リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Centronuclear Myopathy with Abundant Nemaline Rods in a Japanese Black and Hereford Crossbred Calf」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Centronuclear Myopathy with Abundant Nemaline Rods in a Japanese Black and Hereford Crossbred Calf

Kamio Kyouhei Takahashi Yoshiko Ishihara Kousuke Sekiya Akio Kato Satomi Shimanuki Ikuya Ide Mitugu Furuoka Hidefumi 帯広畜産大学

2021.01.01

概要

Histopathological examination was performed on skeletal and diaphragmatic muscles from an 8-month-old male crossbred calf showing abnormal gait and tremor of the hindlimbs. There were numerous round fibres with centrally placed nuclei forming nuclear chains in longitudinal sections, associated with interstitial fibrosis or adipose tissue infiltration. On nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR) staining, some muscle fibres in severe lesions showed a spoke-like appearance due to a radial arrangement of sarcoplasmic strands. Additionally, increased NADH-TR activity in the subsarcolemmal structures, appearingas ring-like or necklace-like forms, were observed. Transmission electron microscopy revealed dilated sarcoplasmic reticulum and variably shaped electron-dense inclusions consisting of myofibrillar streams. Another prominent feature was the existence of numerous nemaline rods within muscle fibres; these were stained red by Gomori's trichrome stain. Immunohistochemistry revealed that the nemaline rods showed strong immunoreactivity with α-actinin and desmin antibodies. Electron microscopically, these structures were composed of dense-homogeneous material and continuous with the Z disk. The case was diagnosed as centronuclear myopathy with increased nemaline rods.

この論文で使われている画像

参考文献

Banker BQ, Engel AG (1994) Basic Reactions of Muscle, In: Myology, 2nd Edit., Vol. 1, AG Engel, C

Franzini-Armstrong, Eds., McGraw Hill, New York, pp832-888.

Beggs AH, Böhm J, Snead E, Kozlowski M, Maurer M, et al. (2010) MTM1 mutation associated

with X-linked myotubular myopathy in Labrador Retrievers. Proceedings of the National Academy

of Sciences of the USA, 107, 14697-14702.

Bevilacqua JA, Bitoun M, Biancalana V, Oldfors A, Stoltenburg G, et al. (2009) “Necklace” fibers, a

new histological marker of late-onset MTM1-related centronuclear myopathy. Acta

Neuropathologica, 117, 283-291.

Böhm J, Vasli N, Maurer M, Cowling B, Shelton GD, et al. (2013) Altered splicing of the BIN1

muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy. PLOS

genetics, 9, e1003430.

Cooper BJ, de Lahunt A, Gallagher EA, Valentine BA (1986) Nemaline myopathy of cats. Muscle

and Nerve, 9, 618-625.

Cosford KL, Taylor SM, Thompson TL, Shelton GD (2008) A possible new inherited myopathy in a

young Labrador retriever. Canadian Veterinary Journal, 49, 393-397.

Delauche AJ, Cuddon PA, Podell M, Devoe K, Powell HC, Shelton GD (1998) Nemaline rods in

canine myopathies: 4 case reports and literature review. Journal of Veterinary Internal Medicine, 12,

424-430.

Eminaga S, Cherubini GB, Shelton GD (2012) Centronuclear myopathy in a Border collie dog.

Journal of Small Animal Practice, 53,608-612.

Fardeau M, Tomé F (1994) Congenital myopathies. In: Myology, 2nd Edit., Vol. 2, AG Engel, C

Franzini-Armstrong, Eds., McGraw Hill, New York, pp1487-1532.

Goryunov D, Nightingale A, Bornfleth L, Leung C, Liem RKH (2008) Multiple desease-linked

myotubularian mutations cause NFL assembly defects in cultured cells and disrupt myotubularin

dimerization. Journal of Neurochemistry, 104, 1536-1552.

Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy.

Orphanet Journal of Rare Diseases, 3, 26. doi: 10.1186/1750-1172-3-26.

Hafner A, Dahme E, Obermaier G, Schmidt P, Doll K, Schmahl W (1996) Congenital myopathy in

Braunvieh × Brown Swiss calves. Journal of Comparative Pathology, 115, 23-34.

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

Kube SA, Vernau KM, LeCouteur RA, Mizisin AP, Shelton GD (2006) Congenital myopathy with

abundant nemaline rods in a cat. Neuromuscular Disorders, 16, 188-191.

Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, et al. (1996) A gene mutated in X-linked

myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast.

Nature Genetics, 13, 2, 175-182.

Malfatti E, Romero NB (2016) Nemaline myopathies: State of the art. Revue Neurologique, 172,

614-619.

Nakamura RK, Russell NJ, Shelton GD (2012) Adult-onset nemaline myopathy in a dog presenting

with persistent atrial standstill and primary hypothyroidism. Journal of Small Animal Practice,

53.357-360. .

North K (2008) What’s new in congenital myopathies? Neuromuscular Disorders, 18, 433-442.

Nowak KJ, Ravenscroft G, Laing NG (2013) Skeletal muscle α-actin diseases (actinopathies):

pathology and mechanisms. Acta Neuropathologica, 125,19-32.

Pelé M, Tiret L, Kessler JL, Blot S, Panthier JJ (2005) SINE exonic insertion in the PTPLA gene

leads to multiple splicing defects and segregates with the autosomal recessive centronuclear

myopathy in dogs. Human Molecular Genetics, 14, 1417-1427.

Polle F, Andrews FM, Gillon T, Eades SC, McConnico RS, et al. (2014) Suspected congenital

centronuclear myopathy in an Arabian-cross foal. Journal of Internal Medicine, 28, 1886-1891.

Romero NB (2010) Centronuclear myopathy: a widening concept. Neuromuscular Disorders, 20,

223-338.

Sewry CA, Wallgren-Pettersson C (2017) Myopathology in congenital myopathies. Neuropathology

and Applied Neurobiology, 43, 5-23.

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Figure legends

Fig. 1. Cryostat section of M. vastus medialis. The muscle fibers of the transverse section reveal

varying in size and round shape with internal nuclei. Endomysial connective tissue and number of

satellite nuclei are increased. HE.

Fig. 2. Cryostat section of M. vastus medialis. The muscle fibers of the longitudinal section

show nuclear chains in the mid-portion of the fiber. Increased numbers of satellite nuclei are also

visible. HE.

Fig. 3.

M. longissimus lumborum stained with Gomori’s trichrome shows variable numbers of

nemaline rods. Gomori’s trichrome staining.

Fig. 4. The longitudinal section of M. longissimus lumborum reveals the nemaline rods arise from

the Z disk (arrows). Numerous nemaline rods are observed in the center of fibers, associated with

or formed myofibrillar degeneration. Bar: 10μm.

Fig. 1

Fig. 3

Fig. 2

Fig. 4

Supplementary data-1

fig. 1

fig. 2

fig. 3

fig. 4

fig. 1. Gross features of the muscles of the hind legs. M. vastus medialis reveals pale (arrows), while

the semimembranosus muscle (arrow heads) shows relatively normal color.

fig. 2. Cryostat section of M. semimembranosus from control animal. Normal cytoplasmic staining is

pale green, and nuclei and sites of high mitochondrial density stain red. Modified Gomori’s trichrome.

fig. 3. Cryostat section of M. semimembranosus from control animal. NADH-TR staining shows a

ranom distribution of the fibers with high and low activity depend on the presence of oxidative

activity.

fig. 4. Cryostat section demonstrates mild lesion and varying fiber size with internal nuclei in M.

semimembranosus. HE.

Supplementary data-2

fig. 5

fig. 6

fig. 5. Cryostat section of M. vastus medialis shows severe lesion associated with fat tissue

infiltration. HE.

fig. 6. Staining for NADH-TR reveals fibers with sarcoplasmic strands radiating from the central

nucleus (arrows) and increased reactivity showing ring-like appearance (arrow heads). NADH-TR.

Supplementary data-3

fig. 7a

fig. 7b

fig. 8

fig. 7a, b. The diaphragmatic muscles are consisted of small rounded or polygonal fibers with

several internal nuclei (a). NADH-TR staining reveals the fibers with a dark central region

surrounded by pale peripheral halo (b). a: HE, b: NADH-TR.

fig. 8. M. longissimus lumborum shows variable numbers of nemaline rods revealed strong

immunoreactivity with α–actinin antibody. IHC.

Supplementary data-4

fig. 9

fig. 10

fig.9. The immature fiber of the diaphragmatic muscles shows the centrally placed nuclei

surrounded by glycogen granules, and a reduction in myofibrils. Inset shows the organelles

probably originating from the mitochondria. Bar: 10μm.

fig.10. Rnig-like or necklace-like fiber of M. vastus medialis reveals the center bordered by an

area devoid of myofibrils and containing glycogen granules and dilated sarcoplasmic reticulum.

Peripheral area shows a zone with lack of myofibrils. Inset shows dilated sarcoplasmic

reticulum. Bar: 10μm.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る