リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Nanophotonic Bio/Chemical Sensors Based on Light-Matter Interactions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Nanophotonic Bio/Chemical Sensors Based on Light-Matter Interactions

川崎 大輝 大阪府立大学 DOI:info:doi/10.24729/00017852

2022.11.28

概要

Light provides high-spatiotemporal resolution, signal multiplexing and operability for various analysis and communications technology. Particularly in the biological and medical sciences, bioanalysis technologies utilizing the properties of light have been widely used [1,2]. Especially bio/chemical sensors based on optical phenomenon or chromogenic indicators, such as surface plasmon resonance (SPR)-based label-free sensors [3] and fluorescent calcium indicators [4], have been applied to highly sensitive and accurate molecular detection and biological imaging technology (Fig. 1.1).

This chapter firstly provides an overview of bio/chemical sensor technology and describes the principles and sensor applications of plasmonic and photonic structures, which are typical nanophotonic transducers. Then, the light-matter interactions originating from nanophotonic structures, which are the focus of this research, is described. Finally, the position of this study is clarified.

この論文で使われている画像

参考文献

[1] M. Scanziani, M. Häusser, Electrophysiology in the age of light, Nature 461 (2009) 930–939. doi:10.1038/nature08540.

[2] F. Ligler, C. Taitt, Optical Biosensors, Chem. Rev. 108 (2008) 423–461 doi:10.1016/B978-0-444- 53125-4.X5001-3.

[3] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev. 108 (2008) 462–493. doi:10.1021/cr068107d.

[4] W. Wang, C.P. Wildes, T. Pattarabanjird, M.I. Sanchez, G.F. Glober, G.A. Matthews, K.M. Tye, A.Y. Ting, A light- and calcium-gated transcription factor for imaging and manipulating activated neurons, Nat. Biotechnol. 35 (2017) 864–871. doi:10.1038/nbt.3909.

[5] N. Bhalla, P. Jolly, N. Formisano, P. Estrela, Introduction to biosensors, Essays Biochem. 60 (2016) 1–8. doi:10.1042/EBC20150001.

[6] L. Basabe-Desmonts, T.J.J. Müller, M. Crego-Calama, Design of fluorescent materials for chemical sensing, Chem. Soc. Rev. 36 (2007) 993–1017. doi:10.1039/b609548h.

[7] S. Song, L. Wang, J. Li, C. Fan, J. Zhao, Aptamer-based biosensors, TrAC - Trends Anal. Chem. 27 (2008) 108–117. doi:10.1016/j.trac.2007.12.004.

[8] V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev. 43 (2014) 744–764. doi:10.1039/c3cs60273g.

[9] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors - Sensor principles and architectures, Sensors 8 (2008) 1400–1458. doi:10.3390/s8031400.

[10] M. Kaisti, Detection principles of biological and chemical FET sensors, Biosens. Bioelectron. 98 (2017) 437–448. doi:10.1016/j.bios.2017.07.010.

[11] G. Seo, G. Lee, M.J. Kim, S.H. Baek, M. Choi, K.B. Ku, C.S. Lee, S. Jun, D. Park, H.G. Kim, S.J. Kim, J.O. Lee, B.T. Kim, E.C. Park, S. Il Kim, Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor, ACS Nano 14 (2020) 5135–5142. doi:10.1021/acsnano.0c02823.

[12] E. Bakker, P. Bühlmann, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 97 (1997) 3083–3132. doi:10.1021/cr940394a.

[13] J.M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, The use of luminescent quantum dots for optical sensing, TrAC - Trends Anal. Chem. 25 (2006) 207–218. doi:10.1016/j.trac.2005.07.008.

[14] S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging, Angew. Chem. Int. Ed. 52 (2013) 3953–3957. doi:10.1002/anie.201300519.

[15] W.W.W. Hsiao, Y.Y. Hui, P.C. Tsai, H.C. Chang, Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing, Acc. Chem. Res. 49 (2016) 400–407. doi:10.1021/acs.accounts.5b00484.

[16] H. Altug, S.H. Oh, S.A. Maier, J. Homola, Advances and applications of nanophotonic biosensors, Nat. Nanotechnol. 17 (2022) 5–16. doi:10.1038/s41565-021-01045-5.

[17] C. Amsler, M. Doser, M. Antonelli, D.M. Asner, K.S. Babu, H. Baer, H.R. Band, R.M. Barnett, E. Bergren, J. Beringer, G. Bernardi, W. Bertl, H. Bichsel, O. Biebel, P. Bloch, E. Blucher, S. Blusk, R.N. Cahn, M. Carena, C. Caso, A. Ceccucci, D. Chakraborty, M.C. Chen, R.S. Chivukula, G. Cowan, O. Dahl, G. D’Ambrosio, T. Damour, A. de Gouvêa, T. DeGrand, B. Dobrescu, M. Drees, D.A. Edwards, S. Eidelman, V.D. Elvira, J. Erler, V. V. Ezhela, J.L. Feng, W. Fetscher, B.D. Fields, B. Foster, T.K. Gaisser, L. Garren, H.J. Gerber, G. Gerbier, T. Gherghetta, G.F. Giudice, M. Goodman, C. Grab, A. V. Gritsan, J.F. Grivaz, D.E. Groom, M. Grünewald, A. Gurtu, T. Gutsche, H.E. Haber, K. Hagiwara, C. Hagmann, K.G. Hayes, J.J. Hernández-Rey, K. Hikasa, I. Hinchliffe, A. Höcker, J. Huston, P. Igo-Kemenes, J.D. Jackson, K.F. Johnson, T. Junk, D. Karlen, B. Kayser, D. Kirkby, S.R. Klein, I.G. Knowles, C. Kolda, R. V. Kowalewski, P. Kreitz, B. Krusche, Y. V. Kuyanov, Y. Kwon, O. Lahav, P. Langacker, A. Liddle, Z. Ligeti, C.J. Lin, T.M. Liss, L. Littenberg, J.C. Liu, K.S. Lugovsky, S.B. Lugovsky, H. Mahlke, M.L. Mangano, T. Mannel, A. V. Manohar, W.J. Marciano, A.D. Martin, A. Masoni, D. Milstead, R. Miquel, K. Mönig, H. Murayama, K. Nakamura, M. Narain, P. Nason, S. Navas, P. Nevski, Y. Nir, K.A. Olive, L. Pape, C. Patrignani, J.A. Peacock, A. Piepke, G. Punzi, A. Quadt, S. Raby, G. Raffelt, B.N. Ratcliff, B. Renk, P. Richardson, S. Roesler, S. Rolli, A. Romaniouk, L.J. Rosenberg, J.L. Rosner, C.T. Sachrajda, Y. Sakai, S. Sarkar, F. Sauli, O. Schneider, D. Scott, W.G. Seligman, M.H. Shaevitz, T. Sjöstrand, J.G. Smith, G.F. Smoot, S. Spanier, H. Spieler, A. Stahl, T. Stanev, S.L. Stone, T. Sumiyoshi, M. Tanabashi, J. Terning, M. Titov, N.P. Tkachenko, N.A. Törnqvist, D. Tovey, G.H. Trilling, T.G. Trippe, G. Valencia, K. van Bibber, M.G. Vincter, P. Vogel, D.R. Ward, T. Watari, B.R. Webber, G. Weiglein, J.D. Wells, M. Whalley, A. Wheeler, C.G. Wohl, L. Wolfenstein, J. Womersley, C.L. Woody, R.L. Workman, A. Yamamoto, W.M. Yao, O. V. Zenin, J. Zhang, R.Y. Zhu, P.A. Zyla, G. Harper, V.S. Lugovsky, P. Schaffner, Review of Particle Physics, Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 667 (2008). doi:10.1016/j.physletb.2008.07.018.

[18] Paras N. Prasad, NANOPHOTONICS, WILEY, 2004.

[19] D.W. Prather, S. Shi, A. Sharkawy, J. Murakowski, G.J. Schneider, PHOTONIC CRYSTAL Theory, Applications, and Fabrication, WILEY, 2009.

[20] M. Born, E. Wolf, Principles of Optics -6th ed. (1986).

[21] S. Noda, A. Chutinan, M. Imada, Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407 (2000) 608–610.

[22] H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, Y.H. Lee, Electrically driven single-cell photonic crystal laser, Science 305 (2004) 1444–1447. doi:10.1126/science.1100968.

[23] K. Nozaki, S. Kita, T. Baba, Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser, Opt. Express 15 (2007) 7506. doi:10.1364/oe.15.007506.

[24] S. Fan, J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs, Phys. Rev. B - Condens. Matter Mater. Phys. 65 (2002) 1–8. doi:10.1103/PhysRevB.65.235112.

[25] K. Toma, E. Descrovi, M. Toma, M. Ballarini, P. Mandracci, F. Giorgis, A. Mateescu, U. Jonas, W. Knoll, J. Dostálek, Bloch surface wave-enhanced fluorescence biosensor, Biosens. Bioelectron. 43 (2013) 108–114. doi:10.1016/j.bios.2012.12.001.

[26] H. Inan, M. Poyraz, F. Inci, M.A. Lifson, M. Baday, B.T. Cunningham, U. Cemirci, Photonic crystals : emerging biosensors and their promise for point-of-care applications, Chem. Soc. Rev. 46 (2017) 366–388. doi:10.1039/c6cs00206d.

[27] M.R. Lee, P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Opt. Express 15 (2007) 4530. doi:10.1364/oe.15.004530.

[28] Y. Kang, J.J. Walish, T. Gorishnyy, E.L. Thomas, Broad-wavelength-range chemically tunable block-copolymer photonic gels, Nat. Mater. 6 (2007) 957–960. doi:10.1038/nmat2032.

[29] C. Fenzl, T. Hirsch, O.S. Wolfbeis, Photonic crystals for chemical sensing and biosensing, Angew. Chem. Int. Ed. 53 (2014) 3318–3335. doi:10.1002/anie.201307828.

[30] C. Fenzl, M. Kirchinger, T. Hirsch, O.S. Wolfbeis, Photonic crystal-based sensing and imaging of potassium ions, Chemosensors 2 (2014) 207–218. doi:10.3390/chemosensors2030207.

[31] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58 (2007) 267–297.

[32] G. Colas Des Francs, S. Derom, R. Vincent, A. Bouhelier, A. Dereux, Mie plasmons: Modes volumes, quality factors, and coupling strengths (Purcell factor) to a dipolar emitter, Int. J. Opt. 2012 (2012). doi:10.1155/2012/175162.

[33] G. V Hartland, Optical studies of dynamics in noble metal nanostructures, Chem. Rev. 111 (2011) 3858–3887.

[34] T. Chung, S. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nano-scale bio-sensing, Sensors 11 (2011) 10907–10929.

[35] R.M. Walser, A.P. Valanju, P.M. Valanju, Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett. 76 (1996) 4773–4776. doi:10.1103/PhysRevLett.87.119701.

[36] A. V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons, Phys. Rep. 408 (2005) 131–314. doi:10.1016/j.physrep.2004.11.001.

[37] B. Doiron, M. Mota, M.P. Wells, R. Bower, A. Mihai, Y. Li, L.F. Cohen, N.M. Alford, P.K. Petrov, R.F. Oulton, S.A. Maier, Quantifying figures of merit for localized surface plasmon resonance applications : a materials survey, ACS Photonics 10 (2019) 1–20.

[38] P.R. West, S. Ishii, G. V Naik, N.K. Emani, V.M. Shalaev, Searching for better plasmonic materials, Laser Photon. Rev. 4 (2010) 795–808.

[39] A. Agrawal, S.H. Cho, O. Zandi, S. Ghosh, R.W. Johns, D.J. Milliron, Localized Surface Plasmon Resonance in Semiconductor Nanocrystals, Chem. Rev. 118 (2018) 3121–3207.

[40] F.H.L. Koppens, D.E. Chang, F.J. García De Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett. 11 (2011) 3370–3377. doi:10.1021/nl201771h.

[41] D.N. Basov, M.M. Fogler, F.J. García De Abajo, Polaritons in van der Waals materials, Science 354 (2016).

[42] K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev. 111 (2011) 3828–3857. doi:10.1021/cr100313v.

[43] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J. White, mark L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9 (2010) 193–204.

[44] B.J. Roxworthy, K.D. Ko, A. Kumar, K.H. Fung, E.K.C. Chow, G.L. Liu, N.X. Fang, K.C. Toussaint, Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting, Nano Lett. 12 (2012) 796–801.

[45] H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties, Chem. Soc. Rev. 42 (2013) 2679–2724. doi:10.1039/c2cs35367a.

[46] J.F. Li, Y.J. Zhang, S.Y. Ding, R. Panneerselvam, Z.Q. Tian, Core-shell nanoparticle-enhanced raman spectroscopy, Chem. Rev. 117 (2017) 5002–5069. doi:10.1021/acs.chemrev.6b00596.

[47] S. Szunerits, R. Boukherroub, Sensing using localised surface plasmon resonance sensors, Chem. Commun. 48 (2012) 8999–9010.

[48] C. Dekker, D. V. Verschueren, S. Pud, X. Shi, L. De Angelis, L. Kuipers, Label-free optical detection of DNA translocations through plasmonic nanopores, ACS Nano 13 (2019) 61–70. doi:10.1021/acsnano.8b06758.

[49] W. Kubo, S. Fujikawa, Au double nanopillars with nanogap for plasmonic sensor, Nano Lett. 11 (2011) 8–15.

[50] H. Im, H. Shao, Y. Il Park, V.M. Peterson, C.M. Castro, R. Weissleder, H. Lee, Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor, Nat. Biothechnol. 32 (2014) 490–495.

[51] L. Feuz, P. Jo, M.P. Jonsson, F. Ho, Improving the Limit of Detection of Nanoscale Sensors by Directed Binding to High-Sensitivity Areas, ACS Nano 4 (2010) 2167–2177.

[52] B. Foerster, A. Joplin, K. Kaefer, S. Celiksoy, S. Link, C. Sönnichsen, Chemical Interface Damping Depends on Electrons Reaching the Surface, ACS Nano 11 (2017) 2886–2893. doi:10.1021/acsnano.6b08010.

[53] J. Olson, S. Dominguez-Medina, A. Hoggard, L.Y. Wang, W.S. Chang, S. Link, Optical characterization of single plasmonic nanoparticles, Chem. Soc. Rev. 44 (2015) 40–57. doi:10.1039/c4cs00131a.

[54] B. Foerster, V.A. Spata, E.A. Carter, C. Sönnichsen, S. Link, Plasmon damping depends on the chemical nature of the nanoparticle interface, Sci. Adv. 5 (2019) 3. doi:10.1126/sciadv.aav0704.

[55] A.J. Haes, S. Zou, J. Zhao, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy near molecular resonances, J. Am. Chem. Soc. 128 (2006) 10905–10914. doi:10.1021/ja063575q.

[56] T. Liyanage, A.N. Masterson, H.H. Oyem, H. Kaimakliotis, H. Nguyen, R. Sardar, Plasmoelectronic-Based Ultrasensitive Assay of Tumor Suppressor microRNAs Directly in Patient Plasma: Design of Highly Specific Early Cancer Diagnostic Technology, Anal. Chem. 91 (2019) 1894–1903. doi:10.1021/acs.analchem.8b03768.

[57] E. Cao, W. Lin, M. Sun, W. Liang, Y. Song, O. Access, Exciton-plasmon coupling interactions : from principle to applications, Nanophotonics 7 (2018) 145–167.

[58] P. Vasa, C. Lienau, Strong Light-Matter Interaction in Quantum Emitter/Metal Hybrid Nanostructures, ACS Photonics 5 (2018) 2–23. doi:10.1021/acsphotonics.7b00650.

[59] J.M. Fink, M. Göppl, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, A. Wallraff, Climbing the Jaynes- Cummings ladder and observing its √n nonlinearity in a cavity QED system, Nature 454 (2008) 315–318. doi:10.1038/nature07112.

[60] E.L. Hu, A. Imamog, S. Gulde, S. Fa, K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatu, Quantum nature of a strongly coupled single quantum dot–cavity system, Nature 445 (2007) 22–25. doi:10.1038/nature05586.

[61] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran, Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit, Nat. Commun. 7 (2016) 11823. http://dx.doi.org/10.1038/ncomms11823.

[62] D.I. Schuster, A.A. Houck, J.A. Schreier, A. Wallraff, J.M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Resolving photon number states in a superconducting circuit, Nature 445 (2007) 515–518. doi:10.1038/nature05461.

[63] J. Wolters, A.W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, O. Benson, Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity, Appl. Phys. Lett. 97 (2010) 95–98. doi:10.1063/1.3499300.

[64] S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. 97 (2006) 017402. doi:10.1103/PhysRevLett.97.017402.

[65] S. Christopoulos, G.B.H. Von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A. V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Room-temperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett. 98 (2007) 1–4. doi:10.1103/PhysRevLett.98.126405.

[66] C. Zong, M. Xu, L. Xu, T. Wei, X. Ma, X. Zheng, R. Hu, B. Ren, Surface-Enhanced Raman Spectroscopy for Bioanalysis : Reliability and Challenges, Chem. Rev. 118 (2018) 4946–4980.

[67] Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J.R. Mulcahy, W.D. Wei, Surface-plasmon-driven hot electron photochemistry, Chem. Rev. 118 (2018) 2927–2954.

[68] S.H. Lee, S.W. Lee, T. Oh, S.H. Petrosko, C.A. Mirkin, J.W. Jang, Direct observation of plasmon- Induced interfacial charge separation in metal/semiconductor hybrid nanostructures by measuring surface potentials, Nano Lett. 18 (2018) 109–116.

[69] F. Liang, Y. Guo, S. Hou, Q. Quan, Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics, Sci. Adv. 3 (2017) 5.

[70] J.N. Liu, Q. Huang, K.K. Liu, S. Singamaneni, B.T. Cunningham, Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling, Nano Lett. 17 (2017) 7569–7577. doi:10.1021/acs.nanolett.7b03519.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る