リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Time-Resolved Observation of Evolution of Amyloid-β Oligomer with Temporary Salt Crystals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Time-Resolved Observation of Evolution of Amyloid-β Oligomer with Temporary Salt Crystals

Nakajima, Kichitaro 大阪大学

2020.07.20

概要

The aggregation behavior of amyloid-β (Aβ) peptides remains unclarified despite the fact that it is closely related to the pathogenic mechanism of Alzheimer's disease. Aβ peptides form diverse oligomers with various diameters before nucleation, making clarification of the mechanism involved a complex problem with conventional macroscopic analysis methods. Time-resolved single-molecule level analysis in bulk solution is thus required to fully understand their early stage aggregation behavior. Here, we perform time-resolved observation of the aggregation dynamics of Aβ oligomers in bulk solution using liquid-state transmission electron microscopy. Our observations reveal previously unknown behaviors. The most important discovery is that a salt crystal can precipitate even with a concentration much lower than its solubility, and it then dissolves in a short time, during which the aggregation reaction of Aβ peptides is significantly accelerated. These findings will provide new insights in the evolution of the Aβ oligomer.

参考文献

(1) Glenner, G. G.; Wong, C. W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984, 120, 885 – 890.

(2) Masters, C. L.; Simms, G.; Weinman, N. A.; Multhaup, G.; McDonald, B. L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985, 82, 4245–4249.

(3) Salvadores, N.; Shahnawaz, M.; Scarpini, E.; Tagliavini, F.; Soto, C. Detection of misfolded Aβ oligomers for sensitive biochemical diagnosis of Alzheimer’s disease. Cell Rep. 2014, 7, 261 – 268.

(4) Vassar, R.; Bennett, B. D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E. A.; Denis, P.; Teplow, D. B.; Ross, S.; Amarante, P.; Loeloff, R. et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286, 735–741.

(5) Bernstein, S. L.; Dupuis, N. F.; Lazo, N. D.; Wyttenbach, T.; Condron, M. M.; Bitan, G.; Teplow, D. B.; Shea, J. E.; Ruotolo, B. T.; Robinson, C. V. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 2009, 1, 326–331.

(6) Economou, N. J.; Giammona, M. J.; Do, T. D.; Zheng, X.; Teplow, D. B.; Buratto, S. K.; Bowers, M. T. Amyloid β-protein assembly and Alzheimer’s disease: dodecamers of Aβ42, but not of Aβ40, seed fibril formation. J. Am. Chem. Soc. 2016, 138, 1772– 1775.

(7) Stroud, J. C.; Liu, C.; Teng, P. K.; Eisenberg, D. Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc. Natl. Acad. Sci. USA 2012, 109, 7717–7722.

(8) Shea, D.; Hsu, C.-C.; Bi, T. M.; Paranjapye, N.; Childers, M. C.; Cochran, J.; Tomberlin, C. P.; Wang, L.; Paris, D.; Zonderman, J. et al. α-sheet secondary structure in amyloid β-peptide drives aggregation and toxicity in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2019, 116, 8895–8900.

(9) Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. 3D structure of Alzheimer’s amyloid-β1−42 fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347.

(10) Lee, J.; Culyba, E. K.; Powers, E. T.; Kelly, J. W. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nat. Chem. Biol. 2011, 7, 602–609.

(11) Hardy, J.; Higgins, G. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992, 256, 184–185.

(12) Lorenzo, A.; Yankner, B. A. Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Ann. NY Acad. Sci. 1996, 777, 89–95.

(13) Balducci, C.; Beeg, M.; Stravalaci, M.; Bastone, A.; Sclip, A.; Biasini, E.; Tapella, L.; Colombo, L.; Manzoni, C.; Borsello, T. et al. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 2010, 107, 2295–2300.

(14) He, Y.; Zheng, M.-M.; Ma, Y.; Han, X.-J.; Ma, X.-Q.; Qu, C.-Q.; Du, Y.-F. Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem. Biophys. Res. Commun. 2012, 429, 125 – 130.

(15) Kato, M.; Kinoshita, H.; Enokita, M.; Hori, Y.; Hashimoto, T.; Iwatsubo, T.; Toyo’oka, T. Analytical method for β-amyloid fibrils using CE-laser induced fluorescence and its application to screening for inhibitors of β-amyloid protein aggregation. Anal. Chem. 2007, 79, 4887–4891.

(16) Morris, A. M.; Watzky, M. A.; Finke, R. G. Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. Biochim. Biophys. Acta (BBA) - Proteins and Proteomics 2009, 1794, 375 – 397.

(17) Banerjee, S.; Hashemi, M.; Lv, Z.; Maity, S.; Rochet, J. C.; Lyubchenko, Y. L. A novel pathway for amyloids self-assembly in aggregates at nanomolar concentration mediated by the interaction with surfaces. Sci. Rep. 2017, 7, 1–11.

(18) Biancalana, M.; Koide, S. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta (BBA) - Proteins and Proteomics 2010, 1804, 1405 – 1412.

(19) Woody, R. W. Circular dichroism. Methods in Enzymol. 1995, 246, 34 – 71.

(20) Ogi, H.; Fukushima, M.; Hamada, H.; Noi, K.; Hirao, M.; Yagi, H.; Goto, Y. Ultrafast propagation of β-amyloid fibrils in oligomeric cloud. Sci. Rep. 2015, 4, 6960.

(21) Ogi, H.; Fukushima, M.; Uesugi, K.; Yagi, H.; Goto, Y.; Hirao, M. Acceleration of deposition of Aβ1−40 peptide on ultrasonically formed Aβ1−40 nucleus studied by wireless quartz-crystal-microbalance biosensor. Biosens. Bioelectron. 2013, 40, 200 – 205.

(22) Barnes, C. A.; Robertson, A. J.; Louis, J. M.; Anfinrud, P.; Bax, A. Observation of β-amyloid peptide oligomerization by pressure-jump NMR spectroscopy. J. Am. Chem. Soc. 2019, 141, 13762–13766.

(23) Kotler, S. A.; Brender, J. R.; Vivekanandan, S.; Suzuki, Y.; Yamamoto, K.; Monette, M.; Krishnamoorthy, J.; Walsh, P.; Cauble, M.; Holl, M. M. et al. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification. Sci. Rep. 2015, 5, 1–12.

(24) Watanabe-Nakayama, T.; Ono, K.; Itami, M.; Takahashi, R.; Teplow, D. B.; Yamada, M. High-speed atomic force microscopy reveals structural dynamics of amyloid β1−42 aggregates. Proc. Natl. Acad. Sci. USA 2016, 113, 5835–5840.

(25) Lane, R. E.; Korbie, D.; Anderson, W.; Vaidyanathan, R.; Trau, M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 2015, 5 .

(26) Laganowsky, A.; Liu, C.; Sawaya, M. R.; Whitelegge, J. P.; Park, J.; Zhao, M.; Pensalfini, A.; Soriaga, A. B.; Landau, M.; Teng, P. K. et al. Atomic view of a toxic amyloid small oligomer. Science 2012, 335, 1228–1231.

(27) De Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotech. 2011, 6, 695–704.

(28) Le Ferrand, H.; Duchamp, M.; Gabryelczyk, B.; Cai, H.; Miserez, A. Time-resolved observations of liquid-iquid phase separation at the nanoscale using in situ liquid transmission electron microscopy. J. Am. Chem. Soc. 2019, 141, 7202–7210.

(29) Yamazaki, T.; Kimura, Y.; Vekilov, P. G.; Furukawa, E.; Shirai, M.; Matsumoto, H.; Van Driessche, A. E. S.; Tsukamoto, K. Two types of amorphous protein particles facilitate crystal nucleation. Proc. Natl. Acad. Sci. USA 2017, 114, 2154–2159.

(30) Bahri, M.; Dembélé, K.; Sassoye, C.; Debecker, D. P.; Moldovan, S.; Gay, A. S.; Hirlimann, C.; Sanchez, C.; Ersen, O. In situ insight into the unconventional ruthenium catalyzed growth of carbon nanostructures. Nanoscale 2018, 10, 14957–14965.

(31) D’Amico, M.; Di Carlo, M. G.; Groenning, M.; Militello, V.; Vetri, V.; Leone, M. Thioflavin T promotes Aβ1−40 amyloid fibrils formation. J. Phys. Chem. Lett. 2012, 3, 1596–1601.

(32) Kumar, H.; Singh, J.; Kumari, P.; Udgaonkar, J. B. Modulation of the extent of structural heterogeneity in α-synuclein fibrils by the small molecule thioflavin T. J. Biol. Chem. 2017, 292, 16891–16903.

(33) Holtz, M. E.; Yu, Y.; Gao, J.; Abruña, H. D.; Muller, D. A. In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 2013, 19, 1027–1035.

(34) Alberti, S.; Gladfelter, A.; Mittag, T. Considerations and challenges in studying liquidliquid phase separation and biomolecular condensates. Cell 2019, 176, 419 – 434.

(35) Lesné, S.; Ming, T. K.; Kotilinek, L.; Kayed, R.; Glabe, C. G.; Yang, A.; Gallagher, M.; Ashe, K. H. A specific amyloid-β protein assembly in the brain impairs memory. Nature 2006, 440, 352–357.

(36) Cheng, I. H.; Scearce-Levie, K.; Legleiter, J.; Palop, J. J.; Gerstein, H.; Bien-Ly, N.; Puoliväli, J.; Lesné, S.; Ashe, K. H.; Muchowski, P. J. et al. Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 2007, 282, 23818–23828.

(37) Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell 2012, 148, 1188 – 1203.

(38) Catti, M.; Ferraris, G.; Franchini-Angela, M. The crystal structure of Na2HPO42H2O. Competition between coordination and hydrogen bonds. Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 1977, 33, 3449–3452.

(39) Baur, W. H.; Khan, A. A. On the crystal chemistry of salt hydrates. VI. The crystal structures of disodium hydrogen orthoarsenate heptahydrate and of disodium hydrogen orthophosphate heptahydrate. Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 1970, 26, 1584–1596.

(40) Foley, J.; Hill, S. E.; Miti, T.; Mulaj, M.; Ciesla, M.; Robeel, R.; Persichilli, C.; Raynes, R.; Westerheide, S.; Muschol, M. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth. J. Chem. Phys. 2013, 139, 121901.

(41) Miti, T.; Mulaj, M.; Schmit, J. D.; Muschol, M. Stable, metastable, and kinetically trapped amyloid aggregate phases. Biomacromol. 2015, 16, 326–335.

(42) Hasecke, F.; Miti, T.; Perez, C.; Barton, J.; Schölzel, D.; Gremer, L.; Grüning, C. S. R.; Matthews, G.; Meisl, G.; Knowles, T. P. J. et al. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Chem. Sci. 2018, 9, 5937–5948.

(43) Perez, C.; Miti, T.; Hasecke, F.; Meisl, G.; Hoyer, W.; Muschol, M.; Ullah, G. Mechanism of fibril and soluble oligomer formation in amyloid beta and hen egg white lysozyme proteins. J. Phys. Chem. B 2019, 123, 5678–5689.

(44) Chakraborty, S.; Das, P. Emergence of alternative structures in amyloid beta1−42 monomeric landscape by N-terminal hexapeptide amyloid inhibitors. Sci. Rep. 2017, 7, 1–12.

(45) Zhao, J.; Nussinov, R.; Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem. 2017, 292, 18325–18343.

(46) Zhou, X.; Xu, J. Free cholesterol induces higher β-sheet content in Aβ oligomers by aromatic interaction with Phe19. PLOS ONE 2012, 7, 1–8.

(47) Zhang, Y.; Hashemi, M.; Lv, Z.; Williams, B.; Popov, K. I.; Dokholyan, N. V.; Lyubchenko, Y. L. High-speed atomic force microscopy reveals structural dynamics of α-synuclein monomers and dimers. J. Chem. Phys. 2018, 148, 123322.

(48) Hill, S. E.; Miti, T.; Richmond, T.; Muschol, M. Spatial extent of charge repulsion regulates assembly pathways for lysozyme amyloid fibrils. PLOS ONE 2011, 6, 1–12.

(49) Mullin, J. W. Crystallization, Third Edition. Chemie Ingenieur Technik 1998, 70, 1468.

(50) Zhao, J.; Miao, H.; Duan, L.; Kang, Q.; He, L. The mass transfer process and the growth rate of NaCl crystal growth by evaporation based on temporal phase evaluation. Opt. Lasers Eng. 2012, 50, 540 – 546, Computational Optical Measurement.

(51) Banerjee, S.; Hashemi, M.; Lv, Z.; Maity, S.; Rochet, J. C.; Lyubchenko, Y. L. A novel pathway for amyloids self-assembly in aggregates at nanomolar concentration mediated by the interaction with surfaces. Sci. Rep. 2017, 7, 1–11.

(52) Pan, Y.; Banerjee, S.; Zagorski, K.; Shlyakhtenko, L. S.; Kolomeisky, A. B.; Lyubchenko, Y. L. Molecular model for the surface-catalyzed protein self-assembly. J. Phys. Chem. B 2020, 124, 366–372.

(53) Nakajima, K.; Ogi, H.; Adachi, K.; Noi, K.; Hirao, M.; Yagi, H.; Goto, Y. Nucleus factory on cavitation bubble for amyloid β fibril. Sci. Rep. 2016, 6, 1–10.

(54) Nakajima, K.; Nishioka, D.; Hirao, M.; So, M.; Goto, Y.; Ogi, H. Drastic acceleration of fibrillation of insulin by transient cavitation bubble. Ultrason. Sonochem. 2017, 36, 206–211.

(55) Nakajima, K.; So, M.; Takahashi, K.; Tagawa, Y. I.; Hirao, M.; Goto, Y.; Ogi, H. Optimized ultrasonic irradiation finds out ultrastable Aβ1−40 oligomers. J. Phys. Chem. B 2017, 121, 2603–2613.

(56) Zhang, Y.; Keller, D.; Rossell, M. D.; Erni, R. Formation of Au nanoparticles in liquid cell transmission electron microscopy: From a systematic study to engineered nanostructures. Chem. Mater. 2017, 29, 10518–10525.

(57) Schneider, N. M.; Norton, M. M.; Mendel, B. J.; Grogan, J. M.; Ross, F. M.; Bau, H. H. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 2014, 118, 22373–22382.

(58) Mirsaidov, U. M.; Zheng, H.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.

(59) Grogan, J. M.; Schneider, N. M.; Ross, F. M.; Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Let. 2014, 14, 359–364.

参考文献をもっと見る