リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Long-Life Electrons in Metal-Doped Alkali-Metal Tantalate Photocatalysts Excited under Water」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Long-Life Electrons in Metal-Doped Alkali-Metal Tantalate Photocatalysts Excited under Water

Fu, Zhebin Hirai, Takuya Onishi, Hiroshi 神戸大学

2021.11.22

概要

Conversion of materials for artificial photosynthesis is completed in milliseconds or seconds by assembling atoms over semiconductor photocatalysts. Band-gap-excited electrons and holes reactive on this time scale are key for efficient atom assembly to yield the desired products. In this study, attenuated total reflection of infrared (IR) light was applied to characterize the electronic absorption of long-life charge carriers excited under water. Under excitation, NaTaO3 and KTaO3 photocatalyst particles doped with Sr or La cations absorbed IR light. A broad absorption band appeared with a maximum at 1400 cm–1, which was enhanced by the addition of hole scavengers (e.g., methanol and Na2SO3) and disappeared in the presence of electron scavengers (e.g., FeCl3, NaIO3, and H2O2). This absorption corresponded to the electronic transition of band-gap-excited electrons accommodated in mid-gap states. In anaerobic n-decane, the electron absorption was enhanced by the excitation light power, P, with absorbance being proportional to P1/2. The observed 1/2-order power law suggested deexcitation via recombination of electrons and holes. When the excitation light was stopped, the absorbance decreased as a function of time with a second-order rate law, as expected in the case of recombinative deexcitation. In addition, the 1/2-order power law and second-order decay rate law were observed in anaerobic water, with an accelerated decay rate, which was possibly due to a water-related electron-consuming reaction. This study demonstrated that long-life electrons contribute to surface redox reactions over semiconductor photocatalysts for artificial photosynthesis.

この論文で使われている画像

参考文献

(1) Wang, Q.; Domen, K. Particulate Photocatalysts for LightDriven Water Splitting: Mechanisms, Challenges, and Design

Strategies. Chem. Rev. 2020, 120, 919−985.

(2) Kranz, C.; Wächtler, M. Characterizing photocatalysts for water

splitting: from atoms to bulk and from slow to ultrafast processes.

Chem. Soc. Rev. 2021, 50, 1407−1437.

(3) Takanabe, K. Addressing fundamental experimental aspects of

photocatalysis studies. J. Catal. 2019, 370, 480−484.

(4) An, L.; Onishi, H. Electron-Hole Recombination Controlled by

Doping Sites in Perovskite-Structured Photocatalysts: Sr-Doped

NaTaO3. ACS Catal. 2015, 5, 3196−3206.

(5) Yamakata, A.; Ishibashi, T.; Kato, H.; Kudo, A.; Onishi, H.

Photodynamics of NaTaO3 Catalysts for Efficient Water Splitting. J.

Phys. Chem. B 2003, 107, 14383−14387.

(6) Sudrajat, H.; Dhakal, D.; Kitta, M.; Sasaki, T.; Ozawa, A.; Babel,

S.; Yoshida, T.; Ichikuni, N.; Onishi, H. Electron Population and

Water Splitting Activity Controlled by Strontium Cations Doped in

KTaO3 Photocatalysts. J. Phys. Chem. C 2019, 123, 18387−18397.

(7) Yoshihara, T.; Katoh, R.; Furube, A.; Tamaki, Y.; Murai, M.;

Hara, K.; Murata, S.; Arakawa, H.; Tachiya, M. Identification of

Reactive Species in Photoexcited Nanocrystalline TiO2 Films by

Wide-Wavelength-Range (400−2500 nm) Transient Absorption

Spectroscopy. J. Phys. Chem. B 2004, 108, 3817−3823.

(8) Tang, J.; Durrant, J. R.; Klug, D. R. Mechanism of Photocatalytic

Water Splitting in TiO2. Reaction of Water with Photoholes,

Importance of Charge Carrier Dynamics, and Evidence for FourHole Chemistry. J. Am. Chem. Soc. 2008, 130, 13885−13891.

(9) Le Formal, F.; Pastor, E.; Tilley, S. D.; Mesa, C. A.; Pendlebury,

S. R.; Grätzel, M.; Durrant, J. R. Rate Law Analysis of Water

Oxidation on a Hematite Surface. J. Am. Chem. Soc. 2015, 137, 6629−

6637.

(10) Ma, Y.; Pendlebury, S. R.; Reynal, A.; Le Formal, F.; Durrant, J.

R. Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. Chem. Sci. 2014, 5, 2964−2973.

(11) Nakamura, R.; Nakato, Y. Primary Intermediates of Oxygen

Photoevolution Reaction on TiO2 (Rutile) Particles, Revealed by in

Situ FTIR Absorption and Photoluminescence Measurements. J. Am.

Chem. Soc. 2004, 126, 1290−1298.

(12) Sivasankar, N.; Weare, W. W.; Frei, H. Direct Observation of a

Hydroperoxide Surface Intermediate upon Visible Light-Driven Water

Oxidation at an Ir Oxide Nanocluster Catalyst by Rapid-Scan FT-IR

Spectroscopy. J. Am. Chem. Soc. 2011, 133, 12976−12979.

(13) Zhang, M.; de Respinis, M.; Frei, H. Time-resolved

observations of water oxidation intermediates on a cobalt oxide

nanoparticle catalyst. Nat. Chem. 2014, 6, 362−367.

(14) Herlihy, D. M.; Waegele, M. M.; Chen, X.; Pemmaraju, C. D.;

Prendergast, D.; Cuk, T. Detecting the oxyl radical of photocatalytic

water oxidation at an n-SrTiO3/aqueous interface through its

subsurface vibration. Nat. Chem. 2016, 8, 549−555.

(15) Zandi, O.; Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode

surfaces using operando infrared spectroscopy. Nat. Chem. 2016, 8,

778−783.

(16) Chen, T.; Ding, Q.; Wang, X.; Feng, Z.; Li, C. Mechanistic

Studies on Photocatalytic Overall Water Splitting over Ga2O3-Based

Photocatalysts by Operando MS-FTIR Spectroscopy. J. Phys. Chem.

Lett. 2021, 12, 6029−6033.

26404

https://doi.org/10.1021/acs.jpcc.1c06618

J. Phys. Chem. C 2021, 125, 26398−26405

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

Article

UV-photoexcited, H-atom n-doped, and thermally reduced TiO2. J.

Phys. Chem. C 2012, 116, 4535−4544.

(38) Sezen, H.; Buchholz, M.; Nefedov, A.; Natzeck, C.; Heissler, S.;

Di Valentin, C.; Wöll, C. Probing electrons in TiO2 polaronic trap

states by IR-absorption: evidence for the existence of hydrogenic

states. Sci. Rep. 2015, 4, No. 3808.

(39) Savory, D. M.; McQuillan, A. J. IR spectroscopic behavior of

polaronic trapped electrons in TiO2 under aqueous photocatalytic

conditions. J. Phys. Chem. C 2014, 118, 13680−13692.

(40) Sezen, H.; Shang, H.; Bebensee, F.; Yang, C.; Buchholz, M.;

Nefedov, A.; Heissler, S.; Carbogno, C.; Scheffler, M.; Rinke, P.; et al.

Evidence for photogenerated intermediate hole polarons in ZnO. Nat.

Commun. 2015, 6, No. 6901.

(41) Bandaranayake, S.; Hruska, E.; Londo, S.; Biswas, S.; Baker, L.

R. Small polarons and surface defects in metal oxide photocatalysts

studied using XUV reflection−absorption spectroscopy. J. Phys. Chem.

C 2020, 124, 22853−22870.

(42) Shelton, J. L.; Knowles, K. E. Thermally Activated Optical

Absorption into Polaronic States in Hematite. J. Phys. Chem. Lett.

2021, 12, 3343−3351.

Recommended by ACS

Probing Photoexcited Charge Carrier Trapping and Defect

Formation in Synergistic Doping of SrTiO3

Namitha Anna Koshi, Satadeep Bhattacharjee, et al.

DECEMBER 29, 2021

ACS APPLIED ENERGY MATERIALS

READ

Photocatalytic Activity and Hole-Scavenging Behaviors on

Rutile TiO2(100) Surfaces: A Theoretical Study

Binli Wang, Hongjun Fan, et al.

JANUARY 07, 2022

THE JOURNAL OF PHYSICAL CHEMISTRY C

READ

Role of Defects in Photocatalytic Water Splitting: Monodoped

vs Codoped SrTiO3

Manish Kumar, Saswata Bhattacharya, et al.

APRIL 07, 2020

THE JOURNAL OF PHYSICAL CHEMISTRY C

READ

In Situ Monitoring Charge Transfer on Topotactic Epitaxial

Heterointerface for Tetracycline Degradation at the SingleParticle Level

Bei Li, Baibiao Huang, et al.

JULY 14, 2022

ACS CATALYSIS

READ

Get More Suggestions >

26405

https://doi.org/10.1021/acs.jpcc.1c06618

J. Phys. Chem. C 2021, 125, 26398−26405

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る