リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Three-dimensional structural analysis of mitochondria composing each subtype of fast-twitch muscle fibers in chicken.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Three-dimensional structural analysis of mitochondria composing each subtype of fast-twitch muscle fibers in chicken.

Makida, Sachi Kametani, Kiyokazu Hosotani, Marina Takahasi, Naoki Iwasaki, Tomohito Hasegawa, Yasuhiro Takaya, Tomohide Ueda, Hiromi Watanabe, Takafumi 信州大学 DOI:10.1292/jvms.22-0080

2022.06.22

概要

In a previous study, the three-dimensional structures of mitochondria in type I and type IIb muscle fibers of chicken were analyzed. The study reported differences in the shape of the mitochondria and the distribution of lipid droplets. In this study, we three-dimensionally analyzed mitochondria and lipid droplets of type II muscle fiber subtypes IIa, IIb, and IIc of chicken lateral iliotibial muscle in the same field of view using correlative light electron microscopy (CLEM) and array tomography methods. The reconstructed images showed that the mitochondria of type IIa muscle fiber were thick and aligned along the myofibrils, and many lipid droplets were embedded in the mitochondria. The mitochondria of type IIb muscle fibers were intermittent, aligned along the myofibrils, and showed contact between adjacent horizontal mitochondria. No lipid droplets were observed in type IIb muscle fiber. In type IIc muscle fiber, we observed irregularly shaped mitochondria with small diameters aligned along the myofibrils. Lipid droplets not only were embedded in the mitochondria but also existed independently in some cases. The combination of array tomography and CLEM methods enabled three-dimensional electron microscopic observation of mitochondria in different subtypes of type II muscle fibers. The subtypes of type II muscle fibers differed in mitochondrial occupancy and morphology and in lipid droplet distribution, and characteristics that had been demonstrated biochemically were also demonstrated ultrastructurally.

この論文で使われている画像

参考文献

1. Ausoni, S., Gorza, L., Schiaffino, S., Gundersen, K. and Lømo, T. 1990. Expression of myosin heavy chain isoforms in stimulated fast and slow rat

muscles. J. Neurosci. 10: 153–160. [Medline] [CrossRef]

2. Benador, I. Y., Veliova, M., Liesa, M. and Shirihai, O. S. 2019. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid

storage and Utilization. Cell Metab. 29: 827–835. [Medline] [CrossRef]

3. Bosma, M., Minnaard, R., Sparks, L. M., Schaart, G., Losen, M., de Baets, M. H., Duimel, H., Kersten, S., Bickel, P. E., Schrauwen, P. and

Hesselink, M. K. C. 2012. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem. Cell Biol. 137: 205–216.

[Medline] [CrossRef]

4. Dahl, R., Larsen, S., Dohlmann, T. L., Qvortrup, K., Helge, J. W., Dela, F. and Prats, C. 2015. Three-dimensional reconstruction of the human

skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization. Acta Physiol. (Oxf.) 213: 145–155.

[Medline] [CrossRef]

5. DeNardi, C., Ausoni, S., Moretti, P., Gorza, L., Velleca, M., Buckingham, M. and Schiaffino, S. 1993. Type 2X-myosin heavy chain is coded by a

muscle fiber type-specific and developmentally regulated gene. J. Cell Biol. 123: 823–835. [Medline] [CrossRef]

6. Engel, W. K. 2015. Diagnostic histochemistry and clinical-pathological testings as molecular pathways to pathogenesis and treatment of the ageing

neuromuscular system: a personal view. Biochim. Biophys. Acta 1852: 563–584. [Medline] [CrossRef]

7. Glancy, B., Hartnell, L. M., Malide, D., Yu, Z. X., Combs, C. A., Connelly, P. S., Subramaniam, S. and Balaban, R. S. 2015. Mitochondrial

reticulum for cellular energy distribution in muscle. Nature 523: 617–620. [Medline] [CrossRef]

8. Henne, W. M., Reese, M. L. and Goodman, J. M. 2018. The assembly of lipid droplets and their roles in challenged cells. EMBO J. 37: e98947.

[Medline] [CrossRef]

9. Hosotani, M., Kametani, K., Ohno, N., Hiramatsu, K., Kawasaki, T., Hasegawa, Y., Iwasaki, T. and Watanabe, T. 2021. The unique physiological

features of the broiler pectoralis major muscle as suggested by the three-dimensional ultrastructural study of mitochondria in type IIb muscle fibers.

J. Vet. Med. Sci. 83: 1764–1771. [Medline] [CrossRef]

10. Izumo, S., Nadal-Ginard, B. and Mahdavi, V. 1986. All members of the MHC multigene family respond to thyroid hormone in a highly tissuespecific manner. Science 231: 597–600. [Medline] [CrossRef]

11. Jerkovic, R., Argentini, C., Serrano-Sanchez, A., Cordonnier, C. and Schiaffino, S. 1997. Early myosin switching induced by nerve activity in

regenerating slow skeletal muscle. Cell Struct. Funct. 22: 147–153. [Medline] [CrossRef]

12. Pette, D. 1998. Training effects on the contractile apparatus. Acta Physiol. Scand. 162: 367–376. [Medline] [CrossRef]

13. Pette, D. and Vrbová, G. 1999. What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22: 666–677. [Medline]

[CrossRef]

14. Roy, B. C., Oshima, I., Miyachi, H., Shiba, N., Nishimura, S., Tabata, S. and Iwamoto, H. 2007. Histochemical properties and collagen architecture

of M. iliotibialis lateralis and M. puboischiofemoralis in male broilers with different growth rates induced by feeding at different planes of nutrition.

Br. Poult. Sci. 48: 312–322. [Medline] [CrossRef]

15. Saitoh, S., Ohno, N., Saitoh, Y., Terada, N., Shimo, S., Aida, K., Fujii, H., Kobayashi, T. and Ohno, S. 2018. Improved serial sectioning techniques

for correlative light-electron microscopy mapping of human langerhans islets. Acta Histochem. Cytochem. 51: 9–20. [Medline] [CrossRef]

16. Salmons, S. and Sréter, F. A. 1976. Significance of impulse activity in the transformation of skeletal muscle type. Nature 263: 30–34. [Medline]

[CrossRef]

17. Saneyasu, T., Kimura, S., Kitashiro, A., Tsuchii, N., Tsuchihashi, T., Inui, M., Honda, K. and Kamisoyama, H. 2015. Differential regulation of the

expression of lipid metabolism-related genes with skeletal muscle type in growing chickens. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 189:

1–5. [Medline] [CrossRef]

18. Sato, Y., Shimizu, M., Mizunoya, W., Wariishi, H., Tatsumi, R., Buchman, V. L. and Ikeuchi, Y. 2009. Differential expression of sarcoplasmic and

myofibrillar proteins of rat soleus muscle during denervation atrophy. Biosci. Biotechnol. Biochem. 73: 1748–1756. [Medline] [CrossRef]

19. Sawano, S., Komiya, Y., Ichitsubo, R., Ohkawa, Y., Nakamura, M., Tatsumi, R., Ikeuchi, Y. and Mizunoya, W. 2016. A one-step Immunostaining

method to visualize rodent muscle fiber type within a single specimen. PLoS One 11: e0166080. [Medline] [CrossRef]

20. Schiaffino, S. and Reggiani, C. 2011. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91: 1447–1531. [Medline] [CrossRef]

21. Thai, T. Q., Nguyen, H. B., Saitoh, S., Wu, B., Saitoh, Y., Shimo, S., Elewa, Y. H., Ichii, O., Kon, Y., Takaki, T., Joh, K. and Ohno, N. 2016.

Rapid specimen preparation to improve the throughput of electron microscopic volume imaging for three-dimensional analyses of subcellular

ultrastructures with serial block-face scanning electron microscopy. Med. Mol. Morphol. 49: 154–162. [Medline] [CrossRef]

22. Wang, Y. and Pessin, J. E. 2013. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 16: 243–250.

[Medline] [CrossRef]

J. Vet. Med. Sci. 84(6): 809–816, 2022

816

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る