リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Optical Characterization of Defect levels in AlGaN-based Light Emitting Materials」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Optical Characterization of Defect levels in AlGaN-based Light Emitting Materials

HOSSAIN MD ISMAIL 埼玉大学 DOI:info:doi/10.24561/00019353

2020

概要

Although the efficiency of AlGaN-based optoelectronic devices has improved in recent years, the realization of high external quantum efficiency (EQE) ultraviolet (UV) light emitting diodes (LEDs) with wavelengths below 360 nm is still challenging. In spite of the development of growth techniques, the lack of native lattice-matched, cost-effective, and suitable substrates produces high densities of threading dislocations and point defects which act as nonradiative recombination (NRR) centers or trap centers in the crystal. The defect mediated NRR centers reduces the carrier lifetime and are responsible for the low efficiency of the devices. To resolve these problems, it is indispensable not only to understand the basic mechanism of grown-in defects and imperfections in these materials, but also to find out the correlations of these defects with the performance and reliability limiting problems and impute them to their physical origin. Thus, the study of NRR centers is likely to remain an important and active research thrust for the realization of high efficiency AlGaN UV light emitting devices.
In this study, different AlGaN-based multiple quantum wells (MQWs) samples have been investigated by photoluminescence (PL) and two-wavelength excited photoluminescence (TWEPL) methods. In the TWEPL, an intermittent below-gap excitation (BGE) light whose photon energy is lower than the bandgap energy of the material (hvBGE < Eg), is superposed on a constant above-gap excitation (AGE) light (hvAGE > Eg) at the same point of the sample surface. The intensity change in photoluminescence (PL) due to the addition of a BGE light on an AGE light implies the presence of NRR levels in the energy position corresponding to the photon energy of the BGE source.
The NRR centers in two UV-C (deep UV) AlGaN MQW samples, grown at two different growth temperatures 1140 °C and 1180 °C, on c-plane sapphire substrate by metal-organic chemical vapor deposition (MOCVD) technique, have been studied by TWEPL at about 25 K. The PL intensity decreased by the superposition of BGE light of photon energies between 0.93 eV and 1.46 eV over an AGE light of energy 4.66 eV. This is explained by a two-level recombination model based on Shockley-Read-Hall (SRH) statistics. The model indicates the presence of a pair of NRR centers in both samples, which are activated by the BGE. The degree of PL quenching for the sample grown at 1140 °C is higher than that of the sample grown at 1180 °C for BGE energies 0.93 eV, 1.17 eV, and 1.27 eV. The defect density ratio of 1.5, for the BGE energy of 1.27 eV, was obtained from a qualitative simulation. This result implies that a slight difference in growth conditions changes defect densities.
Superlattice (SL) period (SLP) dependence on NRR centers of UV-B AlGaN MQW samples, grown on c-plane sapphire substrate at 1150°C by MOCVD technique, have been studied by TWEPL. The SLP affects the lattice relaxation of SL and n-AlGaN layer. The NRR centers in n-AlGaN and QW layers of these samples have been detected by adding BGE light of energies 0.93 eV, 1.17 eV, 1.27 eV, and 1.46 eV over an AGE light of energy 4.66 eV at 30 K. By the superposition of these BGE light on AGE, the PL intensity decreased and the degree of PL quenching from both the layers of the sample with SLP 100 is lower than those of other samples with SLP 50, 150, and 200. By a qualitative simulation with the dominant BGE of photon energy 1.27 eV, the density-ratio of NRR centers in n-AlGaN layers of 50:100:150:200 SLP samples is obtained as 1.7:1.0:6.5:3.4. This result implies that the number of SLP changes lattice relaxation and determine density of NRR centers in n-AlGaN layer and as a whole in QW layer which affects the performance of LEDs.
NRR processes through defect states and their temperature dependence in UV-B AlGaN MQW sample on sapphire substrate grown by MOCVD technique have been studied by photoluminescence (PL) spectroscopy. We detected NRR centers by adding a below-gap excitation light with photon energies from 0.93 eV to 1.46 eV on an above-gap excitation light of 4.66 eV. All the BGE energies decreased PL intensity at 25 K, and the most-distinct quenching is observed by 1.27 eV BGE at the same BGE photon number density. The temperature-dependent PL intensity for the BGE energy of 1.27 eV is interpreted by three NRR centers. The one-level model dominates over that of two-level model in the temperature range 58 K < T < 88 K. The two-level model prevails in other region of temperature. The combination of one-level and two-level models is consistent with the spectral peak-energy shift as a function of temperature.

この論文で使われている画像

参考文献

[1]

S. Nakamura, M.R. Krames, History of gallium-nitride-based light-emitting diodes

for

illumination,

Proc.

IEEE.

101

(2013)

2211–2220.

https://doi.org/10.1109/JPROC.2013.2274929.

[2]

V. Liuolia, Localization effects in ternary nitride semiconductors, KTH, 2012.

[3]

M. Kneissl, J. Rass, III-Nitride Ultraviolet Emitters, Springer, Berlin, 2016.

https://doi.org/10.1007/978-3-319-24100-5.

[4]

H.P. Maruska, J.J. Tietjen, The preparation and properties of vapor-deposited

single-crystal-line

GaN,

Appl.

Phys.

Lett.

15

(1969)

327–329.

https://doi.org/10.1063/1.1652845.

[5]

H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial

growth of a high quality GaN film using an AlN buffer layer, Appl. Phys. Lett. 48

(1986) 353–355. https://doi.org/10.1063/1.96549.

[6]

H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, P-type conduction in Mg-doped

GaN treated with low-energy electron beam irradiation (LEEBI), Jpn. J. Appl.

Phys. 28 (1989) L2112–L2114. https://doi.org/10.1143/JJAP.28.L2112.

[7]

S. Nakamura, M. Senoh, N. Iwasa, S.I. Nagahama, High-brightness InGaN blue,

green and yellow light-emitting diodes with quantum well structures, Jpn. J. Appl.

Phys. 34 (1995) L797–L799. https://doi.org/10.1143/JJAP.34.L797.

[8]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H.

Kiyoku, Y. Sugimoto, InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,

Jpn. J. Appl. Phys. 35 (1996) L74–L76.

[9]

S. Nakamura, The roles of structural imperfections in InGaN-based blue lightemitting diodes and laser diodes, Science (80-. ). 281 (1998) 956–961.

https://doi.org/10.1126/science.281.5379.956.

[10] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, N. Kamata, Recent progress and

future prospects of AlGaN- based high-efficiency deep-ultraviolet light-emitting

diodes,

Jpn.

J.

Appl.

Phys.

https://doi.org/10.7567/JJAP.53.100209.

82

53

(2014)

100209.

[11]

J. Han, M.H. Crawford, R.J. Shul, J.J. Figiel, M. Banas, L. Zhang, Y.K. Song, H.

Zhou, A. V. Nurmikko, AlGaN/GaN quantum well ultraviolet light emitting diodes,

Appl. Phys. Lett. 73 (1998) 1688.

[12]

A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi, A. Hirata, Room-temperature

operation at 333 nm of Al0.03Ga0.97N/Al0.25Ga0.75N quantum-well lightemitting diodes with Mg-doped superlattice layers, Appl. Phys. Lett. 77 (2000)

175–177. https://doi.org/10.1063/1.126915.

[13]

T. Nishida, H. Saito, N. Kobayashi, Efficient and high-power AlGaN-based

ultraviolet light-emitting diode grown on bulk GaN, Appl. Phys. Lett. 79 (2001)

711–712. https://doi.org/10.1063/1.1390485.

[14]

M. Ippommatsu, Optronics, Optronics. 2 (2014) 71.

[15]

H. Hönigsmann, History of phototherapy in dermatology, Photochem. Photobiol.

Sci. 12 (2013) 16–21. https://doi.org/10.1039/c2pp25120e.

[16]

A. Endruweit, M.S. Johnson, A.C. Long, Curing of composite components by

ultraviolet radiation: A review, Polym. Compos. 27 (2006) 119–128.

https://doi.org/10.1002/pc.20166.

[17]

J.S. Hill, M. D. Daniell, A HISTORY OF PHOTODYNAMIC THERAPY, Aust.

N. Z. J. Surg. 61 (1991) 340–348.

[18]

J.A. Parrish, K.F. Jaenicke, Action spectrum for phototherapy of psoriasis, J.

Invest.

Dermatol.

76

(1981)

359–362.

https://doi.org/10.1111/1523-

1747.ep12520022.

[19]

P.J. Hargis, Jr., T.J. Sobering, G.C. Tisone, J.S. Wagner, S.A. Young, R.J. Radloff,

Ultraviolet fluorescence identification of protein, DNA, and bacteria, in: Opt.

Instrum.

Gas

Emiss.

Monit.

Atmos.

Meas.,

SPIE,

1995:

p.

147.

https://doi.org/10.1117/12.205554.

[20]

M. Schreiner, J. Martínez-Abaigar, J. Glaab, M. Jansen, UV-B Induced Secondary

Plant

Metabolites,

Opt.

Photonik.

(2014)

34–37.

https://doi.org/10.1002/opph.201400048.

[21]

J.S. Speck, S.J. Rosner, The Role of threading dislocations in the physical

properties of GaN and its alloys, Phys. B Condens. Matter. 273–274 (1999) 24–32.

https://doi.org/10.1016/S0921-4526(99)00399-3.

83

[22] A.M. Armstrong, M.H. Crawford, D.D. Koleske, Contribution of deep-level

defects to decreasing radiative efficiency of InGaN/GaN quantum wells with

increasing emission wavelength, Appl. Phys. Express. 7 (2014) 032101.

https://doi.org/10.7567/APEX.7.032101.

[23] S.P. DenBaars, S. Keller, Semiconductors and Semimetals, Academic, Newwork,

Vol. 50, P.11, 1998.

[24] H. Hirayama, S. Fujikawa, N. Kamata, Recent progress in AlGaN-based deep-UV

LEDs,

Electron.

Commun.

Japan.

98

(2015)

1–8.

https://doi.org/10.1002/ecj.11667.

[25] W. Götz, N.M. Johnson, Semiconductors and Semimetals, Academic, New York,

Vol. 57, p. 185, 1999.

[26] Y. Tokuda, Y. Matsuoka, H. Ueda, O. Ishiguro, N. Soejima, T. Kachi, DLTS study

of n-type GaN grown by MOCVD on GaN substrates, Superlattices Microstruct.

40 (2006) 268–273. https://doi.org/10.1016/j.spmi.2006.07.025.

[27] J.W. Kim, G.H. Song, J.W. Lee, Observation of minority-carrier traps in

InGaN/GaN multiple-quantum-well light-emitting diodes during deep-level

transient spectroscopy measurements, Appl. Phys. Lett. 88 (2006) 182103.

https://doi.org/10.1063/1.2200392.

[28] Z.Q. Fang, B. Claflin, D.C. Look, D.S. Green, R. Vetury, Deep traps in

AlGaN/GaN heterostructures studied by deep level transient spectroscopy: Effect

of carbon concentration in GaN buffer layers, J. Appl. Phys. 108 (2010) 063706.

https://doi.org/10.1063/1.3488610.

[29] T.T. Duc, G. Pozina, E. Janzén, C. Hemmingsson, Investigation of deep levels in

bulk GaN material grown by halide vapor phase epitaxy, J. Appl. Phys. 114 (2013)

153702. https://doi.org/10.1063/1.4825052.

[30] A. Armstrong, C. Poblenz, U.K. Mishra, J.S. Speck, S.A. Ringel, Comparison of

deep level spectra in p-type and n-type GaN grown by molecular beam epitaxy,

Phys.

Status

Solidi

Basic

Res.

244

(2007)

1867–1871.

https://doi.org/10.1002/pssb.200674831.

[31] E.K. Kim, J.S. Kim, S.Y. Kwon, H.J. Kim, E. Yoon, Electrical study on indiumrich InGaN/GaN multi-quantum-well system, J. Korean Phys. Soc. 49 (2006)

84

2132–2135.

[32]

M.M. Sobolev, N.M. Shmidt, Deep-level transient spectroscopy studies of lightemitting diodes based on multiple-quantum-well InGaN/GaN structure, Phys. B

Condens.

Matter.

404

(2009)

4907–4910.

https://doi.org/10.1016/j.physb.2009.08.268.

[33]

C. Rivera, J.L. Pau, E. Muñoz, T. Ive, O. Brandt, Photocapacitance characteristics

of (In,Ga)N/GaN MQW structures, Phys. Status Solidi Curr. Top. Solid State Phys.

3 (2006) 1978–1982. https://doi.org/10.1002/pssc.200565224.

[34]

G. Parish, Growth and characterization of aluminium gallium nitride / gallium

nitride ultraviolet detectors, Electr. Comput. Eng. Univ. Calif. (2001).

[35]

F. Yun, M.A. Reshchikov, L. He, T. King, H. Morkoç, S.W. Novak, L. Wei,

Energy band bowing parameter in Al xGa 1-xN alloys, J. Appl. Phys. 92 (2002)

4837–4839. https://doi.org/10.1063/1.1508420.

[36]

M. Androulidaki, N.T. Pelekanos, K. Tsagaraki, E. Dimakis, E. Iliopoulos, A.

Adikimenakis, E. Bellet-Amalric, D. Jalabert, A. Georgakilas, Energy gaps and

bowing parameters of InAlGaN ternary and quaternary alloys, Phys. Status Solidi

Curr.

Top.

Solid

State

Phys.

(2006)

1866–1869.

https://doi.org/10.1002/pssc.200565280.

[37]

M.

JULKARNAIN,

Characterization

of

GaN

Based

Light

Emitting

Semiconductors by Two-wavelength Excited Photoluminescence, Graduate

School of Science and Engineering, Saitama University, 2016.

[38]

S.R. Lee, A.F. Wright, M.H. Crawford, G.A. Peterson, J. Han, R.M. Biefeld, The

band-gap bowing of AlxGa1-xN alloys, Appl. Phys. Lett. 74 (1999) 3344–3346.

[39]

M.D. McCluskey, C.G. Van De Walle, C.P. Master, L.T. Romano, N.M. Johnson,

Large band gap bowing of InxGa1-xN alloys, Appl. Phys. Lett. 72 (1998) 2725–

2726. https://doi.org/10.1063/1.121072.

[40]

J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff,

Small band gap bowing in In1-xGaxN alloys, Appl. Phys. Lett. 80 (2002) 4741–

4743. https://doi.org/10.1063/1.1489481.

[41]

D.O. Demchenko, I.C. Diallo, M.A. Reshchikov, Yellow luminescence of gallium

nitride generated by carbon defect complexes, Phys. Rev. Lett. 110 (2013) 087404.

85

https://doi.org/10.1103/PhysRevLett.110.087404.

[42] D. Johnstone, Summary of deep level defect characteristics in GaN and AlGaN,

in: H. Morkoc, C.W. Litton (Eds.), SPIE, 2007: pp. 64730L-64730L–11.

https://doi.org/10.1117/12.709709.

[43] A. Armstrong, A.R. Arehart, D. Green, U.K. Mishra, J.S. Speck, S.A. Ringel,

Impact of deep levels on the electrical conductivity and luminescence of gallium

nitride codoped with carbon and silicon, J. Appl. Phys. 98 (2005) 053704.

https://doi.org/10.1063/1.2005379.

[44] C.H. Seager, A.F. Wright, J. Yu, W. Götz, Role of carbon in GaN, J. Appl. Phys.

92 (2002) 6553–6560. https://doi.org/10.1063/1.1518794.

[45] M.A. Reshchikov, D.O. Demchenko, A. Usikov, H. Helava, Y. Makarov, Carbon

defects as sources of the green and yellow luminescence bands in undoped GaN,

Phys. Rev. B - Condens. Matter Mater. Phys. 90 (2014) 235203.

https://doi.org/10.1103/PhysRevB.90.235203.

[46] R. Gillen, J. Robertson, A hybrid density functional view of native vacancies in

gallium

nitride,

J.

Phys.

Condens.

Matter.

25

(2013)

405501.

https://doi.org/10.1088/0953-8984/25/40/405501.

[47] J. Neugebauer, C.G. Van de Walle, Gallium vacancies and the yellow

luminescence

in

GaN,

Appl.

Phys.

Lett.

69

(1996)

503–505.

https://doi.org/10.1063/1.117767.

[48] J.L. Lyons, A. Janotti, C.G. Van De Walle, Carbon impurities and the yellow

luminescence

in

GaN,

Appl.

Phys.

Lett.

97

(2010)

152108.

https://doi.org/10.1063/1.3492841.

[49] A. Hierro, A.R. Arehart, B. Heying, M. Hansen, U.K. Mishra, S.P. Denbaars, J.S.

Speck, S.A. Ringel, Impact of Ga/N flux ratio on trap states in n-GaN grown by

plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett. 80 (2002) 805–807.

https://doi.org/10.1063/1.1445274.

[50] S.M. Sze, K.K. Ng, Physics and Properties of Semiconductors—A Review, in:

Phys. Semicond. Devices, Third, Wiley Interscience, 2006: pp. 5–75.

[51] W. Shockley, W.T. Read, Statistics of the recombinations of holes and electrons,

Phys. Rev. 87 (1952) 835–842. https://doi.org/10.1103/PhysRev.87.835.

86

[52] R.N. Hall, Electron-Hole Recombination in Germanium, Phys. Rev. 87 (1952) 387.

[53]

H.G. Grimmeiss, B. Monemar, Some optical properties of Cu in GaP, Phys. Status

Solidi (A). 19 (1973) 505–511.

[54]

B. Monemar, L. Samuelson, Optical transitions via the leep O donor in Gap. I.

Phonon interaction in low-temperature spectra, Phys. Rev. B. 18 (1978) 809–829.

https://doi.org/https://doi.org/10.1103/PhysRevB.18.809.

[55]

M. Tajima, 13th International Conference on Defects in Semiconductors, in:

Coronado, California: The Metallurgical Society of AIME, 1984.

[56]

N. Kamata, E. Kanoh, T. Ohsaki, K. Yamada, Multi-Level Dynamics between

Below-Gap States in Heavily Doped Quantum Wells by Time-Resolved and

Selectively-Excited Photoluminescence, Mater. Sci. Forum. 117–118 (1993) 345–

350. https://doi.org/10.4028/www.scientific.net/msf.117-118.345.

[57]

D. Dagnelund, Y.Q. Huang, C.W. Tu, H. Yonezu, I.A. Buyanova, W.M. Chen,

Dual-wavelength excited photoluminescence spectroscopy of deep-level hole traps

in Ga(In)NP, J. Appl. Phys. 117 (2015) 015701. https://doi.org/10.1063/1.4905274.

[58]

E. Kanoh, K. Hoshino, N. Kamata, K. Yamada, M. Nishioka, Y. Arakawa,

Saturation of photoluminescence quenching under below-gap excitation in a

GaAs/AlGaAs

quantum

well,

J.

Lumin.

63

(1995)

235–240.

https://doi.org/10.1016/0022-2313(94)00084-P.

[59]

K. Hoshino, H. Kimura, T. Uchida, N. Kamata, K. Yamada, M. Nishioka, Y.

Arakawa, Distribution of below-gap states in undoped GaAs/AlGaAs quantum

wells revealed by two-wavelength excited photoluminescence, J. Lumin. 79 (1998)

39–46. https://doi.org/10.1016/S0022-2313(98)00017-9.

[60]

J.M. Zanardi Ocampo, N. Kamata, K. Hoshino, M. Hirasawa, K. Yamada, M.

Nishioka, Y. Arakawa, Spectroscopic discrimination of non-radiative centers in

quantum wells by two wavelength excited photoluminescence, J. Cryst. Growth.

210 (2000) 238–241. https://doi.org/10.1016/S0022-0248(99)00687-9.

[61]

N. Kamata, K. Hoshino, H. Kimura, T. Uchida, K. Yamada, M. Nishioka, Y.

Arakawa, Sensitive detection of below-gap states by two-wavelength excitation

spectroscopy in single-photon-counting region, J. Lumin. 72–74 (1997) 797–798.

https://doi.org/https://doi.org/10.1016/S0022-2313(97)00075-6.

87

[62] N. Kamata, K. Hoshino, T. Uchida, K. Yamada, M. Nishioka, Y. Arakawa, Upconversion luminescence via a below-gap state in GaAs/AlGaAs quantum wells,

Superlattices

Microstruct.

22

(1997)

521–528.

https://doi.org/10.1006/spmi.1996.0293.

[63] K. Hoshino, T. Uchida, N. Kamata, K. Yamada, M. Nishioka, Y. Arakawa, Belowgap spectroscopy of undoped GaAs/AlGaAs quantum wells by two-wavelength

excited photoluminescence, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short

Notes Rev. Pap. 37 (1998) 3210–3213. https://doi.org/10.1143/jjap.37.3210.

[64] N. Kamata, J.M.Z. Ocampo, K. Hoshino, K. Yamada, M. Nishioka, T. Someya, Y.

Arakawa, Below-gap spectroscopy of semiconductor quantum wells by twowavelength excited photoluminescence (TRPL), Recent Res. Dev. Quantum

Electron. 1 (1999) 123–135.

[65] K. Hoshino, J.M.Z. Ocampo, N. Kamata, K. Yamada, M. Nishioka, Y. Arakawa,

Absence of nonradiative recombination centers in modulation-doped quantum

wells revealed by two-wavelength excited photoluminescence, Phys. E LowDimensional

Syst.

Nanostructures.

(2000)

563–566.

https://doi.org/10.1016/S1386-9477(99)00384-7.

[66] J.M. Zanardi Ocampo, N. Kamata, K. Hoshino, K. Endoh, K. Yamada, M.

Nishioka, T. Someya, Y. Arakawa, Spectroscopy of non-radiative recombination

centers in quantum wells by two-wavelength excited photoluminescence, J. Lumin.

87–89

(2000)

363–365.

https://doi.org/https://doi.org/10.1016/S0022-

2313(99)00394-4.

[67] I.J. Chen, T.T. Chen, Y.F. Chen, T.Y. Lin, Nonradiative traps in InGaN/GaN

multiple quantum wells revealed by two wavelength excitation, Appl. Phys. Lett.

89 (2006) 142113. https://doi.org/10.1063/1.2360221.

[68] J.M. Zanardi Ocampo, N. Kamata, W. Okamoto, K. Yamada, K. Hoshino, T.

Someya, Y. Arakawa, Extremely slow relaxation process of a yellowluminescence-related state in GaN revealed by two-wavelength excited

photoluminescence, Phys. Status Solidi Basic Res. 228 (2001) 433–436.

https://doi.org/10.1002/1521-3951(200111)228:2<433::AIDPSSB433>3.0.CO;2-U.

[69] N. Kamata, J.M. Zanardi Ocampo, W. Okamoto, K. Hoshino, T. Someya, Y.

88

Arakawa, K. Yamada, Below-gap recombination dynamics in GaN revealed by

time-resolved and two-wavelength excited photoluminescence, Mater. Sci. Eng. B

Solid-State

Mater.

Adv.

Technol.

91–92

(2002)

290–293.

https://doi.org/10.1016/S0921-5107(01)01032-7.

[70]

N. Kamata et al., Temperature dependence of photoluminescence intensity change

due to below-gap excitation in GaN, in: Y. Arakawa et al. (Ed.), 28th Int. Symp.

Compd. Semicond., Institute of Physics: Tokyo, 2001: pp. 843–848.

[71]

J.M. Zanardi Ocampo, H. Klausing, O. Semchinova, J. Stemmer, M. Hirasawa, N.

Kamata, K. Yamada, Study of MBE-grown GaN/AlGaN quantum well structures

by two wavelength excited photoluminescence, Phys. Status Solidi Appl. Res. 183

(2001) 189–195. https://doi.org/10.1002/1521-396X(200101)183:1<189::AIDPSSA189>3.0.CO;2-5.

[72]

H. Klausing, N. Kamata, F. Takahashi, F. Fedler, D. Mistele, J. Aderhold, O.K.

Semchinova, J. Graul, T. Someya, Y. Arakawa, Improved quality of plasma

assisted MBE‐grown GaN/AlGaN quantum wells revealed by two‐wavelength

excited photoluminescence, Phys. Status Solidi Curr. Top. Solid State Phys. 0

(2003) 2658–2661. https://doi.org/10.1002/pssc.200303473.

[73]

A.Z.M. Touhidul Islam, N. Murakoshi, T. Fukuda, H. Hirayama, N. Kamata,

Optical detection of nonradiative recombination centers in AlGaN quantum wells

for deep UV region, Phys. Status Solidi Curr. Top. Solid State Phys. 11 (2014)

832–835. https://doi.org/10.1002/pssc.201300405.

[74]

N. Kamata, A.Z.M. Touhidul Islam, M. Julkarnain, N. Murakoshi, T. Fukuda, H.

Hirayama, Nonradiative centers in deep-UV AlGaN-based quantum wells revealed

by two-wavelength excited photoluminescence, Phys. Status Solidi Basic Res. 252

(2015) 936–939. https://doi.org/10.1002/pssb.201451582.

[75]

A.Z.M.T. Islam, T. Hanaoka, K. Onabe, S. Yagi, N. Kamata, H. Yaguchi, Direct

evidence of carrier excitation from intermediate band states in GaPN by twowavelength excited photoluminescence, Appl. Phys. Express. 6 (2013) 092401.

https://doi.org/10.7567/APEX.6.092401.

[76]

T. Li, Y. Kotuska, T. Fukuda, T. Kurushima, N. Kamata, Nonradiative centers in

Ba3Si6O12N2:Eu2+ phosphors observed by the below-gap excitation method,

Mater. Lett. 145 (2015) 158–161. https://doi.org/10.1016/j.matlet.2015.01.054.

89

[77] T. Li, N. Kamata, Y. Kotsuka, T. Fukuda, Z. Honda, T. Kurushima, Trap and

nonradiative centers in Ba_3Si_6O_12N_2:Eu^2+ phosphors observed by

thermoluminescence and two-wavelength excited photoluminescence methods,

Opt. Express. 23 (2015) 16511–16516. https://doi.org/10.1364/oe.23.016511.

[78] A. Zukauskas, M.S. Shue, R. Gaska, Introduction to Solid-state Lighting, Wiley,

New York, 2002.

[79] H. Hirayama, Quaternary InAlGaN-based high-efficiency ultraviolet lightemitting

diodes,

J.

Appl.

Phys.

97

(2005)

091101.

https://doi.org/10.1063/1.1899760.

[80] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata, 231-261 nm AlGaN

deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown

by ammonia pulse-flow method on sapphire, Appl. Phys. Lett. 91 (2007) 071901.

https://doi.org/10.1063/1.2770662.

[81] H. Hirayama, N. Noguchi, T. Yatabe, N. Kamata, 227 nm AlGaN light-emitting

diode with 0.15 mW output power realized using a thin quantum well and AIN

buffer with reduced threading dislocation density, Appl. Phys. Express. 1 (2008)

051101. https://doi.org/10.1143/APEX.1.051101.

[82] M.A. Khan, M. Shatalov, H.P. Maruska, H.M. Wang, E. Kuokstis, III-nitride UV

devices, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 44

(2005) 7191–7206. https://doi.org/10.1143/JJAP.44.7191.

[83] H. Hirayama, Y. Tsukada, T. Maeda, N. Kamata, Marked enhancement in the

efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a

multiquantum-barrier electron blocking layer, Appl. Phys. Express. 3 (2010)

031002. https://doi.org/10.1143/APEX.3.031002.

[84] S. Fujikawa, H. Hirayama, N. Maeda, High-efficiency AlGaN deep-UV LEDs

fabricated on a- and m-axis oriented c-plane sapphire substrates, Phys. Status

Solidi

Curr.

Top.

Solid

State

Phys.

(2012)

790–793.

https://doi.org/10.1002/pssc.201100453.

[85] T. Mino, H. Hirayama, T. Takano, K. Tsubaki, M. Sugiyama, Realization of 256278nm AlGaN-based deep-ultraviolet light-emitting diodes on si substrates using

epitaxial lateral overgrowth AlN templates, Appl. Phys. Express. 4 (2011) 092104.

90

https://doi.org/10.1143/APEX.4.092104.

[86]

M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M.

Shur, R. Gaska, C. Moe, G. Garrett, M. Wraback, AlGaN deep-ultraviolet lightemitting diodes with external quantum efficiency above 10%, Appl. Phys. Express.

5 (2012) 082101. https://doi.org/10.1143/APEX.5.082101.

[87]

H. Murotani, D. Akase, K. Anai, Y. Yamada, H. Miyake, K. Hiramatsu,

Dependence of internal quantum efficiency on doping region and Si concentration

in Al-rich AlGaN quantum wells, Appl. Phys. Lett. 101 (2012) 042110.

https://doi.org/10.1063/1.4739431.

[88] T. Onuma, S.F. Chichibu, A. Uedono, T. Sota, P. Cantu, T.M. Katona, J.F. Keading,

S. Keller, U.K. Mishra, S. Nakamura, S.P. DenBaars, Radiative and nonradiative

processes in strain-free AlxGa 1-xN films studied by time-resolved

photoluminescence and positron annihilation techniques, J. Appl. Phys. 95 (2004)

2495–2504. https://doi.org/10.1063/1.1644041.

[89]

N. Nepal, M.L. Nakarmi, J. Lin, H.X. Jiang, Photoluminescence studies of

impurity transitions in AlGaN alloys, Appl. Phys. Lett. 89 (2006) 092107.

https://doi.org/10.1063/1.2337856.

[90]

T.A. Henry, A. Armstrong, A.A. Allerman, M.H. Crawford, The influence of Al

composition on point defect incorporation in AlGaN, Appl. Phys. Lett. 100 (2012)

043509. https://doi.org/10.1063/1.3679681.

[91]

A.R. Arehart, A.A. Allerman, S.A. Ringel, Electrical characterization of n-type

Al0.30Ga0.70N Schottky diodes, J. Appl. Phys. 109 (2011) 114506.

https://doi.org/10.1063/1.3592284.

[92]

A. Armstrong, A.A. Allerman, T.A. Henry, M.H. Crawford, Influence of growth

temperature on AlGaN multiquantum well point defect incorporation and

photoluminescence

efficiency,

Appl.

Phys.

Lett.

98

(2011)

162110.

https://doi.org/10.1063/1.3583448.

[93]

N. Kamata, S. Saravanan, J.M. Zanardi Ocampo, P.O. Vaccaro, Y. Arakawa,

Nonradiative centers in InAs quantum dots revealed by two-wavelength excited

photoluminescence, Phys. B Condens. Matter. 376–377 (2006) 849–852.

https://doi.org/10.1016/j.physb.2005.12.211.

91

[94] A. Polimeni, A. Patanè, M. Henini, L. Eaves, P.C. Main, Temperature dependence

of the optical properties of (formula presented) self-organized quantum dots, Phys.

Rev.

Condens.

Matter

Mater.

Phys.

59

(1999)

5064–5068.

https://doi.org/10.1103/PhysRevB.59.5064.

[95] J. Ma, X. Ji, G. Wang, X. Wei, H. Lu, X. Yi, R. Duan, J. Wang, Y. Zeng, J. Li, F.

Yang,

C.

Wang,

G.

Zou,

Anomalous

temperature

dependence

of

photoluminescence in self-assembled InGaN quantum dots, Appl. Phys. Lett. 101

(2012) 131101. https://doi.org/10.1063/1.4754533.

[96] T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu,

H. Chen, Temperature-dependent photoluminescence in light-emitting diodes, Sci.

Rep. 4 (2014) 6131. https://doi.org/10.1038/srep06131.

[97] X.H. Zheng, H. Chen, Z.B. Yan, D.S. Li, H.B. Yu, Q. Huang, J.M. Zhou, Influence

of the deposition time of barrier layers on optical and structural properties of highefficiency green-light-emitting InGaN/GaN multiple quantum wells, J. Appl. Phys.

96 (2004) 1899–1903. https://doi.org/10.1063/1.1769099.

[98] D. Bimberg, M. Sondergeld, E. Grobe, Thermal dissociation of excitons bounds to

neutral acceptors in high-purity GaAs, Phys. Rev. B. 4 (1971) 3451–3455.

https://doi.org/10.1103/PhysRevB.4.3451.

[99] M. Hao, J. Zhang, X.H. Zhang, S. Chua, Photoluminescence studies on

InGaN/GaN multiple quantum wells with different degree of localization, Appl.

Phys. Lett. 81 (2002) 5129–5131. https://doi.org/10.1063/1.1531837.

[100] Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, H. Chen, A novel wavelengthadjusting method in InGaN-based light-emitting diodes, Sci. Rep. 3 (2013) 3389.

https://doi.org/10.1038/srep03389.

[101] M. Tajima, Fatigue and Recovery Effects of the 0.65-eV Emission Band in GaAs,

Jpn. J. Appl. Phys. 23 (1984) L690–L693. https://doi.org/10.1143/JJAP.23.L690.

[102] M. Julkarnain, T. Fukuda, N. Kamata, Y. Arakawa, A direct evidence of allocating

yellow luminescence band in undoped GaN by two-wavelength excited

photoluminescence,

Appl.

Phys.

Lett.

107

(2015)

212102.

https://doi.org/10.1063/1.4936243.

[103] M.D. Haque, M. Julkarnain, A.Z.M.T. Islam, N. Kamata, Study of Nonradiative

92

Recombination Centers in n-GaN Grown on LT-GaN and AlN Buffer Layer by

Below-Gap Excitation, Adv. Mater. Phys. Chem. 08 (2018) 143–155.

https://doi.org/10.4236/ampc.2018.83010.

[104] Q. Dai, M.F. Schubert, M.H. Kim, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H.

Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Internal quantum

efficiency and nonradiative recombination coefficient of GaInN/GaN multiple

quantum wells with different dislocation densities, Appl. Phys. Lett. 94 (2009)

111109. https://doi.org/10.1063/1.3100773.

[105] Y.-S. Yoo, T.-M. Roh, J.-H. Na, S.J. Son, Y.-H. Cho, Simple analysis method for

determining internal quantum efficiency and relative recombination ratios in light

emitting

diodes,

Appl.

Phys.

Lett.

102

(2013)

211107.

https://doi.org/10.1063/1.4807485.

[106] X. Li, S. Sundaram, P. Disseix, G. Le Gac, S. Bouchoule, G. Patriarche, F. Réveret,

J. Leymarie, Y. El Gmili, T. Moudakir, F. Genty, J.-P. Salvestrini, R.D. Dupuis,

P.L. Voss, A. Ougazzaden, AlGaN-based MQWs grown on a thick relaxed AlGaN

buffer on AlN templates emitting at 285 nm, Opt. Mater. Express. 5 (2015) 380.

https://doi.org/10.1364/ome.5.000380.

[107] J. Piprek, Efficiency droop in nitride-based light-emitting diodes, Phys. Status

Solidi

Appl.

Mater.

Sci.

207

(2010)

2217–2225.

https://doi.org/10.1002/pssa.201026149.

[108] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, B. Hahn, A

combined electro-optical method for the determination of the recombination

parameters in InGaN-based light-emitting diodes, J. Appl. Phys. 106 (2009)

114508. https://doi.org/10.1063/1.3266014.

[109] Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R.

Krames, Auger recombination in InGaN measured by photoluminescence, Appl.

Phys. Lett. 91 (2007) 141101. https://doi.org/10.1063/1.2785135.

[110] C. De Santi, M. Meneghini, D. Monti, J. Glaab, M. Guttmann, J. Rass, S. Einfeldt,

F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl, G. Meneghesso, E. Zanoni,

Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs,

Photonics Res. 5 (2017) A44. https://doi.org/10.1364/prj.5.000a44.

93

[111] J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N.L. Ploch, J. Rass, T.

Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl,

Degradation of (InAlGa)N-based UV-B light emitting diodes stressed by current

and

temperature,

J.

Appl.

Phys.

118

(2015)

094504.

https://doi.org/10.1063/1.4929656.

[112] C. De Santi, M. Meneghini, M. La Grassa, B. Galler, R. Zeisel, M. Goano, S.

Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, E. Zanoni,

Role of defects in the thermal droop of InGaN-based light emitting diodes, J. Appl.

Phys. 119 (2016) 094501. https://doi.org/10.1063/1.4942438.

[113] N.L. Ploch, S. Einfeldt, M. Frentrup, J. Rass, T. Wernicke, A. Knauer, V. Kueller,

M. Weyers, M. Kneissl, Investigation of the temperature dependent efficiency

droop

in

UV

LEDs,

Semicond.

Sci.

Technol.

28

(2013)

125021.

https://doi.org/10.1088/0268-1242/28/12/125021.

[114] M.A. Khan, N. Maeda, M. Jo, Y. Akamatsu, R. Tanabe, Y. Yamada, H. Hirayama,

13 mW operation of a 295-310 nm AlGaN UV-B LED with a p-AlGaN transparent

contact layer for real world applications, J. Mater. Chem. C. 7 (2019) 143–152.

https://doi.org/10.1039/C8TC03825B.

[115] T. Matsumoto, M. Ajmal Khan, N. Maeda, S. Fujikawa, N. Kamata, H. Hirayama,

Milliwatt power UV-A LEDs developed by using n-AlGaN superlattice buffer

layers grown on AlN templates, J. Phys. D. Appl. Phys. 52 (2019) 115102.

https://doi.org/10.1088/1361-6463/aaf60a.

[116] A. Pinos, S. Marcinkevičius, J. Yang, Y. Bilenko, M. Shatalov, R. Gaska, M.S.

Shur, Aging of AlGaN quantum well light emitting diode studied by scanning nearfield

optical

spectroscopy,

Appl.

Phys.

Lett.

95

(2009)

181914.

https://doi.org/10.1063/1.3262964.

[117] A. Pinos, S. Marcinkevičius, J. Yang, R. Gaska, M. Shatalov, M.S. Shur, Optical

studies of degradation of AlGaN quantum well based deep ultraviolet light

emitting

diodes,

J.

Appl.

Phys.

108

(2010)

093113.

https://doi.org/10.1063/1.3506697.

[118] A. Pinos, S. Marcinkevičius, M.S. Shur, High current-induced degradation of

AlGaN ultraviolet light emitting diodes, in: J. Appl. Phys., 2011: p. 103108.

https://doi.org/10.1063/1.3590149.

94

[119] A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, M. Razeghi,

Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting

diodes, Appl. Phys. Lett. 83 (2003) 4083–4085. https://doi.org/10.1063/1.1626808.

[120] M.I. Hossain, Y. Itokazu, S. Kuwaba, N. Kamata, N. Maeda, H. Hirayama,

Nonradiative recombination centers in deep uv-wavelength algan quantum wells

detected by below-gap excitation light, Jpn. J. Appl. Phys. 58 (2019) SCCB37.

https://doi.org/10.7567/1347-4065/ab1069.

[121] S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, Third Edit, Wiley

Interscience, 2006.

[122] H. Lui, R.R. Anderson, Radiation Sources and Interaction with Skin, in:

Photodermatology, 2007: pp. 29–40.

[123] E. Becatti, K. Petroni, D. Giuntini, A. Castagna, V. Calvenzani, G. Serra, A.

Mensuali-Sodi, C. Tonelli, A. Ranieri, Solar UV-B radiation influences carotenoid

accumulation of tomato fruit through both ethylene-dependent and independent

mechanisms,

J.

Agric.

Food

Chem.

57

(2009)

10979–10989.

https://doi.org/10.1021/jf902555x.

[124] S. Neugart, M. Zietz, M. Schreiner, S. Rohn, L.W. Kroh, A. Krumbein,

Structurally different flavonol glycosides and hydroxycinnamic acid derivatives

respond differently to moderate UV-B radiation exposure, Physiol. Plant. 145

(2012) 582–593. https://doi.org/10.1111/j.1399-3054.2012.01567.x.

[125] Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P.

DenBaars, “S-shaped” temperature-dependent emission shift and carrier dynamics

in InGaN/GaN multiple quantum wells, Appl. Phys. Lett. 73 (1998) 1370–1372.

https://doi.org/10.1063/1.122164.

[126] H.P.D. Schenk, P. De Mierry, F. Omnès, P. Gibart, Spectroscopic studies of InGaN

ternary alloys, Phys. Status Solidi Appl. Res. 176 (1999) 307–311.

https://doi.org/10.1002/(SICI)1521-396X(199911)176:1<307::AIDPSSA307>3.0.CO;2-U.

[127] J. Li, K.B. Nam, J.Y. Lin, H.X. Jiang, Optical and electrical properties of Al-rich

AlGaN

alloys,

Appl.

Phys.

https://doi.org/10.1063/1.1418255.

95

Lett.

79

(2001)

3245–3247.

[128] Y.H. Cho, G. Gainer, J. Lam, J. Song, W. Yang, Dynamics of anomalous optical

transitions in alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 61 (2000) 7203–

7206. https://doi.org/10.1103/PhysRevB.61.7203.

[129] A. Kaschner, T. Lüttgert, H. Born, A. Hoffmann, A.Y. Egorov, H. Riechert,

Recombination mechanisms in GaInNAs/GaAs multiple quantum wells, Appl.

Phys. Lett. 78 (2001) 1391–1393. https://doi.org/10.1063/1.1355014.

[130] K. Yamashita, T. Kita, H. Nakayama, T. Nishino, Photol ...

参考文献をもっと見る