リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Z-Ring-Associated Proteins Regulate Clustering of the Replication Terminus-Binding Protein ZapT in Caulobacter crescentus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Z-Ring-Associated Proteins Regulate Clustering of the Replication Terminus-Binding Protein ZapT in Caulobacter crescentus

Ozaki, Shogo 尾﨑, 省吾 オザキ, ショウゴ Wakasugi, Yasutaka 若杉, 泰敬 ワカスギ, ヤスタカ Katayama, Tsutomu 片山, 勉 カタヤマ, ツトム 九州大学

2021.01.26

概要

Regulated organization of the chromosome is essential for faithful propagation of genetic information. In the model bacterium Caulobacter crescentus, the replication terminus of the chromosome is spat

この論文で使われている画像

参考文献

1. Sexton T, Cavalli G. 2015. The role of chromosome domains in shaping

the functional genome. Cell 160:1049–1059. https://doi.org/10.1016/j.cell

.2015.02.040.

2. Marchal C, Sima J, Gilbert DM. 2019. Control of DNA replication timing in

the 3D genome. Nat Rev Mol Cell Biol 20:721–737. https://doi.org/10

.1038/s41580-019-0162-y.

3. Zheng H, Xie W. 2019. The role of 3D genome organization in

January/February 2021 Volume 12 Issue 1 e02196-20

development and cell differentiation. Nat Rev Mol Cell Biol 20:535–550.

https://doi.org/10.1038/s41580-019-0132-4.

4. Reyes-Lamothe R, Sherratt DJ. 2019. The bacterial cell cycle, chromosome

inheritance and cell growth. Nat Rev Microbiol 17:467–478. https://doi

.org/10.1038/s41579-019-0212-7.

5. Marczynski GT, Petit K, Patel P. 2019. Crosstalk regulation between

mbio.asm.org

15

Downloaded from https://journals.asm.org/journal/mbio on 15 February 2022 by 133.5.12.1.

Bacterial strains and DNA. The strains, plasmids, and primers used in this study are listed in Tables 1,

2, and 3, respectively. Caulobacter strains were grown at 30°C in peptone-yeast extract (PYE) supplemented

with appropriate antibiotics, as described previously (60, 61). When necessary, cumate (1 m M) or vanillate

(1 mM) was added to the culture medium as indicated. Detailed procedures for construction of the strains

and plasmids are described in the supplemental material (Text S1).

Recombinant proteins. Recombinant proteins were expressed in E. coli and purified as described in

the supplemental material (Text S1).

Size exclusion chromatography. The size exclusion chromatography assay was performed essentially as described previously (57, 62). Briefly, proteins were loaded onto a Superdex 200 PC3.2/30 column (2.4-ml column volume) equilibrated with SEC buffer (25 mM Tris-HCl [pH 7.5], 300 mM sodium

chloride, and 20% sucrose) and fractionated at a flow rate of 20 m l/min, followed by SDS–15% PAGE and

Coomassie brilliant blue staining. When a Superdex 75 HR 10/30 column was used, proteins were separated at a flow rate of 0.2 ml/min.

ChIP sequencing and ChIP-qPCR. ChIP was performed as described previously (24). Briefly, exponentially growing cells (200 ml in PYE) were fixed for 10 min using 1% formaldehyde solution, washed

thoroughly, resuspended in buffer, and lysed through two passages in a French press. After DNA shearing with sonication, the cell debris was removed by ultracentrifugation, and the cleared cell lysate was

incubated with anti-FLAG M2 magnetic beads (Wako or Sigma). After the beads were washed, the bound

materials were incubated at 65°C overnight to reverse cross-linking. The resultant DNA samples were

purified using a DNA cleanup kit (Zymo Research). When SHQ247 (3F-ZauP) cells (100 ml in PYE) were

analyzed, cross-linking was carried out for 5 min in 3.6% formaldehyde instead of 1% formaldehyde.

For deep sequencing, samples were indexed using a NEBNext Ultrall DNA library prep kit and analyzed on an Illumina HiSeq 2500 instrument (single-end).

For qPCR, samples were analyzed by a standard percent input method using TB green premix

ExTaqII and Thermal Cycler Dice TP800 (TaKaRa). Locus-specific primers are listed in Table 3.

Microscopy. Differential interference contrast (DIC), phase-contrast, and fluorescence microscopy

analyses were performed using a Nikon Eclipse 80i microscope equipped with an X-Cite TURBO multiwavelength LED illumination system and an Andor Zyla 4.2 sCMOS camera, as described previously (24).

Quantitative image analyses were performed using the Oufti and MicrobeJ software packages (63, 64).

Western blotting. The Western blot assay was performed as described previously (24). The antimNeonGreen and anti-Flag antibodies were purchased from Chromotek and Thermo, respectively.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

bacterial chromosome replication and chromosome partitioning. Front

Microbiol 10:279. https://doi.org/10.3389/fmicb.2019.00279.

Surovtsev IV, Jacobs-Wagner C. 2018. Subcellular organization: a critical

feature of bacterial cell replication. Cell 172:1271–1293. https://doi.org/10

.1016/j.cell.2018.01.014.

Viollier PH, Thanbichler M, McGrath PT, West L, Meewan M, McAdams HH,

Shapiro L. 2004. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci U S A 101:9257–9262. https://doi.org/10.1073/

pnas.0402606101.

Ozaki S. 2019. Regulation of replication initiation: lessons from Caulobacter crescentus. Genes Genet Syst 94:183–196. https://doi.org/10.1266/

ggs.19-00011.

Hallez R, Delaby M, Sanselicio S, Viollier PH. 2017. Hit the right spots: cell

cycle control by phosphorylated guanosines in alphaproteobacteria. Nat

Rev Microbiol 15:137–148. https://doi.org/10.1038/nrmicro.2016.183.

Tsokos CG, Laub MT. 2012. Polarity and cell fate asymmetry in Caulobacter

crescentus. Curr Opin Microbiol 15:744–750. https://doi.org/10.1016/j.mib

.2012.10.011.

Curtis PD, Brun YV. 2010. Getting in the loop: regulation of development

in Caulobacter crescentus. Microbiol Mol Biol Rev 74:13–41. https://doi

.org/10.1128/MMBR.00040-09.

Lasker K, Mann TH, Shapiro L. 2016. An intracellular compass spatially

coordinates cell cycle modules in Caulobacter crescentus. Curr Opin Microbiol 33:131–139. https://doi.org/10.1016/j.mib.2016.06.007.

Schofield WB, Lim HC, Jacobs-Wagner C. 2010. Cell cycle coordination

and regulation of bacterial chromosome segregation dynamics by polarly

localized proteins. EMBO J 29:3068–3081. https://doi.org/10.1038/emboj

.2010.207.

Ptacin JL, Lee SF, Garner EC, Toro E, Eckart M, Comolli LR, Moerner WE,

Shapiro L. 2010. A spindle-like apparatus guides bacterial chromosome

segregation. Nat Cell Biol 12:791–798. https://doi.org/10.1038/ncb2083.

Thanbichler M, Shapiro L. 2006. MipZ, a spatial regulator coordinating

chromosome segregation with cell division in Caulobacter. Cell

126:147–162. https://doi.org/10.1016/j.cell.2006.05.038.

Shebelut CW, Guberman JM, van Teeffelen S, Yakhnina AA, Gitai Z. 2010.

Caulobacter chromosome segregation is an ordered multistep process.

Proc Natl Acad Sci U S A 107:14194–14198. https://doi.org/10.1073/pnas

.1005274107.

Jalal AS, Tran NT, Le TB. 2020. ParB spreading on DNA requires cytidine triphosphate in vitro. Elife 9:e53515. https://doi.org/10.7554/eLife.53515.

Toro E, Hong S-H, McAdams HH, Shapiro L. 2008. Caulobacter requires a

dedicated mechanism to initiate chromosome segregation. Proc Natl Acad

Sci U S A 105:15435–15440. https://doi.org/10.1073/pnas.0807448105.

Mohl DA, Gober JW. 1997. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88:675–684.

https://doi.org/10.1016/S0092-8674(00)81910-8.

Surovtsev IV, Campos M, Jacobs-Wagner C. 2016. DNA-relay mechanism

is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc Natl Acad Sci U S A 113:

E7268–E7276. https://doi.org/10.1073/pnas.1616118113.

Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M, Downing KH,

Moerner WE, Earnest T, Shapiro L. 2008. A polymeric protein anchors the

chromosomal origin/ParB complex at a bacterial cell pole. Cell 134:945–955.

https://doi.org/10.1016/j.cell.2008.07.015.

Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C. 2008. A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134:956–968. https://doi.org/10.1016/j.cell

.2008.07.016.

Holmes JA, Follett SE, Wang H, Meadows CP, Varga K, Bowman GR. 2016.

Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proc Natl Acad Sci U S A 113:12490–12495. https://doi

.org/10.1073/pnas.1602380113.

Ozaki S, Jenal U, Katayama T. 2020. Novel divisome-associated protein

spatially coupling the Z-ring with the chromosomal replication terminus

in Caulobacter crescentus. mBio 11:e00487-20. https://doi.org/10.1128/

mBio.00487-20.

Kelly AJ, Sackett MJ, Din N, Quardokus E, Brun YV. 1998. Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter.

Genes Dev 12:880–893. https://doi.org/10.1101/gad.12.6.880.

Goley ED, Yeh Y-C, Hong S-H, Fero MJ, Abeliuk E, McAdams HH, Shapiro L.

2011. Assembly of the Caulobacter cell division machine. Mol Microbiol

80:1680–1698. https://doi.org/10.1111/j.1365-2958.2011.07677.x.

Haeusser DP, Margolin W. 2016. Splitsville: structural and functional

January/February 2021 Volume 12 Issue 1 e02196-20

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

insights into the dynamic bacterial Z ring. Nat Rev Microbiol 14:305–319.

https://doi.org/10.1038/nrmicro.2016.26.

den Blaauwen T, Hamoen LW, Levin PA. 2017. The divisome at 25: the

road ahead. Curr Opin Microbiol 36:85–94. https://doi.org/10.1016/j.mib

.2017.01.007.

Espéli O, Borne R, Dupaigne P, Thiel A, Gigant E, Mercier R, Boccard F.

2012. A MatP-divisome interaction coordinates chromosome segregation

with cell division in E. coli. EMBO J 31:3198–3211. https://doi.org/10.1038/

emboj.2012.128.

Mercier R, Petit M-A, Schbath S, Robin S, El Karoui M, Boccard F, Espéli O.

2008. The MatP/matS site-specific system organizes the terminus region

of the E. coli chromosome into a macrodomain. Cell 135:475–485. https://

doi.org/10.1016/j.cell.2008.08.031.

Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O,

Boccard F, Koszul R. 2018. Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172:771–783.

https://doi.org/10.1016/j.cell.2017.12.027.

Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Robles-Ramos MÁ,

Alfonso C, Söderström B, Meiresonne NY, Verheul J, den Blaauwen T,

Rivas G. 2019. The bacterial DNA binding protein MatP involved in linking

the nucleoid terminal domain to the divisome at midcell interacts with lipid

membranes. mBio 10:e00376-19. https://doi.org/10.1128/mBio.00376-19.

Dupaigne P, Tonthat NK, Espéli O, Whitfill T, Boccard F, Schumacher MA.

2012. Molecular basis for a protein-mediated DNA-bridging mechanism

that functions in condensation of the E. coli chromosome. Mol Cell

48:560–571. https://doi.org/10.1016/j.molcel.2012.09.009.

Niki H, Yamaichi Y, Hiraga S. 2000. Dynamic organization of chromosomal

DNA in Escherichia coli. Genes Dev 14:212–223.

Ebersbach G, Galli E, Møller-Jensen J, Löwe J, Gerdes K. 2008. Novel

coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol Microbiol 68:720–735. https://doi.org/10.1111/j.1365-2958

.2008.06190.x.

Männik J, Castillo DE, Yang D, Siopsis G, Männik J. 2016. The role of MatP,

ZapA and ZapB in chromosomal organization and dynamics in Escherichia

coli. Nucleic Acids Res 44:1216–1226. https://doi.org/10.1093/nar/gkv1484.

Galli E, Gerdes K. 2010. Spatial resolution of two bacterial cell division proteins: ZapA recruits ZapB to the inner face of the Z-ring. Mol Microbiol

76:1514–1526. https://doi.org/10.1111/j.1365-2958.2010.07183.x.

Roach EJ, Kimber MS, Khursigara CM. 2014. Crystal structure and sitedirected mutational analysis reveals key residues involved in Escherichia

coli ZapA function. J Biol Chem 289:23276–23286. https://doi.org/10

.1074/jbc.M114.561928.

Pacheco-Gómez R, Cheng X, Hicks MR, Smith CJI, Roper DI, Addinall S,

Rodger A, Dafforn TR. 2013. Tetramerization of ZapA is required for FtsZ

bundling. Biochem J 449:795–802. https://doi.org/10.1042/BJ20120140.

Woldemeskel SA, McQuillen R, Hessel AM, Xiao J, Goley ED. 2017. A conserved coiled-coil protein pair focuses the cytokinetic Z-ring in Caulobacter

crescentus. Mol Microbiol 105:721–740. https://doi.org/10.1111/mmi.13731.

Hobman JL. 2007. MerR family transcription activators: similar designs,

different specificities. Mol Microbiol 63:1275–1278. https://doi.org/10

.1111/j.1365-2958.2007.05608.x.

Brown NL, Stoyanov JV, Kidd SP, Hobman JL. 2003. The MerR family of

transcriptional regulators. FEMS Microbiol Rev 27:145–163. https://doi

.org/10.1016/S0168-6445(03)00051-2.

Low HH, Moncrieffe MC, Löwe J. 2004. The Crystal Structure of ZapA and

its Modulation of FtsZ Polymerisation. J Mol Biol 341:839–852. https://doi

.org/10.1016/j.jmb.2004.05.031.

Baksh KA, Zamble DB. 2020. Allosteric control of metal-responsive transcriptional regulators in bacteria. J Biol Chem 295:1673–1684. https://doi

.org/10.1074/jbc.REV119.011444.

Philips SJ, Canalizo-Hernandez M, Yildirim I, Schatz GC, Mondragón A,

O'Halloran TV. 2015. Allosteric transcriptional regulation via changes in

the overall topology of the core promoter. Science 349:877–881. https://

doi.org/10.1126/science.aaa9809.

Sameach H, Narunsky A, Azoulay-Ginsburg S, Gevorkyan-Aiapetov L,

Zehavi Y, Moskovitz Y, Juven-Gershon T, Ben-Tal N, Ruthstein S. 2017.

Structural and dynamics characterization of the MerR family metalloregulator CueR in its repression and activation states. Structure 25:988–996.

https://doi.org/10.1016/j.str.2017.05.004.

Le TBK, Imakaev MV, Mirny LA, Laub MT. 2013. High-resolution mapping of

the spatial organization of a bacterial chromosome. Science 342:731–734.

https://doi.org/10.1126/science.1242059.

Tran NT, Laub MT, Le TBK. 2017. SMC Progressively Aligns Chromosomal

mbio.asm.org

16

Downloaded from https://journals.asm.org/journal/mbio on 15 February 2022 by 133.5.12.1.

Ozaki et al.

Divisome Organizes the Replication Terminus

50.

51.

52.

53.

54.

55.

56.

57.

58.

January/February 2021 Volume 12 Issue 1 e02196-20

59.

60.

61.

62.

63.

64.

65.

66.

67.

replisomes during multifork DNA replication in Escherichia coli. EMBO J

26:4514–4522. https://doi.org/10.1038/sj.emboj.7601871.

Sunako Y, Onogi T, Hiraga S. 2001. Sister chromosome cohesion of Escherichia coli. Mol Microbiol 42:1233–1241. https://doi.org/10.1046/j.1365

-2958.2001.02680.x.

Ozaki S, Schalch-Moser A, Zumthor L, Manfredi P, Ebbensgaard A,

Schirmer T, Jenal U. 2014. Activation and polar sequestration of PopA, a cdi-GMP effector protein involved in Caulobacter crescentus cell cycle control. Mol Microbiol 94:580–594. https://doi.org/10.1111/mmi.12777.

Lori C, Ozaki S, Steiner S, Böhm R, Abel S, Dubey BN, Schirmer T, Hiller S,

Jenal U. 2015. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 523:236–239. https://doi.org/10.1038/nature14473.

Hayashi C, Miyazaki E, Ozaki S, Abe Y, Katayama T. 2020. DnaB helicase is

recruited to the replication initiation complex via binding of DnaA domain I to the lateral surface of the DnaB N-terminal domain. J Biol Chem

295:11131–11143. https://doi.org/10.1074/jbc.RA120.014235.

Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, Jacobs-Wagner

C. 2016. Oufti: an integrated software package for high-accuracy, highthroughput quantitative microscopy analysis. Mol Microbiol 99:767–777.

https://doi.org/10.1111/mmi.13264.

Ducret A, Quardokus EM, Brun YV. 2016. MicrobeJ, a tool for high

throughput bacterial cell detection and quantitative analysis. Nat Microbiol 1:16077. https://doi.org/10.1038/nmicrobiol.2016.77.

Evinger M, Agabian N. 1977. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132:294–301.

https://doi.org/10.1128/JB.132.1.294-301.1977.

Thanbichler M, Iniesta AA, Shapiro L. 2007. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 35:e137. https://doi.org/10.1093/nar/gkm818.

Kaczmarczyk A, Vorholt JA, Francez-Charlot A. 2013. Cumate-inducible

gene expression system for Sphingomonads and other alphaproteobacteria. Appl Environ Microbiol 79:6795–6802. https://doi.org/10.1128/AEM

.02296-13.

mbio.asm.org

17

Downloaded from https://journals.asm.org/journal/mbio on 15 February 2022 by 133.5.12.1.

49.

Arms in Caulobacter crescentus but is antagonized by convergent transcription. Cell Rep 20:2057–2071. https://doi.org/10.1016/j.celrep.2017.08.026.

Sugitani N, Chazin WJ. 2015. Characteristics and concepts of dynamic hub

proteins in DNA processing machinery from studies of RPA. Prog Biophys

Mol Biol 117:206–211. https://doi.org/10.1016/j.pbiomolbio.2014.12.001.

Jensen RB, Shapiro L. 1999. The Caulobacter crescentus smc gene is required

for cell cycle progression and chromosome segregation. Proc Natl Acad Sci

U S A 96:10661–10666. https://doi.org/10.1073/pnas.96.19.10661.

Hirano T. 2016. Condensin-based chromosome organization from bacteria to vertebrates. Cell 164:847–857. https://doi.org/10.1016/j.cell.2016.01

.033.

Niki H, Yano K. 2016. In vitro topological loading of bacterial condensin

MukB on DNA, preferentially single-stranded DNA rather than doublestranded DNA. Sci Rep 6:29469. https://doi.org/10.1038/srep29469.

Niki H, Imamura R, Kitaoka M, Yamanaka K, Ogura T, Hiraga S. 1992. E.coli

MukB protein involved in chromosome partition forms a homodimer

with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J 11:5101–5109.

Mäkelä J, Sherratt DJ. 2020. Organization of the Escherichia coli chromosome by a MukBEF axial core. Mol Cell 78:250–2605. https://doi.org/10

.1016/j.molcel.2020.02.003.

Taniguchi S, Kasho K, Ozaki S, Katayama T. 2019. Escherichia coli CrfC protein, a nucleoid partition factor, localizes to nucleoid poles via the activities of specific nucleoid-associated proteins. Front Microbiol 10:72.

https://doi.org/10.3389/fmicb.2019.00072.

Adachi S, Fukushima T, Hiraga S. 2008. Dynamic events of sister chromosomes in the cell cycle of Escherichia coli. Genes Cells 13:181–197. https://

doi.org/10.1111/j.1365-2443.2007.01157.x.

Ozaki S, Matsuda Y, Keyamura K, Kawakami H, Noguchi Y, Kasho K,

Nagata K, Masuda T, Sakiyama Y, Katayama T. 2013. A replicase clampbinding dynamin-like protein promotes colocalization of nascent DNA

strands and equipartitioning of chromosomes in E. coli. Cell Rep

4:985–995. https://doi.org/10.1016/j.celrep.2013.07.040.

Fossum S, Crooke E, Skarstad K. 2007. Organization of sister origins and

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る