リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Geometry-Based Multiple Testing Correction for Contingency Tables by Truncated Normal Distribution」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Geometry-Based Multiple Testing Correction for Contingency Tables by Truncated Normal Distribution

Basak, Tapati 京都大学 DOI:10.14989/doctor.k23367

2021.05.24

概要

Inference procedure is a critical step of experimental researches to draw scientifc conclusions especially in multiple testing. The false positive rate increases unless the unadjusted marginal p-values are corrected. Therefore, a multiple testing correction is necessary to adjust the p-values based on the number of tests to control type I error. We propose a multiple testing correction of MAX-test for a contingency table, where multiple χ2 -tests are applied based on a truncated normal distribution (TND) estimation method by Botev. The table and tests are defned geometrically by contour hyperplanes in the degrees of freedom (df) dimensional space. A linear algebraic method called spherization transforms the shape of the space, defned by the contour hyperplanes of the distribution of tables sharing the same marginal counts. So, the stochastic distributions of these tables are transformed into a standard multivariate normal distribution in df-dimensional space. Geometrically, the p-value is defned by a convex polytope consisted of truncating hyperplanes of test’s contour lines in df-dimensional space. The TND approach of the Botev method was used to estimate the corrected p. Finally, the features of our approach were extracted using a real GWAS data.

参考文献

1. Bender R, Lange S (2001) Adjusting for multiple testing—when and how? J Clin Epidemiol 54:343–349. https://doi.org/10.1016/S0895-4356(00)00314-0

2. Botev ZI (2017) The normal law under linear restrictions: simulation and estimation via minimax tilting. J R Stat Soc B 79:125–148. https://doi.org/10.1111/rssb.12162

3. Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLOS Comput Biol 8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822

4. Chen SY, Feng Z, Yi X (2017) A general introduction to adjustment for multiple comparisons. J Thorac Dis 9:1725–1729. https://doi.org/10.21037/jtd.2017.05.34

5. Cuadras CM, Cuadras D (2006) A parametric approach to correspondence analysis. Linear Algebra Appl 417:64–74. https://doi.org/10.1016/j.laa.2005.10.029

6. Gao X, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369. https://doi. org/10.1002/gepi.20310

7. González JR, Carrasco JL, Dudbridge F, Armengol L, Estivill X, Moreno V (2008) Maximizing association statistics over genetic models. Genet Epidemiol 32:246–254. https://doi.org/10.1002/ gepi.20299

8. Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, London

9. Hirosawa K, Kawaguchi T, Matsuda F, Yamada R (2010) Estimation of p-value of MAX test with double triangle diagram for 2×3 SNP case-control tables. Genet Epidemiol 34:543–551. https://doi. org/10.1093/nar/gkt1229

10. Higasa K, Miyake N, Yoshimura J et al (2016) Human genetic variation database, a reference database of genetic variations in the Japanese population. J Human Genet 61:547–553. https://doi. org/10.1038/jhg.2016.12

11. Hoh J, Wille A, Ott J (2001) Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res 11:2115–2119. https://doi.org/10.1101/gr.204001

12. Hsu JC (1996) Multiple comparisons: theory and methods. Chapman & Hall, CRC Press, London

13. Johnson RC, Nelson GW, Troyer JL, Lautenberger JA, Kessing BD, Winkler CA, O’Brien SJ (2010) Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genom 11:724. https://doi.org/10.1186/1471-2164-11-724

14. Knijnenburg TA, Wessels LFA, Reinders MJT, Shmulevich I (2009) Fewer permutations, more accurate p-values. Bioinformatics 25:i161–i168. https://doi.org/10.1093/bioinformatics/btp211

15. Lamparter D, Marbach D, Rueedi R, Kutalik Z, Bergmann S (2016) Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLOS Comput Biol 12(1):e1004714. https://doi.org/10.1371/journal.pcbi.1004714

16. Li MX, Gui HS, Kwan JSH et al (2011) GATES: a rapid and powerful gene-based association test using extended simes procedure. Am J Hum Genet 88:283–293. https://doi.org/10.1016/j. ajhg.2011.01.019

17. Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci India 2:49–55

18. McDonald JH (2014) Handbook of biolological statistics. Sparky House Publishing, Baltimore

19. Nyholt DR (2004) A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765–769. https://doi.org/10.1086/38325 1

20. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactordimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147. https://doi.org/10.1086/321276

21. Slavković AB, Fienberg SE (2010) Algebraic and geometric methods in statistics. In: Gibilisco P, Riccomagno E, Rogantin MP, Wynn HP (eds) Algebraic geometry of 2 × 2 contingency tables. Cambridge University Press, Cambridge, pp 63–81

22. Yamada R, Okada Y (2009) An optimal dose-efect mode trend test for SNP genotype tables. Genet Epidemiol 33:114–127. https://doi.org/10.1002/gepi.20362

23. Yoshimura K, Nakayama T, Sekine A et al (2012) B-type natriuretic peptide as an independent correlate of nocturnal voiding in Japanese women. Neurourol Urodyn 31:1266–1271. https://doi. org/10.1002/nau.22250

参考文献をもっと見る