リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Principal component analysis of data from NMR titration experiment of uniformly 15N labeled amyloid beta (1–42) peptide with osmolytes and phenolic compounds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Principal component analysis of data from NMR titration experiment of uniformly 15N labeled amyloid beta (1–42) peptide with osmolytes and phenolic compounds

Iwaya, Naoko Goda, Natsuko Matsuzaki, Mizuki Narita, Akihiro Shigemitsu, Yoshiki Tenno, Takeshi Abe, Yoshito Hoshi, Minako Hiroaki, Hidekazu 名古屋大学

2020.09.15

概要

A simple NMR method to analyze the data obtained by NMR titration experiment of amyloid formation inhibitors against uniformly 15N-labeled amyloid-β 1–42 peptide (Aβ(1–42)) was described. By using solution nuclear magnetic resonance (NMR) measurement, the simplest method for monitoring the effects of Aβ fibrilization inhibitors is the NMR chemical shift perturbation (CSP) experiment using 15N-labeled Aβ(1–42). However, the flexible and dynamic nature of Aβ(1–42) monomer may hamper the interpretation of CSP data. Here we introduced principal component analysis (PCA) for visualizing and analyzing NMR data of Aβ(1–42) in the presence of amyloid inhibitors including high concentration osmolytes. We measured 1H–15N 2D spectra of Aβ(1–42) at various temperatures as well as of Aβ(1–42) with several inhibitors, and subjected all the data to PCA (PCA-HSQC). The PCA diagram succeeded in differentiating the various amyloid inhibitors, including epigallocatechin gallate (EGCg), rosmarinic acid (RA) and curcumin (CUR) from high concentration osmolytes. We hypothesized that the CSPs reflected the conformational equilibrium of intrinsically disordered Aβ(1–42) induced by weak inhibitor binding rather than the specific molecular interactions.

この論文で使われている画像

参考文献

[1] M. Prince, R. Bryce, E. Albanese, A. Wimo, W. Ribeiro, C.P. Ferri, The global prevalence of dementia: a systematic review and metaanalysis., Alzheimers. Dement. 9 (2013) 63-75.e2. https://doi.org/10.1016/j.jalz.2012.11.007.

[2] J. Hardy, D.J. Selkoe, The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics., Science. 297 (2002) 353–6. https://doi.org/10.1126/science.1072994.

[3] A. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal, K. Iqbal, Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments., Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 6923–8. https://doi.org/10.1073/pnas.121119298.

[4] M. Hoshi, M. Sato, S. Matsumoto, A. Noguchi, K. Yasutake, N. Yoshida, K. Sato, Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta., Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 6370–6375. https://doi.org/10.1073/pnas.1237107100.

[5] R. Roychaudhuri, M. Yang, M.M. Hoshi, D.B. Teplow, Amyloid beta-protein assembly and Alzheimer disease., J. Biol. Chem. 284 (2009) 4749–53. https://doi.org/10.1074/jbc.R800036200.

[6] M. Sakono, T. Zako, Amyloid oligomers: formation and toxicity of Abeta oligomers., FEBS J. 277 (2010) 1348–1358. https://doi.org/10.1111/j.1742- 4658.2010.07568.x.

[7] I. Benilova, E. Karran, B. De Strooper, The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes, Nat. Neurosci. 15 (2012) 349–357. https://doi.org/10.1038/nn.3028.

[8] T. Ohnishi, M. Yanazawa, T. Sasahara, Y. Kitamura, H. Hiroaki, Y. Fukazawa, I. Kii, T. Nishiyama, A. Kakita, H. Takeda, A. Takeuchi, Y. Arai, A. Ito, H. Komura, H. Hirao, K. Satomura, M. Inoue, S.-I.S. Muramatsu, K.K. Matsui, M. Tada, M. Sato, E. Saijo, Y. Shigemitsu, S. Sakai, Y. Umetsu, N. Goda, N. Takino, H. Takahashi, M. Hagiwara, T. Sawasaki, G. Iwasaki, Y. Nakamura, Y. Nabeshima, D.B.D.B. Teplow, M. Hoshi, T.C. Südhof, Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly, Proc. Natl. Acad. Sci. 112 (2015) E4465– E4474. https://doi.org/10.1073/pnas.1421182112.

[9] B. Torok, S. Bag, M. Sarkar, S. Dasgupta, M. Torok, Structural features of small molecule amyloid-beta self-assembly inhibitors, Curr. Bioact. Compd. 9 (2013) 37– 63. https://doi.org/10.2174/1573407211309010006.

[10] S. Sinha, Z. Du, P. Maiti, F.-G. Klärner, T. Schrader, C. Wang, G. Bitan, Comparison of three amyloid assembly inhibitors: the sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01., ACS Chem. Neurosci. 3 (2012) 451–8. https://doi.org/10.1021/cn200133x.

[11] K. Ono, L. Li, Y. Takamura, Y. Yoshiike, L. Zhu, F. Han, X. Mao, T. Ikeda, J. Takasaki, H. Nishijo, A. Takashima, D.B. Teplow, M.G. Zagorski, M. Yamada, Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding., J. Biol. Chem. 287 (2012) 14631–43. https://doi.org/10.1074/jbc.M111.325456.

[12] D.E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore, E.E. Wanker, EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nat. Struct. Mol. Biol. 15 (2008) 558– 566. https://doi.org/10.1038/nsmb.1437.

[13] C. Airoldi, C. Zona, E. Sironi, L. Colombo, M. Messa, D. Aurilia, M. Gregori, M. Masserini, M. Salmona, F. Nicotra, B. La Ferla, Curcumin derivatives as new ligands of Aβ peptides., J. Biotechnol. 156 (2010) 317–324. https://doi.org/10.1016/j.jbiotec.2011.07.021.

[14] C. Airoldi, E. Sironi, C. Dias, F. Marcelo, A. Martins, A.P. Rauter, F. Nicotra, J. Jimenez-Barbero, Natural compounds against Alzheimer’s disease: molecular recognition of Aβ1-42 peptide by Salvia sclareoides extract and its major component, rosmarinic acid, as investigated by NMR., Chem. Asian J. 8 (2013) 596–602. https://doi.org/10.1002/asia.201201063.

[15] F. Yang, G.P. Lim, A.N. Begum, O.J. Ubeda, M.R. Simmons, S.S. Ambegaokar, P. Chen, R. Kayed, C.G. Glabe, S.A. Frautschy, G.M. Cole, Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo, J. Biol. Chem. 280 (2005) 5892–5901. https://doi.org/10.1074/jbc.M404751200.

[16] E.R.P. Zuiderweg, Mapping Protein−Protein Interactions in Solution by NMR Spectroscopy †, Biochemistry. 41 (2002) 1–7. https://doi.org/10.1021/bi011870b.

[17] Y. Shigemitsu, N. Iwaya, N. Goda, M. Matsuzaki, T. Tenno, A. Narita, M. Hoshi, H. Hiroaki, Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol., Anal. Biochem. 498 (2016) 59–67. https://doi.org/10.1016/j.ab.2015.12.021.

[18] P. Schanda, E. Kupce, B. Brutscher, Ē. Kupče, B. Brutscher, SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds., J. Biomol. NMR. 33 (2005) 199–211. https://doi.org/10.1007/s10858-005-4425-x.

[19] Y. Yan, C. Wang, Abeta42 is more rigid than Abeta40 at the C terminus: implications for Abeta aggregation and toxicity., J. Mol. Biol. 364 (2006) 853–62. https://doi.org/10.1016/j.jmb.2006.09.046.

[20] F. Delaglio, S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfeifer, A. Bax, NMRPipe: a multidimensional spectral processing system based on UNIX pipes., J. Biomol. NMR. 6 (1995) 277–293. http://www.ncbi.nlm.nih.gov/pubmed/8520220 (accessed March 9, 2012).

[21] T.D. Goddard, D.G. Kneller, Sparky 3, 2004, University of California, San Francisco., (2004). http://www.cgl.ucsf.edu/home/sparky/.

[22] K. Sakurai, Y. Goto, Principal component analysis of the pH-dependent conformational transitions of bovine beta-lactoglobulin monitored by heteronuclear NMR., Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15346–51. https://doi.org/10.1073/pnas.0702112104.

[23] J.W. Eaton, GNU Octave, (1996). http://www.gnu.org/software/octave.

[24] M. Dasari, A. Espargaro, R. Sabate, J.M. Lopez del Amo, U. Fink, G. Grelle, J. Bieschke, S. Ventura, B. Reif, Bacterial inclusion bodies of Alzheimer’s disease β- amyloid peptides can be employed to study native-like aggregation intermediate states., Chembiochem. 12 (2011) 407–23. https://doi.org/10.1002/cbic.201000602.

[25] V.H. Finder, I. Vodopivec, R.M. Nitsch, R. Glockshuber, The recombinant amyloid-beta peptide Abeta1-42 aggregates faster and is more neurotoxic than synthetic Abeta1-42., J. Mol. Biol. 396 (2010) 9–18. https://doi.org/10.1016/j.jmb.2009.12.016.

[26] W. Qi, A. Zhang, T.A. Good, E.J. Fernandez, Two Disaccharides and Trimethylamine N -Oxide Affect Aβ Aggregation Differently, but All Attenuate Oligomer-Induced Membrane Permeability, Biochemistry. 48 (2009) 8908–8919. https://doi.org/10.1021/bi9006397.

[27] J. McLaurin, R. Golomb, a Jurewicz, J.P. Antel, P.E. Fraser, Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity., J. Biol. Chem. 275 (2000) 18495–502. https://doi.org/10.1074/jbc.M906994199.

[28] T. Ueda, M. Nagata, A. Monji, I. Yoshida, N. Tashiro, T. Imoto, Effect of sucrose on formation of the beta-amyloid fibrils and D-aspartic acids in Abeta 1-42., Biol. Pharm. Bull. 25 (2002) 375–378. https://doi.org/10.1248/bpb.25.375.

[29] A. a Reinke, J.E. Gestwicki, Structure-activity relationships of amyloid beta- aggregation inhibitors based on curcumin: influence of linker length and flexibility., Chem. Biol. Drug Des. 70 (2007) 206–215. https://doi.org/10.1111/j.1747- 0285.2007.00557.x.

[30] Y. Shigemitsu, H. Hiroaki, Common molecular pathogenesis of disease-related intrinsically disordered proteins revealed by NMR analysis, J. Biochem. 163 (2018) 11–18. https://doi.org/10.1093/jb/mvx056.

[31] M. Auton, D.W. Bolen, J. R??sgen, Structural thermodynamics of protein preferential solvation: Osmolyte solvation of proteins, aminoacids, and peptides, Proteins Struct. Funct. Genet. 73 (2008) 802–813. https://doi.org/10.1002/prot.22103.

[32] J.C. Lee, S.N. Timasheff, The stabilization of proteins by sucrose., J. Biol. Chem. 256 (1981) 7193–201. http://www.ncbi.nlm.nih.gov/pubmed/7251592 (accessed July 18, 2014).

[33] T. Arakawa, S.N. Timasheff, Stabilization of protein structure by sugars., Biochemistry. 21 (1982) 6536–6544. https://doi.org/10.1021/bi00268a033.

[34] T. Ueda, M. Nagata, T. Imoto, Aggregation and chemical reaction in hen lysozyme caused by heating at pH 6 are depressed by osmolytes, sucrose and trehalose., J. Biochem. 130 (2001) 491–496. https://doi.org/10.1093/oxfordjournals.jbchem.a003011.

[35] H. Hamada, T. Arakawa, K. Shiraki, Effect of additives on protein aggregation., Curr. Pharm. Biotechnol. 10 (2009) 400–7. http://wolfson.huji.ac.il/purification/PDF/Literature/Hamada2009.pdf (accessed June 1, 2012).

[36] O. Miyawaki, Hydration state change of proteins upon unfolding in sugar solutions, Biochim. Biophys. Acta - Proteins Proteomics. 1774 (2007) 928–935. https://doi.org/10.1016/j.bbapap.2007.05.008.

[37] M. Abe, Y. Abe, T. Ohkuri, T. Mishima, A. Monji, S. Kanba, T. Ueda, Mechanism for retardation of amyloid fibril formation by sugars in Vλ6 protein., Protein Sci. 22 (2013) 467–74. https://doi.org/10.1002/pro.2228.

[38] Y. Abe, N. Odawara, N. Aeimhirunkailas, H. Shibata, N. Fujisaki, H. Tachibana, T. Ueda, Inhibition of amyloid fibril formation in the variable domain of λ6 light chain mutant Wil caused by the interaction between its unfolded state and epigallocatechin-3-O-gallate, Biochim. Biophys. Acta - Gen. Subj. (2018). https://doi.org/10.1016/j.bbagen.2018.08.006.

[39] M.R. Wilson, J.J. Yerbury, S. Poon, Potential roles of abundant extracellular chaperones in the control of amyloid formation and toxicity., Mol. Biosyst. 4 (2008) 42–52. https://doi.org/10.1039/b712728f.

[40] H. Hiroaki, Y. Umetsu, Y. Nabeshima, M. Hoshi, D. Kohda, A simplified recipe for assigning amide NMR signals using combinatorial 14N amino acid inverse- labeling., J. Struct. Funct. Genomics. 12 (2011) 167–174. https://doi.org/10.1007/s10969-011-9116-0.

[41] T. Yamaguchi, K. Matsuzaki, M. Hoshino, Transient formation of intermediate conformational states of amyloid-β peptide revealed by heteronuclear magnetic resonance spectroscopy., FEBS Lett. 585 (2011) 1097–102. https://doi.org/10.1016/j.febslet.2011.03.014.

[42] K. Sakurai, A. Maeno, Y.H. Lee, K. Akasaka, Conformational Properties Relevant to the Amyloidogenicity of β 2 -Microglobulin Analyzed Using Pressure- and Salt- Dependent Chemical Shift Data, J. Phys. Chem. B. 123 (2019) 836–844. https://doi.org/10.1021/acs.jpcb.8b11408.c

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る