リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Clinical Validation of the Accuracy of Absolute Myocardial Blood Flow Quantification with Dual-Source CT Using 15O-Water PET」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Clinical Validation of the Accuracy of Absolute Myocardial Blood Flow Quantification with Dual-Source CT Using 15O-Water PET

Takafuji Masafumi 三重大学

2022.07.20

概要

Purpose: To determine the fitting equation that can correct for the underestimation of myocardial blood flow (MBF) measurement by using dynamic CT perfusion (CTP) with dual-source CT (MBFCT), using MBF with oxygen 15–labeled water (15O-water) PET (MBFPET) as a reference, and to determine the accuracy of corrected MBFCT (MBFCT-corrected) compared with MBFPET in a separate set of participants.
Materials and Methods: In this prospective study (reference no. 2466), 34 participants (mean age, 70 years ±8 [standard deviation]; 27 men) known or suspected to have coronary artery disease underwent dynamic stress CTP and stress 15O-water PET between January 2014 and December 2018. The participants were randomly assigned to either a pilot group (n = 17), to determine the fitting equation on the basis of the generalized Renkin-Crone model that can explain the relation between MBFCT and MBFPET, or to a validation group (n = 17), to validate MBFCT-corrected compared with MBFPET. The agreement between MBFCT-corrected and MBFPET was evaluated by intraclass correlation and Bland-Altman analysis.
Results: In the pilot group, MBFCT was lower than MBFPET (1.24 mL/min/g ± 0.28 vs 2.51 mL/min/g ± 0.89 , P<.001) at the segment level. The relationship between MBFCT and MBFCT-corrected was represented as MBFCT = MBFCT-corrected × {1−exp[−(0.11 × MBFCT-corrected + 1.54)/MBFCT-corrected]}. In the validation group, MBFCT-corrected was 2.66 mL/min/g ± 1.93, and MBFPET was 2.68 mL/min/g ± 1.87 at the vessel level. MBFCT-corrected showed an excellent agreement with MBFPET (intraclass correlation coefficient = 0.93 [95% CI: 0.87, 0.96]). The measurement bias of MBFCT-corrected and MBFPET was –0.02 mL/min/g ±0.74.
Conclusion: Underestimation of MBF by CT was successfully corrected with a correction method that was based on contrast kinetics in the myocardium.

参考文献

1. Schuijf JD, Ko BS, Di Carli MF, et al. Fractional flow reserve and myocardial perfusion by computed tomography: a guide to clinical application. Eur Heart J Cardiovasc Imaging 2018;19(2):127–135.

2. Nakamura S, Kitagawa K, Goto Y, et al. Incremental prognostic value of myocardial blood flow quantified with stress dynamic computed tomography perfusion imaging. JACC Cardiovasc Imaging 2019;12(7 Pt 2):1379–1387.

3. Mahnken AH, Klotz E, Pietsch H, et al. Quantitative whole heart stress perfusion CT imaging as noninvasive assessment of hemodynamics in coronary artery stenosis: preliminary animal experience. Invest Radiol 2010;45(6):298–305.

4. Goto Y, Kitagawa K, Uno M, et al. Diagnostic accuracy of endocardial-toepicardial myocardial blood flow ratio for the detection of significant coronary artery disease with dynamic myocardial perfusion dual-source computed tomography. Circ J 2017;81(10):1477–1483.

5. Bamberg F, Becker A, Schwarz F, et al. Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic CT-based myocardial perfusion imaging. Radiology 2011;260(3):689–698. Radiology: Cardiothoracic Imaging Volume 3: Number 5—2021 n rcti.rsna.org

6. Coenen A, Lubbers MM, Kurata A, et al. Diagnostic value of transmural perfusion ratio derived from dynamic CT-based myocardial perfusion imaging for the detection of haemodynamically relevant coronary artery stenosis. Eur Radiol 2017;27(6):2309–2316.

7. Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: Technical aspects. J Nucl Cardiol 2010;17(4):555–570.

8. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330(25):1782–1788.

9. Uren NG, Camici PG, Melin JA, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36(11):2032–2036.

10. Danad I, Uusitalo V, Kero T, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [(15)O]H2O PET imaging. J Am Coll Cardiol 2014;64(14):1464–1475.

11. Bom MJ, van Diemen PA, Driessen RS, et al. Prognostic value of [15O] H2O positron emission tomography-derived global and regional myocardial perfusion. Eur Heart J Cardiovasc Imaging 2020;21(7):777–786.

12. Farhad H, Dunet V, Bachelard K, Allenbach G, Kaufmann PA, Prior JO. Added prognostic value of myocardial blood flow quantitation in rubidium-82 positron emission tomography imaging. Eur Heart J Cardiovasc Imaging 2013;14(12):1203–1210.

13. Kim EY, Chung WJ, Sung YM, et al. Normal range and regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment on dynamic perfusion CT using 128-slice dual-source CT. Int J Cardiovasc Imaging 2014;30(Suppl 1):33–40.

14. Ishida M, Kitagawa K, Ichihara T, et al. Underestimation of myocardial blood flow by dynamic perfusion CT: Explanations by two-compartment model analysis and limited temporal sampling of dynamic CT. J Cardiovasc Comput Tomogr 2016;10(3):207–214.

15. Ichihara T, George RT, Lima JAC, Ikeda Y, Lardo AC. Evaluation of equivalence of upslope method-derived myocardial perfusion index and transfer constant based on two-compartment tracer kinetic model. IEEE Nuclear Science Symposium & Medical Imaging Conference, 2010; 2330–2333.

16. Germino M, Ropchan J, Mulnix T, et al. Quantification of myocardial blood flow with (82)Rb: Validation with (15)O-water using time-of-flight and point-spread-function modeling. EJNMMI Res 2016;6(1):68.

17. Ishida M, Ichihara T, Nagata M, et al. Quantification of myocardial blood flow using model based analysis of first-pass perfusion MRI: extraction fraction of Gd-DTPA varies with myocardial blood flow in human myocardium. Magn Reson Med 2011;66(5):1391–1399.

18. Morita K, Tsukamoto T, Naya M, et al. Smoking cessation normalizes coronary endothelial vasomotor response assessed with 15O-water and PET in healthy young smokers. J Nucl Med 2006;47(12):1914–1920.

19. Salcedo J, Kern MJ. Effects of caffeine and theophylline on coronary hyperemia induced by adenosine or dipyridamole. Catheter Cardiovasc Interv 2009;74(4):598–605.

20. Takafuji M, Kitagawa K, Ishida M, et al. Myocardial coverage and radiation dose in dynamic myocardial perfusion imaging using third-generation dualsource CT. Korean J Radiol 2020;21(1):58–67.

21. Takafuji M, Kitagawa K, Nakamura S, et al. Feasibility of extracellular volume fraction calculation using myocardial CT delayed enhancement with low contrast media administration. J Cardiovasc Comput Tomogr 2020;14(6):524–528.

22. Wisenberg G, Schelbert HR, Hoffman EJ, et al. In vivo quantitation of regional myocardial blood flow by positron-emission computed tomography. Circulation 1981;63(6):1248–1258.

23. Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR. Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med 1983;24(11): 987–996.

24. Bamberg F, Hinkel R, Schwarz F, et al. Accuracy of dynamic computed tomography adenosine stress myocardial perfusion imaging in estimating myocardial blood flow at various degrees of coronary artery stenosis using a porcine animal model. Invest Radiol 2012;47(1):71–77.

25. Schuirmann DJ. A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J Pharmacokinet Biopharm 1987;15(6):657–680.

26. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med 1999;40(11):1848–1856.

27. Wyss CA, Koepfli P, Mikolajczyk K, Burger C, von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve: repeatability and comparison with adenosine stress. J Nucl Med 2003;44(2):146–154.

28. Kikuchi Y, Oyama-Manabe N, Naya M, et al. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with 15O-H2O PET. Eur Radiol 2014;24(7):1547–1556.

29. Tomiyama Y, Manabe O, Oyama-Manabe N, et al. Quantification of myocardial blood flow with dynamic perfusion 3.0 Tesla MRI: Validation with (15) O-water PET. J Magn Reson Imaging 2015;42(3):754–762.

30. Alessio AM, Bindschadler M, Busey JM, Shuman WP, Caldwell JH, Branch KR. Accuracy of myocardial blood flow estimation from dynamic contrast-enhanced cardiac CT compared with PET. Circ Cardiovasc Imaging 2019;12(6):e008323.

31. Michallek F, Dewey M. Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging. Eur Radiol 2017;27(4):1537–1546.

32. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 1994;331(4):222–227.

33. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959;197(6):1205–1210.

34. Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 1963;58(4):292–305.

35. Nesterov SV, Han C, Mäki M, et al. Myocardial perfusion quantitation with 15O-labelled water PET: high reproducibility of the new cardiac analysis software (Carimas). Eur J Nucl Med Mol Imaging 2009;36(10):1594–1602.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る