang et al., “Biomimetically ornamented rapid prototyping fabrication of an apatite-collagen-polycaprolactone composite construct with nano-micro-macro hierarchical structure for large bone defect treatment,” ACS Applied Material Interfaces, 2015.

[128] P. L. Lin, H. W. Fang, T. Tseng, and W. H. Lee, “Effects of hydroxyapatite dosage on mechanical and biological behaviours of polylactic acid composite materials,” Materials Letters, vol. 61, no. 14–15, pp. 3009–3013, 2007, doi: 10.1016/j.matlet.2006.10.064.

[129] S. Mondal et al., “Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application,” Ceramics International, vol. 46, no. 3, pp. 3443–3455, 2020, doi: 10.1016/j.ceramint.2019.10.057.

[130] E. H. Backes, L. D. N. Pires, C. A. G. Beatrice, L. C. Costa, F. R. Passador, and L. A. Pessan, “Fabrication of Biocompatible Composites of Poly(lactic acid)/Hydroxyapatite Envisioning Medical Applications,” Polymer Engineering and Science, vol. 60, no. 3, pp. 636–644, 2020, doi: 10.1002/pen.25322.

[131] M. Todo, S. D. Park, K. Arakawa, and Y. Takenoshita, “Relationship between microstructure and fracture behaviour of bioabsorbable HA/PLLA composites,” Composites Part A: Applied Science and Manufacturing, vol. 37, no. 12, pp. 2221– 2225, 2006, doi: 10.1016/j.compositesa.2005.10.001.

[132] B. J.C and W. Bonfield, “Orientation dependence of the fracture mechanics of cortical bone,” Journal of Biomechanics, 1989.

[133] H. J. Kalkwarf, B. L. Specker, D. C. Bianch, J. Ranz, and M. Ho, “The effect of calcium supplementation on bone density during lactation and after weaning,” New England Journal in Medical, 1997.

[134] P. Zioupos and J. D. Currey, “Changes in the stiffness, strength, and toughness of human cortical bone with age,” Bone, 1998.

[135] E. Shane, V. Addesso, P. Namerow, D. J. McMahon, S. Lo, and R.B.Staron, “Alendronate versus calcitriol for the prevention of bone loss after cardiac transplantation.,” New England Journal in Medical, 2004.

[136] G. D. Roodman, “Mechanisms of bone metastasis,” New England Journal in Medical, 2004.

[137] D. Vashishth, “Rising crack-growth-resistance behaviour in cortical bone: implications for toughness measurements.,” Journal of Biomechanics, 2004.

[138] E. . Hay, “Cell biology of extracellular matrix,” Plenum, 1982.

[139] M. E. Holtrop, “the ulra structure of bone,” Ann Clinical Laboratory Science, 1975.

[140] A. D. Pria Bankoff, “Biomechanical Characteristics of the Bone,” in Human Musculoskeletal Biomechanics, Brazil, 2012, pp. 61–86.

[141] K. Grzegorz, B. Marcin, J. Antoni, and T. Konopka3, “Three-point bending test of cortical bone - experiment and numerical simulation,” Computer Methods in Mechanics, 2011.

[142] J. D. Currey, “What determines the bending strength of compact bone?,” Journal of Experimental Biology, vol. 202, no. 18, pp. 2495–2503, 1999.

[143] M. Wang, Y. Liu, C. L. Au, P. K. Lai, L. Y. Leung, and B. H. Chua, “Deformation and fracture of bone analogue materials having different polymer matrices,” Advanced Materials Research, vol. 47–50, pp. 1391–1394, 2008, doi: 10.4028/www.scientific.net/AMR.47-50.1391.

[144] M. Wang, C. L. Au, P. K. Lai, and W. Bonfield, “Tensile and compressive behaviours and properties of a bone analogue biomaterial,” Key Engineering Materials, vol. 284–286, pp. 693–696, 2005, doi: https://doi.org/10.4028/www.scientific.net/KEM.284-286.693.

[145] Z. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behaviour of poly(ε- caprolactone)/layered double hydroxide nanocomposites,” Journal of Applied Polymer Science, vol. 116, no. 5, pp. 2658–2667, 2010, doi: 10.1002/app.

[146] P. Kazimierczak, A. Benko, K. Palka, C. Canal, D. Kolodynska, and A. Przekora, “Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds,” Journal of Materials Science and Technology, vol. 43, pp. 52–63, 2020, doi: 10.1016/j.jmst.2020.01.006.

[147] R. Ma et al., “Mechanical performance and in vivo bioactivity of functionally graded PEEK-HA biocomposite materials,” Journal of Sol-Gel Science and Technology, vol. 70, no. 3, pp. 339–345, 2014, doi: 10.1007/s10971-014-3287-7.

[148] D. S. Shin, Y. S. Kim, and E. S. Jeon, “Approximation of non-linear stress-strain curve for GFRP tensile specimens by inverse method,” Applied Sciences (Switzerland), vol. 9, no. 17, p. 3474, 2019, doi: 10.3390/app9173474.

[149] Y. S. Kim, Q. T. Pham, and C. Il Kim, “New Stress-Strain Model for Identifying Plastic Deformation Behaviour of Sheet Materials,” Journal of the Korean Society for Precision Engineering, vol. 34, no. 4, pp. 273–279, 2017.

[150] J. Banghai, L. Zhibin, and L. Fangyun, “Failure mechanism of sandwich beams subjected to three-point bending,” Composite Structures, vol. 133, pp. 739–745, 2015, doi: 10.1016/j.compstruct.2015.07.056.

[151] P. Paczos, R. Wichniarek, and K. Magnucki, “Three-point bending of sandwich beam with special structure of the core,” Composite Structures, vol. 201, no. January, pp. 676–682, 2018, doi: 10.1016/j.compstruct.2018.06.077.

[152] J. Shi, L. Zhu, L. Li, Z. Li, J. Yang, and X. Wang, “A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering,” Scientific Reports, vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-25750-9.

[153] W. Bian et al., “Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering,” Rapid Prototyping Journal, vol. 18, no. 1, pp. 68–80, 2012, doi: 10.1108/13552541211193511.

[154] M. Montazeri, S. Karbasi, M. R. Foroughi, A. Monshi, and R. Ebrahimi- Kahrizsangi, “Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate,” Journal of Materials Science: Materials in Medicine, vol. 26, no. 2, pp. 1–11, 2015, doi: 10.1007/s10856-014- 5369-z.

[155] I. F. Wardhani, R. M. R. Samudra, Katherine, D. Hikmawati, and Aminatun, “Physical Characterization of Injectable Bone Substitute Associated-3D Printed Bone Scaffold for Spinal Tuberculosis,” Journal of Physics: Conference Series, vol. 1417, no. 1, 2019, doi: 10.1088/1742-6596/1417/1/012034.

[156] F. Hazwani and M. Todo, “Characterization of bending behaviour of hydroxyapatite/ biopolymer porous composite beams,” Composites Communications, vol. 25, no. March, p. 100747, 2021, doi: 10.1016/j.coco.2021.100747.

[157] M. Shariful Islam, M. Abdulla-Al-Mamun, A. Khan, and M. Todo, “Excellency of Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering,” Biomaterials, no. July, 2020, doi: 10.5772/intechopen.92900.

[158] Y. He, Z. F. Gao, Y. Xin, Y. Yu, S. M. Li, and Z. Y. Fan, “Crystallization behaviour of poly(L-lactide),” Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, vol. 27, no. 4, pp. 745–748, 2006.

[159] L. Wang, X. Jing, H. Cheng, X. Hu, L. Yang, and Y. Huang, “Blends of linear and long-chain branched poly(l -lactide)s with high melt strength and fast crystallization rate,” Industrial and Engineering Chemistry Research, vol. 51, no. 30, pp. 10088– 10099, 2012, doi: 10.1021/ie300526u.

[160] M. Pyda, R. C. Bopp, and B. Wunderlich, “Heat capacity of poly(lactic acid),” Journal of Chemical Thermodynamics, vol. 36, no. 9, pp. 731–742, 2004, doi: 10.1016/j.jct.2004.05.003.

[161] D. K. Gilding and A. M. Reed, “Biodegradable polymers for use in surgery- polyglycolic/poly(actic acid) homo- and copolymers: 1,” Polymer, vol. 20, no. 12, pp. 1459–1464, 1979, doi: 10.1016/0032-3861(79)90009-0.

[162] N. Abbasi, S. Hamlet, R. M. Love, and N. T. Nguyen, “Porous scaffolds for bone regeneration,” Journal of Science: Advanced Materials and Devices, vol. 5, no. 1, pp. 1–9, 2020, doi: 10.1016/j.jsamd.2020.01.007.

[163] M. Q. Cheng et al., “A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration,” Scientific Reports, vol. 6, no. March, pp. 1–14, 2016, doi: 10.1038/srep24134.

[164] S. M. Mantila Roosa, J. M. Kemppainen, E. N. Moffitt, P. H. Krebsbach, and S. J. Hollister, “The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model,” Journal of Biomedical Materials Research - Part A, vol. 92, no. 1, pp. 359–368, 2010, doi: 10.1002/jbm.a.32381.

[165] J. Zhang, H. M. Yin, B. S. Hsiao, G. J. Zhong, and Z. M. Li, “Biodegradable poly(lactic acid)/hydroxyl apatite 3D porous scaffolds using high-pressure molding and salt leaching,” Journal of Materials Science, vol. 49, no. 4, pp. 1648–1658, 2014, doi: 10.1007/s10853-013-7848-x.

[166] M. Gong, Q. Zhao, L. Dai, Y. Li, and T. Jiang, “Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties,” Journal of Asian Ceramic Societies, vol. 5, no. 2, pp. 160–168, 2017, doi: 10.1016/j.jascer.2017.04.001.

[167] M. Hrubovčáková, M. Kupková, M. Džupon, M. Giretová, L. Medvecký, and R. Džunda, “Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials,” International Journal of Electrochemical Science, vol. 12, no. 12, pp. 11122–11136, 2017, doi: 10.20964/2017.12.53.

[168] I. G. I. Athanasoulia, M. N. Christoforidis, D. M. Korres, and P. A. Tarantili, “The effect of hydroxyapatite nanoparticles on crystallization and thermomechanical properties of PLLA matrix,” Pure and Applied Chemistry, vol. 89, no. 1, pp. 125– 140, 2017, doi: 10.1515/pac-2016-0912.

[169] D. Battegazzore, S. Bocchini, and A. Frache, “Crystallization kinetics of poly(lactic acid)-talc composites,” Express Polymer Letters, vol. 5, no. 10, pp. 849–858, 2011, doi: 10.3144/expresspolymlett.2011.84.

[170] Y. Du, T. Wu, N. Yan, M. T. Kortschot, and R. Farnood, “Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites,” Composites Part B: Engineering, vol. 56, pp. 717–723, 2014, doi: 10.1016/j.compositesb.2013.09.012.

[171] Z. Liu, Y. Chen, W. Ding, and C. Zhang, “Filling behaviour, morphology evolution and crystallization behaviour of microinjection molded poly(lactic acid)/hydroxyapatite nanocomposites,” Composites Part A: Applied Science and Manufacturing, vol. 72, pp. 85–95, 2015, doi: 10.1016/j.compositesa.2015.02.002.

[172] P. J. Jandas, S. Mohanty, and S. K. Nayak, “Cold crystallization kinetics of biodegradable polymer blend; controlled by reactive interactable and nano nucleating agent,” Advanced Composites and Hybrid Materials, vol. 1, pp. 624–634, 2018.

[173] X. Liu, T. Wang, L. C. Chow, M. Yang, and J. W. Mitchell, “Effects of inorganic fillers on the thermal and mechanical properties of poly(lactic acid),” International Journal of Polymer Science, vol. 2014, 2014, doi: 10.1155/2014/827028.

[174] Ioanna-Georgia I. Athanasoulia, M. N. C. D. M. Korres, and P. A. Tarantili, “The effect of hydroxyapatite nanoparticles on crystallization and thermomechanical properties of PLLA matrix,” Pure and Applied Chemistry, vol. 89, no. 1, pp. 125– 140, 2017.

[175] S. S. Edwards, Relaxation phenomena in polymers. Munich: Hanser Publishers, 1992.

[176] ASTM International, “Astm Designation: D 7264/D 7264M-07 Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials,” Annual Book of ASTM Standards, vol. i, no. C, pp. 1–11, 2007, doi: 10.1520/D7264.

[177] W. G. Knauss and A. J. Rosakis, Non-linear Fracture: Recent Advances. California,USA: Springer Science & Business Media, 1990.

[178] A. W. Liessa, A. F. Emserry, and D. R. Thompson, Applied Mechanics Reviews, Volume 53, Issue 4. The Ohio State University: American Society of Mechanical Engineers,1981, 2000.

[179] H. J. Kleemola and M. A. Nieminen, “on the Strain-Hardening Parameters of Metals.,” Metall Trans, vol. 5, no. 8, pp. 1863–1866, 1974, doi: 10.1007/BF02644152.

[180] J. H. Hollomon, “Tensile Deformation,” Transaction of AIME, vol. 12, no. 4, pp. 1– 22, 1945.

[181] P. Ludwik, Elemente der Technologischen Mechanik. Berlin, Germany: Springer, Berlin, Heidelberg, 1909.

[182] H. W. Swift, “Plastic instability under plane stress,” Journal of the Mechanics and Physics of Solids, vol. 1, no. 1, pp. 1–18, Oct. 1952, doi: 10.1016/0022-5096(52)90002-1.

[183] R. Kwesi Nutor, N. K. Adomako, and Y. Z. Fang, “Using the Hollomon Model to Predict Strain-Hardening in Metals,” American Journal of Materials Synthesis and Processing, vol. 2, no. 1, pp. 1–4, 2017, doi: 10.11648/j.ajmsp.20170201.11.

[184] Chakra, Chapter 1: Stresses and strains. Elsevier, 2005.

[185] M. Todo, J. E. Park, H. Kuraoka, J. W. Kim, K. Taki, and M. Ohshima, “Compressive deformation behaviour of porous PLLA/PCL polymer blend,” Journal of Materials Science, vol. 44, no. 15, pp. 4191–4194, 2009, doi: 10.1007/s10853-009-3546-0.

[186] J. E. Park and M. Todo, “Development of layered porous poly(l-lactide) for bone regeneration,” Journal of Materials Science, vol. 45, no. 14, pp. 3966–3968, 2010, doi: 10.1007/s10853-010-4564-7.

[187] J. E. Park and M. Todo, “Development and characterization of reinforced poly(L- lactide) scaffolds for bone tissue engineering,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 5, pp. 1171–1182, 2011, doi: 10.1007/s10856-011-4289-4.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る