リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「freqpcr: Estimation of population allele frequency using qPCR ΔΔCq measures from bulk samples」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

freqpcr: Estimation of population allele frequency using qPCR ΔΔCq measures from bulk samples

Sudo, Masaaki Osakabe, Masahiro 京都大学 DOI:10.1111/1755-0998.13554

2022.05

概要

PCR techniques, both quantitative (qPCR) and nonquantitative, have been used to estimate the frequency of a specific allele in a population. However, the labour required to sample numerous individuals and subsequently handle each sample renders the quantification of rare mutations (e.g., pesticide resistance gene mutations at the early stages of resistance development) challenging. Meanwhile, pooling DNA from multiple individuals as a “bulk sample” combined with qPCR may reduce handling costs. The qPCR output for a bulk sample, however, contains uncertainty owing to variations in DNA yields from each individual, in addition to measurement errors. In this study, we have developed a statistical model to estimate the frequency of the specific allele and its confidence interval when the sample allele frequencies are obtained in the form of ΔΔCq in the qPCR analyses on multiple bulk samples collected from a population. We assumed a gamma distribution as the individual DNA yield and developed an R package for parameter estimation, which was verified using real DNA samples from acaricide-resistant spider mites, as well as a numerical simulation. Our model resulted in unbiased point estimates of the allele frequency compared with simple averaging of the ΔΔCq values. The confidence intervals suggest that dividing the bulk samples into more parts will improve precision if the total number of individuals is equal; however, if the cost of PCR analysis is higher than that of sampling, increasing the total number and pooling them into a few bulk samples may also yield comparable precision.

この論文で使われている画像

参考文献

Andow, D. A., & Alstad, D. N. (1998). F2 screen for rare resistance alleles. Journal of Economic Entomology, 91(3), 572–­578. https://doi.

org/10.1093/jee/91.3.572

Chen, H., Rangasamy, M., Tan, S. Y., Wang, H., & Siegfried, B. D. (2010).

Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS One, 5(8), e11963. https://doi.

org/10.1371/journ​al.pone.0011963

Cowell, R. G., Lauritzen, S. L., & Mortera, J. (2007). A gamma model for

DNA mixture analyses. Bayesian Analysis, 2(2), 333–­3 48. https://

doi.org/10.1214/07-­BA214

Dias, P. J., Sollelis, L., Cook, E. J., Piertney, S. B., Davies, I. M., & Snow,

M. (2008). Development of a real-­t ime PCR assay for detection of

Mytilus species specific alleles: application to a sampling survey

in Scotland. Journal of Experimental Marine Biology and Ecology,

367(2), 253–­2 58. https://doi.org/10.1016/j.jembe.2008.10.011

Donnelly, M. J., Isaacs, A. T., & Weetman, D. (2016). Identification, validation, and application of molecular diagnostics for insecticide resistance in malaria vectors. Trends in Parasitology, 32(3), 197–­206.

https://doi.org/10.1016/j.pt.2015.12.001

Eypasch, E., Lefering, R., Kum, C. K., & Troidl, H. (1995). Probability of

adverse events that have not yet occurred: A statistical reminder.

BMJ, 311(7005), 619–­620.

SUDO and OSAKABE

ffrench-­Constant, R. H. (2013). The molecular genetics of insecticide resistance. Genetics, 194(4), 807–­815. https://doi.org/10.1534/genet​

ics.112.141895

Fukaya, K., Kondo, N. I., Matsuzaki, S. I. S., & Kadoya, T. (2021).

Multispecies site occupancy modeling and study design for spatially

replicated environmental DNA metabarcoding. bioRxiv. https://doi.

org/10.1101/2021.02.14.431192

Fung, T., & Keenan, K. (2014). Confidence intervals for population allele

frequencies: The general case of sampling from a finite diploid population of any size. PLoS One, 9(1), e85925. https://doi.org/10.1371/

journ​al.pone.0085925

Germer, S., Holland, M. J., & Higuchi, R. (2000). High-­throughput SNP

allele-­frequency determination in pooled DNA samples by kinetic

PCR. Genome Research, 10(2), 258–­266. https://doi.org/10.1101/

gr.10.2.258

Gouws, E. J., Gaston, K. J., & Chown, S. L. (2011). Intraspecific body size

frequency distributions of insects. PLoS One, 6(3), e16606. https://

doi.org/10.1371/journ​al.pone.0016606

Hedrick, P. W. (2013). Adaptive introgression in animals: examples and

comparison to new mutation and standing variation as sources of

adaptive variation. Molecular Ecology, 22, 4606–­4618. https://doi.

org/10.1111/mec.12415

Hothorn, T., Zeileis, A., Farebrother (pan.f), R. W., Cummins (pan.f), C.,

Millo, G., & Mitchell, D. (2019). lmtest: Testing Linear Regression

Models (0.9-­37) [Computer software]. https://CRAN.R-­proje​c t.org/

packa​ge=lmtest

Knapp, M. (2016). Relative importance of sex, pre-­starvation body mass

and structural body size in the determination of exceptional starvation resistance of Anchomenus dorsalis (Coleoptera: Carabidae). PLoS

One, 11(3), e0151459. https://doi.org/10.1371/journ​al.pone.0151459

Kundu, D., & Manglick, A. (2005). Discriminating between the log-­normal

and gamma distributions. Journal of the Applied Statistical Sciences,

14, 175–­187.

Leitwein, M., Duranton, M., Rougemont, Q., Gagnaire, P. A., & Bernatchez,

L. (2020). Using haplotype information for conservation genomics. Trends in Ecology & Evolution, 35(3), 245–­258. https://doi.

org/10.1016/j.tree.2019.10.012

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-­time quantitative PCR and the 2-­ΔΔCT

method. Methods, 25(4), 402–­4 08. https://doi.org/10.1006/

meth.2001.1262

Luikart, G., Cornuet, J. M., & Allendorf, F. W. (1999). Temporal changes

in allele frequencies provide estimates of population bottleneck size. Conservation Biology, 13(3), 523–­

530. https://doi.

org/10.1046/j.1523-­1739.1999.98133.x

Maeoka, A., Yuan, L., Itoh, Y., Saito, C., Doi, M., Imamura, T., Yamaguchi,

T., Imura, T., & Osakabe, M. (2020). Diagnostic prediction of acaricide resistance gene frequency using quantitative real-­time PCR

with resistance allele-­specific primers in the two-­spotted spider

mite Tetranychus urticae population (Acari: Tetranychidae). Applied

Entomology and Zoology, 55, 329–­

335. https://doi.org/10.1007/

s1335​5-­020-­0 0686​-­7

May, R. M. (1976). Patterns in multi-­species communities. In R. M. May

(Ed.), Theoretical ecology: Principles and applications (pp. 142–­162).

Blackwell Scientific Publications. ISBN 0-­7216-­6205-­6.

Mitchell, E. M., Lyles, R. H., & Schisterman, E. F. (2015). Positing, fitting,

and selecting regression models for pooled biomarker data. Statistics

in Medicine, 34(17), 2544–­2558. https://doi.org/10.1002/sim.6496

Narasimhan, B., Koller, M., Johnson, S. G., Hahn, T., Bouvier, A., Kiêu,

K., & Gaure, S. (2019). cubature: Adaptive Multivariate Integration

over Hypercubes (2.0.4) [Computer software]. https://CRAN.R-­proje​

ct.org/packa​ge=cubature

Nielsen, R. (2005). Molecular signatures of natural selection. Annual

Review of Genetics, 39, 197–­218. https://doi.org/10.1146/annur​

ev.genet.39.073003.112420

SUDO and OSAKABE

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Osakabe, M., Imamura, T., Nakano, R., Kamikawa, S., Tadatsu, M.,

Kunimoto, Y., & Doi, M. (2017). Combination of restriction endonuclease digestion with the ΔΔCt method in real-­time PCR to monitor etoxazole resistance allele frequency in the two-­spotted spider

mite. Pesticide Biochemistry and Physiology, 139, 1–­8. https://doi.

org/10.1016/j.pestbp.2017.04.003

Quail, M. A., Smith, M., Coupland, P., Otto, T. D., Harris, S. R., Connor,

T. R., Bertoni, A., Swerdlow, H. P., & Gu, Y. (2012). A tale of three

next generation sequencing platforms: comparison of Ion Torrent,

Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics,

13(1), 1–­13. https://doi.org/10.1186/1471-­2164-­13-­3 41

R Core Team (2019). R version 3.6.1. https://www.r-­proje​c t.org/

Rode, N. O., Holtz, Y., Loridon, K., Santoni, S., Ronfort, J., & Gay, L. (2018).

How to optimize the precision of allele and haplotype frequency estimates using pooled-­sequencing data. Molecular Ecology Resources,

18(2), 194–­203. https://doi.org/10.1111/1755-­0998.12723

Samayoa, L. F., Malvar, R. A., Olukolu, B. A., Holland, J. B., & Butrón, A.

(2015). Genome-­wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia

nonagrioides L.) in a maize diversity panel. BMC Plant Biology, 15(1),

35. https://doi.org/10.1186/s1287​0 -­014-­0 403-­3

Schwartz, M. K., Luikart, G., & Waples, R. S. (2007). Genetic monitoring as a promising tool for conservation and management. Trends

in Ecology & Evolution, 22(1), 25–­

33. https://doi.org/10.1016/j.

tree.2006.08.009

Snoeck, S., Kurlovs, A. H., Bajda, S., Feyereisen, R., Greenhalgh, R.,

Villacis-­Perez, E., Kosterlitz, O., Dermauw, W., Clark, R. M., & Van

Leeuwen, T. (2019). High-­resolution QTL mapping in Tetranychus

urticae reveals acaricide-­specific responses and common target-­

site resistance after selection by different METI-­

I acaricides.

Insect Biochemistry and Molecular Biology, 110, 19–­33. https://doi.

org/10.1016/j.ibmb.2019.04.011

Sonoda, S., Inukai, K., Kitabayashi, S., Kuwazaki, S., & Jouraku, A. (2017).

Molecular evaluation of diamide resistance in diamondback moth

(Lepidoptera: Yponomeutidae) populations using quantitative sequencing. Applied Entomology and Zoology, 52(2), 353–­357. https://

doi.org/10.1007/s1335​5-­017-­0 482-­3

Sudo, M., Takahashi, D., Andow, D. A., Suzuki, Y., & Yamanaka, T. (2018).

Optimal management strategy of insecticide resistance under various insect life histories: Heterogeneous timing of selection and

interpatch dispersal. Evolutionary Applications, 11(2), 271–­283.

https://doi.org/10.1111/eva.12550

Sudo, M., Yamamura, K., Sonoda, S., & Yamanaka, T. (2021). Estimating

the proportion of resistance alleles from bulk Sanger sequencing,

circumventing the variability of individual DNA. Journal of Pesticide

Science, 46(2), 1–­8. https://doi.org/10.1584/jpest​ics.D20-­064

Sugimoto, N., Takahashi, A., Ihara, R., Itoh, Y., Jouraku, A., Van Leeuwen,

T., & Osakabe, M. (2020). QTL mapping using microsatellite linkage reveals target-­site mutations associated with high levels of

resistance against three mitochondrial complex II inhibitors in

Tetranychus urticae. Insect Biochemistry and Molecular Biology, 123,

103410. https://doi.org/10.1016/j.ibmb.2020.103410

Takahashi, D., Yamanaka, T., Sudo, M., & Andow, D. A. (2017). Is a larger refuge always better? Dispersal and dose in pesticide resistance evolution. Evolution, 71(6), 1494–­1503. https://doi.org/10.1111/evo.13255

Takezaki, N., & Nei, M. (1996). Genetic distances and reconstruction of

phylogenetic trees from microsatellite DNA. Genetics, 144(1), 389–­

399. https://doi.org/10.1093/genet​ics/144.1.389

Taylor, S. M., Juliano, J. J., Trottman, P. A., Griffin, J. B., Landis, S. H., Kitsa,

P., Tshefu, A. K., & Meshnick, S. R. (2010). High-­throughput pooling

and real-­time PCR-­based strategy for malaria detection. Journal

of Clinical Microbiology, 48(2), 512–­

519. https://doi.org/10.1128/

JCM.01800​-­09

Toda, S., Hirata, K., Yamamoto, A., & Matsuura, A. (2017). Molecular diagnostics of the R81T mutation on the D-­loop region of the β1 subunit

1393

of the nicotinic acetylcholine receptor gene conferring resistance

to neonicotinoids in the cotton aphid, Aphis gossypii (Hemiptera:

Aphididae). Applied Entomology and Zoology, 52(1), 147–­151. https://

doi.org/10.1007/s1335​5-­016-­0 449-­9

Uesugi, R., Hinomoto, N., & Goto, C. (2016). Estimated time frame for

successful PCR analysis of diamondback moths, Plutella xylostella

(Lepidoptera: Plutellidae), collected from sticky traps in field conditions. Applied Entomology and Zoology, 51(3), 505–­510. https://doi.

org/10.1007/s1335​5-­016-­0 418-­3

Van Leeuwen, T., Demaeght, P., Osborne, E. J., Dermauw, W., Gohlke,

S., Nauen, R., Grbić, M., Tirry, L., Merzendorfer, H., & Clark, R. M.

(2012). Population bulk segregant mapping uncovers resistance

mutations and the mode of action of a chitin synthesis inhibitor

in arthropods. Proceedings of the National Academy of Sciences,

109(12), 4407–­4 412. https://doi.org/10.1073/pnas.12000​68109

Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W., & Tirry, L.

(2010). Acaricide resistance mechanisms in the two-­spotted spider

mite Tetranychus urticae and other important Acari: A review. Insect

Biochemistry and Molecular Biology, 40(8), 563–­

572. https://doi.

org/10.1016/j.ibmb.2010.05.008

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De

Paepe, A., & Speleman, F. (2002). Accurate normalization of real-­

time quantitative RT-­PCR data by geometric averaging of multiple

internal control genes. Genome Biology, 3(7), 1–­12.

Wiens, B. L. (1999). When log-­normal and gamma models give different

results: A case study. The American Statistician, 53(2), 89–­93.

Wright, S. (1965). The interpretation of population structure by F-­

statistics with special regard to systems of mating. Evolution, 395–­

420. https://doi.org/10.1111/j.1558-­5646.1965.tb017​31.x

Yamamura, K., & Hino, A. (2007). Estimation of the proportion of defective units by using group testing under the existence of a threshold of

detection. Communications in Statistics—­Simulation and Computation,

36(5), 949–­957. https://doi.org/10.1080/03610​91070​1539278

Yamamura, K., Mano, J., & Shibaike, H. (2019). Optimal definition of the

limit of detection (LOD) in detecting genetically modified grains

from heterogeneous grain lots. Quality Technology & Quantitative

Management, 16(1), 36–­53. https://doi.org/10.1080/16843703.2017.​

1347992

Yelin, I., Aharony, N., Tamar, E. S., Argoetti, A., Messer, E., Berenbaum,

D., Shafran, E., Kuzli, A., Gandali, N., Shkedi, O., Hashimshony, T.,

Mandel-­

Gutfreund, Y., Halberthal, M., Geffen, Y., Szwarcwort-­

Cohen, M., & Kishony, R. (2020). Evaluation of COVID-­19 RT-­qPCR

test in multi-­sample pools. Clinical Infectious Diseases, 71, 2073–­

2078. https://doi.org/10.1093/cid/ciaa531

Zaccara, S., Quadroni, S., De Santis, V., Vanetti, I., Carosi, A., Crosa, G.,

Britton, J. R., & Lorenzoni, M. (2021). Genetic and phenotypic displacement of an endemic Barbus complex by invasive European

barbel Barbus barbus in central Italy. Biological Invasions, 23(2), 521–­

535. https://doi.org/10.1007/s1053​0 -­020-­02379​-­2

S U P P O R T I N G I N FO R M AT I O N

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Sudo, M., & Osakabe, M. (2022).

freqpcr: Estimation of population allele frequency using qPCR

ΔΔCq measures from bulk samples. Molecular Ecology

Resources, 22, 1380–­1393. https://doi.

org/10.1111/1755-­0998.13554

...

参考文献をもっと見る