リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Formation of Pt-rich AuPt Alloy Frame Nanorods with Semi-spherical End Caps Using Au Nanorods as Sacrificial Templates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Formation of Pt-rich AuPt Alloy Frame Nanorods with Semi-spherical End Caps Using Au Nanorods as Sacrificial Templates

TSUJI, Masaharu 辻, 正治 ツジ, マサハル YAJIMA, Atsuhiko 矢島, 淳彦 ヤジマ, アツヒコ NAKASHIMA, Yukinori 中島, 幸範 ナカシマ, ユキノリ UTO, Keiko 宇都, 慶子 ウト, ケイコ HATTORI, Masashi 服部, 真史 ハットリ, マサシ HAYASHI, Jun-Ichiro 林, 潤一郎 ハヤシ, ジュンイチロウ TSUJI, Takeshi 辻, 剛志 ツジ, タケシ KAWAZUMI, Hirofumi 河濟, 博文 カワズミ, ヒロフミ 九州大学 DOI:https://doi.org/10.15017/4479143

2020.09

概要

Pt-rich AuPt alloy frame nanorods (NRs) with semi-spherical end caps were synthesized using Au NRs as sacrificial templates. Shape, size, and composition changes of product particles were examined by using transmission electron microscopy (TEM), TEM energy dispersed X-ray spectroscopy (EDS), and XRD patterns. Initially, Au-rich Au92Pt8 alloy NR cores with island-type Pt-rich Au22Pt78 alloy shell particles were prepared by reducing Pt4+ over Au NRs using ascorbic acid in the presence of cetyl trimethyl ammonium bromide (CTAB). After the addition of HCl and heating at 95 oC, site selective oxidative etching of AuPt alloy NRs by Cl- + O2 occurred. Then, Pt-rich Au22Pt78 alloy frame NRs with four {100} bridges and semi-spherical Au90Pt10@Au22Pt78 end caps, were formed. The formation of these AuPt alloy nanoframe structure was explained by faster etching rates of side {2,5,0}, {5,12,0}, and {110} facets of AuNRs and AuPt island particles on these high surface-energy facets than those of {100} and {111} facets with low surface energies. No AuPt frame structure was formed from decahedral island-type Au@Au3Pt97 particles, because stable {111} facets of decahedral Au cores and Au3Pt97 alloy shells were not etched by Cl- + O2. The results obtained from this study suggest a novel method for the formation of Pt-rich AuPt alloy frame structures and constitute new information related to their formation mechanism.

この論文で使われている画像

参考文献

1) J. Gong, Chem. Rev., 112, 2987 (2012).

2) S. Leenders,. Leenders, R. Gramage-Doria, B. Bruin, and J. Reek, Chem. Soc. Rev., 44, 433 (2015).

3) M. N. Liz-Marzán, C. J. Murphy, and J. Wang, Chem. Soc. Rev., 43, 3820 (2014).

4) L. K. Bogart, G. Pourroy, C. J. Murphy, V. Puntes, T. Pellegrino, D. Rosenblum, D. Peer, and R. Lévy, ACS Nano, 8, 3107 (2014).

5) P. K. Jain, X. Huang, I. H. El-Sayed, and E. A. El-Sayed, Acc. Chem. Res., 41, 1578 (2008).

6) Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, and P. K. Brown, Acc. Chem. Res., 44, 914 (2011).

7) M. C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004).

8) D. Kim, Y. W. Lee, S. B. Lee, and S. W. Han, Angew. Chem. Int. Ed., 51, 159 (2012).

9) K. D. Gilroy, A. Ruditskiy, H.-C. Peng, D. Qin, and Y. Xia, Chem. Rev., 116, 10414 (2016).

10) S. W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc., 124, 7642 (2002).

11) Y. G. Sun, B. Mayers, and Y. Xia, Adv. Mater., 15, 641 (2003).

12) S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, Acc. Chem. Res., 41, 1587 (2008).

13) C. M. Cobley and Y. Xia, Mater. Sci. Eng., R, 70, 44 (2010).

14) X. Xia, Y. Wang, A. Ruditskiy and Y. Xia, Adv. Mater., 2013, 25, 6313 (2013).

15) R. Long, S. Zhou, B. J. Wiley, and Y. Xiong, Chem. Soc. Rev., 43, 6288 (2014).

16) G. Mettela and G. U. Kulkarni, Nano Res., 8, 2925 (2015).

17) F. Merkoçi, J. Patarroyo, L. Russo, J. Piella, A. Genç, J. Arbiol, N. G. Bastús, and V. Puntes, Mater. Today Adv., 5, 100037 (2020).

18) M. Tsuji, T. Kidera, A. Yajima, M. Hamasaki, M. Hattori, T. Tsuji, and H. Kawazumi, CrystEngComm, 16, 2684 (2014).

19) M. Tsuji, M. Hamasaki, A. Yajima, M. Hattori, T. Tsuji, and H. Kawazumi, Mater. Lett., 121, 113 (2014).

20) Y. G. Sun and Y. Xia, J. Am. Chem. Soc., 126, 3892 (2004).

21) Y. G. Sun and Y. Xia, Adv. Mater., 16, 264 (2004).

22) Y. G. Sun, B. Wiley, Z.-Y. Li, and Y. Xia, J. Am. Chem. Soc., 126, 9399 (2004).

23) M. Tsuji, Y. Nakashima, A. Yajima, and M. Hattori, CrystEngComm, 17, 6955 (2015).

24) Y. Niidome, K. Nishioka, H. Kawasaki, and S. Yamada, Chem. Commun., 2376 (2003).

25) D. Seo, C. I. Yoo, I. S. Chung, S. M. Park, S. Ryu, and H. Song, J. Phys. Chem. C, 112, 2469 (2008).

26) M. Tsuji, N. Nakamura, M. Ogino, K. Ikedo, and M. Matsunaga, CrystEngComm, 14, 7639 (2012).

27) M. B. Cortie and A. M. McDonagh, Chem. Rev., 111, 3713 (2011).

28) M. Tsuji, K. Ikedo, K. Uto, M. Matsunaga, Y. Yoshida, K. Takemura, and Y. Niidome, CrystEngComm, 15, 6553 (2013).

29) A. R. Denton and N. W. Ashcro, Phys. Rev. A, 43, 3161 (1991).

30) E. Carbó-Argibay, B. Rodríguez-González, S. Gómez-Graña, A. Guerrero-Martínez, I. Pastoriza-Santos, J. Pérez-Juste and L. M. Liz-Marzán, Angew. Chem., Int. Ed., 49, 9397 (2010).

31) B. Goris, S. Bals, W. Van den Broek, E. Carbó-Argibay, S. Gómez-Graña, L. M. Liz-Marzán, and G. Van Tendeloo, Nat. Mater., 11, 930 (2012).

32) M. Tsuji, K. Takemura, C. Shiraishi, K. Ikedo, K. Uto, A. Yajima, M. Hattori, Y. Nakashima, K. Fukutomi, K. Tsuruda, T. Daio, T. Tsuji, and S. Hata, J. Phys. Chem. C, 119, 10811 (2015).

33) Y. Yoshida, K. Uto, M. Hattori, and M. Tsuji, CrystEngComm, 16, 5672 (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る