リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on multiple zeta values, Arakawa-Kaneko zeta functions and iterated log-sine integrals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on multiple zeta values, Arakawa-Kaneko zeta functions and iterated log-sine integrals

UMEZAWA, RYOTA 梅澤, 瞭太 名古屋大学

2020.04.02

概要

In this thesis, we discuss relations between multiple zeta values, Arakawa-Kaneko zeta functions and iterated log-sine integrals. In Section 1, we describe the background and known results of multiple zeta values, Arakawa-Kaneko zeta functions and log-sine integrals. In Section 2, we discuss analogues of the Arakawa-Kaneko zeta function based on [40]. In particular, we discuss an analogue of the ArakawaKaneko zeta function of Miyagawa-type and obtain relations among Miyagawa multiple zeta values. We also discuss a class of multiple zeta functions to which Ito’s zeta functions of the case of general index are related, and we obtain relations among special values of multiple zeta functions in this class. In Section 3, we define iterated log-sine integrals and prove its fundamental properties and discuss relations between iterated log-sine integrals, multiple zeta values and multiple polylogarithms. In particular, we give a method to obtain relations among multiple zeta values, which uses iterated log-sine integrals. We based on [41] for the method and the definition and fundamental properties of iterated log-sine integrals, and based on [42] for the rest of Section 3. We also prove theorems that iterated log-sine integral can be written in terms of multiple zeta values and multiple polylogarithms. These theorems make numerical evaluations of iterated log-sine integrals possible. Finally, we state some conjectures on multiple zeta values, multiple Clausen values, multiple Glaisher values and iterated log-sine integrals suggested by numerical evaluations.

参考文献

[1] S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith, 98 (2001), 107–116.

[2] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and related zeta functions, Nagoya Math. J. 153 (1999), 189–209.

[3] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. 38 (1995), 277–294.

[4] D. Borwein, J. M. Borwein, A. Straub and J. Wan, Log-sine evaluations of Mahler measures, II, Integers 12 (2012) 1179-1212.

[5] D. Bowman and D. M. Bradley, Resolution of some open problems concerning multiple zeta evaluations of arbitrary depth, Compositio Math. 139 (2003), 85–100.

[6] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonˇek, Combinatorial aspects of multiple zeta values, Electron. J. Combin. 5 (1998), Research Paper 38, 12 pp.

[7] J. M. Borwein, and A. Straub, Special values of generalized log-sine integrals, ISSAC2011, ACM, New York, (2011), 43–50.

[8] J. M. Borwein and A. Straub, Log-sine evaluations of Mahler measures, J. Aust. Math. Soc., 92 (2012), 15-36.

[9] J. M. Borwein, D. J. Broadhurst and J. Kamnitzer, Central binomial sums, multiple Clausen values, and zeta values, Experiment. Math. 10 (2001), 25–34.

[10] F. C. S. Brown, Mixed Tate motives over Z, Annals of Math. 175 (2012), 949–976.

[11] J. Choi, Y. J. Cho, and H. M. Srivistava, Log-Sine Integrals Involving Series Associated with the Zeta function and Polylogarithms, Math. Scand., 105 (2009), 199–217.

[12] A.I. Davydychev, Explicit results for all orders of the expansion of certain massive and massless diagrams, Phys. Rev. D, 61 (2000), (8):087701.

[13] A. I. Davydychev and M. Yu. Kalmykov. Some remarks on the ε-expansion of dimensionally regulated Feynman diagrams, Nuclear Physics B - Proceedings Supplements, 89 (2000), 283-288.

[14] A. I. Davydychev and M. Yu. Kalmykov, New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams, Nuclear Physics B 605 (2001) 266–318.

[15] P. Deligne. Le groupe fondamental unipotent motivique de Gm − µN pour N = 2, 3, 4, 6 ou 8, Publ. Math. Inst. Hautes Etudes Sci. ´ 112 (2010), 101–141.

[16] P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Ecole ´ Norm. Sup. (4) 38 (2005), no. 1, 1–56.

[17] V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q), Leningrad Math. J. 2 (1991), no. 4, 829-860.

[18] A. B. Goncharov, Periods and mixed motives, preprint, (2002).

[19] A. Granville, A decomposition of Riemann’s zeta-function, in London Math. Soc. Lecture Note Ser. 247, Cambridge, 1997, pp. 95-101.

[20] M. Hirose and N. Sato, Iterated integrals on P 1 \ {0, 1, ∞, z} and a class of relations among multiple zeta values, Adv. Math. 348 (2019), 163–182.

[21] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.

[22] M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477–495.

[23] J. G. Huard, K. S. Williams and N. Y. Zhang, On Tornheim’s double series, Acta Arith. 75 (1996), 105117.

[24] K. Ihara, M. Kaneko and D. Zagier, Derivation and double shuffle relations for multiple zeta values, Compos. Math. 142 (2006) 307–338.

[25] K. Imatomi, M. Kaneko, and E. Takeda, Multi-poly-Bernoulli numbers and finite multiple zeta values, J. Integer Sequences, 17 (2014), Article 14.4.5.

[26] T. Ito, On analogues of the Arakawa-Kaneko zeta functions of Mordell-Tornheim type, Comment. Math. Univ. St. Pauli 65 (2016), 111–120. arXiv:1603.04145

[27] M.Yu. Kalmykov, About higher order ε-expansion of some massive two- and three-loop masterintegrals, Nuclear Physics B 718 (2005) 276–292.

[28] M. Kalmykov and A. Sheplyakov. lsjk–a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions, Comput. Phys. Commun., 172 (2005), 45–59.

[29] M. Kalmykov and O. Veretin, Single scale diagrams and multiple binomial sums, Phys. Lett. B, 483 (2000), 315323.

[30] M. Kaneko, poly-Bernoulli numbers, J. Th´eor. Nombres Bordeaux 9 (1997),221–228.

[31] M. Kaneko and H. Tsumura, Multi-poly-Bernoulli numbers and related zeta functions, Nagoya Math. J. 232 (2018), 19–54.

[32] M. Kaneko and S. Yamamoto, A new integral-series identity of multiple zeta values and regularizations, Selecta Math. (N.S.) 24 (2018), 2499–2521.

[33] L. Lewin, Polylogarithms and associated functions, North Holland, 1981.

[34] K. Matsumoto, On the analytic continuation of various multiple zeta-functions, in Number Theory for the Millennium II, Proc. Millennial Conference on Number Theory (Bennett M. A. et al., Editors) (A K Peters, Natick, MA, 2002), 417440.

[35] K. Matsumoto, On Mordell-Tornheim and other multiple zeta-functions, in Proceedings of the Session in Analytic Number Theory and Diophantine Equations (Heath-Brown D. R. and Moroz B. Z., Editors), Bonner Mathematische Schriften Nr. 360, (Bonn, Germany, 2003), 17 pp.

[36] T. Miyagawa, Analytic properties of generalized Mordell-Tornheim type of multiple zeta-function and L-function, Tsukuba J. Math. 40 (2016), 81–100.

[37] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory, 74 (1999), 39-43.

[38] T. Okamoto and T. Onozuka, Functional equation for the Mordell-Tornheim multiple zeta-function, Funct. Approx. Comment. Math. 55 (2016), no. 2, 227–241.

[39] T. Terasoma, Mixed Tate motives and multiple zeta values, Invent. Math., 149 (2002), 339-369.

[40] R. Umezawa, On an analog of the Arakawa-Kaneko zeta function and relations of some multiple zeta values Tsukuba J. Math. 42 (2018), 259-294.

[41] R. Umezawa, Multiple zeta values and iterated log-sine integrals, Kyushu J. Math. to appear.

[42] R. Umezawa, Evaluation of iterated log-sine integrals in terms of multiple polylogarithms, arXiv:1912.07201

[43] A. J. van der Poorten, Some wonderful formulas . . . an introduction to polylogarithms, Queen’s papers in Pure and Applied Mathematics, 54 (1979), 269–286.

[44] S. Yamamoto, Multiple zeta-star values and multiple integrals, RIMS Kˆokyˆuroku Bessatsu, B68 (2017), 3–14.

[45] D. Zagier, Values of zeta functions and their applications, in ECM volume, Progress in Math, 120 (1994), 497-512.

[46] D. Zagier, Evaluation of the multiple zeta values ζ(2, . . . , 2, 3, 2, . . . , 2), Ann. Math. 175 (2012),977- 1000.

[47] N.-Y. Zhang, and K.S. Williams, Values of the Riemann Zeta function and integrals involving log(2 sinh θ 2 ) and log(2 sin θ 2 ), Pacific J.Math. 168 (1995), 271–289.

[48] I. J. Zucker, On the series ∑∞ k=1 ( 2k k )−1 k −n and related sums, J. Number Theory, 20 (1985), 92–102.

参考文献をもっと見る