リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evolutionary History of Gallus gallus in Southeast Asia and South Pacific: Genetic Insights into its Phylogeography and Population Dynamics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evolutionary History of Gallus gallus in Southeast Asia and South Pacific: Genetic Insights into its Phylogeography and Population Dynamics

Godinez Cyrill John Prima 広島大学

2022.09.20

概要

Over the past millennia, the development of agriculture in Southeast Asia, ultimately brought by human forethought and activities, was undoubtedly driven by several geological, ecological, biological, and climatic factors and cultural exchanges. The multistage processes of animal domestication exemplify how animals respond to the anthropogenic niches. Decades of research on when, where, and how domestication took place have led to a better understanding of the complex past societies, though several important questions remain unresolved.

As one of the important commensal domesticates, chickens are the most widely domesticated animal species globally. Consequently, it plays a crucial role in human societies as the largest source of animal protein and as a significant biological factor in socio-cultural development. Since domestication, chickens have been distributed throughout various countries and continents inhabited by human migration and trade expansion. This led to the evolution of subpopulations of chickens in response to natural selection pressure and selective breeding for adaptation to a variety of agro-ecological conditions and subsequently resulted in a wide range of chicken breeds today.

The course of chicken introduction in the island of Southeast Asia (ISEA) and Oceania continues to be a research area of interest, considering the rich history of human diaspora and colonization in the insular archipelago. The Philippines presents essential models for understanding Southeast Asia’s evolutionary processes and species diversification. This terrestrial island faunal laboratory is considered one of the most biologically rich regions globally in animal genetic resources and offers opportunities for elucidating evolutionary and ecological processes. However, insufficient evidence links the present-day chickens to their founding lineages due to an unclear timeline of translocations and routes of dispersal across the ISEA.

To address this research gap, Chapter II extensively characterized the complete mitochondrial DNA (mtDNA) D-loop sequences of native chickens (NCs) from the Philippines and the South Pacific and Philippine red junglefowl (RJF) to assess their matrilineal phylogeny and genetic diversity and population genetic structure across ISEA and Oceania. The phylogeny reconstruction and estimation of their population genetic structure were based on 107 newly generated mtDNA complete D-loop sequences, consisting of 34 haplotypes. This study found that the Philippine chickens showed high haplotypic diversity (Hd=0.915± 0.011) across Southeast Asia and Oceania. The phylogenetic analysis and median-joining network revealed predominant maternal lineage haplogroup D classified throughout the population. Concurrently, support for the Philippine-Pacific subclade was evident, suggesting a founding lineage of the Philippine chickens before diverging to the Pacific chicken populations. This study also significantly estimated the Philippine red junglefowl at the phylogenetic tree’s basal position, suggesting an earlier introduction into the Philippines, potentially from mainland Southeast Asia. The extremely low genetic differentiation and high rate of gene introgression of the Philippine chickens into the Oceanic populations suggests an expansion signal. Furthermore, this study assessed their demographic signature based on Bayesian Skyline Plot analysis and demonstrated an increase in the maternal effective population size of the Philippine chickens around 3,000-2,500 years BP. This population expansion signal likely relates to the human settlement and expansion events of the Austronesian agricultural societies in the Philippines sometime in the past.

Subsequently, the unresolved question remains whether the founding lineages of chickens introduced in the Philippines arrived as wild or descendants of wild endemic populations that potentially entered the archipelago during lowered sea levels through the Sunda shelf. Alternatively, they are descendants of domestic chickens from mainland Southeast Asia (MSEA) that have undergone feralization. To provide context to this conjecture, Chapter III characterized large-scale mtDNA sequences of chickens from MSEA (Cambodia, Laos, Thailand, and Myanmar), the Philippines, and the Pacific, spanning a geographical transect encompassing possible translocations of this species in the region. This study combined these newly generated sequence data with previously published data of ISEA chickens, Pacific chickens, and neighboring chicken populations in Asia. Furthermore, this study sought to obtain an updated perspective of the matrilineal phylogeny and demographic events that shaped the genetic diversity of SEA and the Pacific chickens.

The consensus from several molecular studies documented domestic chickens evolved from RJF somewhere in southwestern China and Southeast Asia. However, identifying their exact geographic center of origin and consequent translocation to the island archipelago has been challenging. Chapter III presented a comprehensive resolution of mitochondrial lineage diversity and phylogenetic analyses, population differentiation, and demographic inference of chickens in Southeast Asia and the Pacific region. Patterns of sequence variation indicated that chickens in the MSEA region have higher intrapopulation genetic diversity (Hd=0.963 ± 0.005; π=0.00782 ± 0.00398) than island populations (Hd=0.942 ± 0.009; π=0.00466 ± 0.00249). The substantial diversity of SEA chickens reflects the high matrilineal genetic variation documented in the major haplogroups, particularly haplogroup D with many divergent haplotypes and haplogroup V, which has been detected only in Thailand, Cambodia, and Laos. Divergent sub-haplogroups that retained ancestral mutational motifs were also observed in these lineages, likely due to the geographic proximity to the center of domestication. Strong topological supports from the phylogenetic trees consistently provide evidence for haplogroup D ancestral lineage (i.e., sub-haplogroup D2) from MSEA populations. A new matrilineage (i.e., sub-haplogroup V2) gave rise to the population of domestic chickens from Cambodia, Laos, and Thailand. Likewise, their ancestral lineage (i.e., sub-haplogroup V1) was represented in the Thai RJF (i.e., G. g. gallus).

Interestingly, this potential ancestral matriline sub-haplogroup D2 and newfound matriline haplogroup V were identified in sampling areas along the Lower Mekong subregion, for example, in Kampong Cham, Mondulkiri, Stung Treng, and Kratie provinces in Cambodia and Champasak and Bolikhamsai provinces in Laos. The coalescent-based Bayesian demographic analyses detected earlier effective population size expansion in MSEA chickens, while island populations showed more recent demographic growth signatures. The timing of the demographic evolution of this hypothesized founding population can be explained by the cultural importance of stock-raising in the MSEA as early as 4,000 years BP. It was well documented that agriculture and animal-raising were among the subsistence activities of domestic communities during prehistoric settlements in the broad valleys of the Lower Mekong. This study validated the unique population dynamics of Southeast Asian chickens, implying a large gene pool that has been conserved in the populations for a long time and that some were a subset of the RJF population involved in the domestication. This suggests that island chickens are potentially descendants from populations domesticated in MSEA and diverged into distinct subgroups following colonization in the island archipelago.

The earlier domestication of chickens in mainland Southeast Asia and consequent translocation to the island archipelago entering southern Philippines and Palawan are deliberately linked with human movement. However, little is known about the evolutionary links and temporal divergence between continental and island chickens, especially since archaeological records of chicken bones in the region are scarce. With the increasing genetic data and resolving power of sequence data in recent years, computer simulation methods (e.g., coalescence simulation) have been shown efficient at testing different evolutionary and demographic models of expanding and migrating populations. Furthermore, time trees or phylogenies with absolute divergence times provide incomparably richer information than a species phylogeny without a temporal clue. It makes it possible for species divergence or coalescence events to be calibrated to time.

Chapter IV estimates the lineage-specific divergence of MSEA, ISEA, and Pacific chickens using Bayesian molecular clock method. The time tree phylogeny in the coalescent framework estimates the nodal ages of biogeographically important haplogroups predominant in Southeast Asia. The coalescence time estimates of haplogroups D and V are consistent with their demographic evolution and expansion in the region, around 3,700-4,000 years BP and 3,800-4,400 years BP, respectively. Likewise, the most recent common ancestor of modern Philippine-Pacific chickens (i.e., sub-haplogroup D1b), including the ancient Pacific sequences dates to 2.1 kya (95% HPD 1,467–2,815 years). Caution is warranted for this interpretation because the coalescence age estimate of gene copies in ancestral populations is not equivalent to a population split, nor does it represent the actual onset of domestication.

In conclusion, this study provides a comprehensive insight into the genetic diversity, phylogeography, and population dynamics of Southeast Asian chickens. High-resolution matrilineal phylogeny sheds new light on the evolutionary history of globally acknowledged haplogroups of SEA and Pacific chickens. It provides evidence of a new divergent matrilineage that is distributed across its native range in the Lower Mekong subregion. This study documented the presence of a distinct island chicken subgroup that represents a unique genetic uniformity between the Philippines and the Pacific despite their geographical isolation. This latterly expanded matriline is unique to the island archipelago, suggesting a human-mediated scenario on their translocation. Moreover, their phylogeographic signal corresponds to the initial introduction pattern of its founding matrilines (i.e., sub-haplogroup D2) from MSEA. The genetic information of this valuable animal resource is essential for conservation efforts, and these data serve as a baseline for monitoring to avoid further loss of genetic diversity. Finally, this asserts excellent potential for genetic improvement and selection of traits for developing sustainable chicken production systems in Southeast Asia.

この論文で使われている画像

参考文献

Adebambo, A. O., Mobegi, V. A., Mwacharo, J. M., Oladejo, B. M., Adewale, R. A., Iiri, L. O., Makanjuola, B. O., Afolayan, O., Björnstad, G., Jianlin, H., & Hanotte, O. (2010). Lack of phylogeographic structure in Nigerian village chickens revealed by mitochondrial DNA D-loop sequence analysis. International Journal of Poultry Science, 9(5), 503–507. https://doi.org/10.3923/ijps.2010.503.507

Alam, O., Gutaker, R. M., Wu, C. C., Hicks, K. A., Bocinsky, K., Castillo, C. C., Acabado, S., Fuller, D., Guedes, J. A. D. A., Hsing, Y. I., & Purugganan, M. D. (2021). Genome Analysis Traces Regional Dispersal of Rice in Taiwan and Southeast Asia. Molecular Biology and Evolution, 38(11), 4832–4846. https://doi.org/10.1093/molbev/msab209

Alexander, M., Ho, S. Y. W., Molak, M., Barnett, R., Carlborg, Ö., Dorshorst, B., Honaker, C., Besnier, F., Wahlberg, P., Dobney, K., Siegel, P., Andersson, L., & Larson, G. (2015). Mitogenomic analysis of a 50-generation chicken pedigree reveals a rapid rate of mitochondrial evolution and evidence for paternal mtDNA inheritance. Biology Letters, 11(10), 20150561. https://doi.org/10.1098/rsbL.2015.0561

Al-Jumaili, A. S., Boudali, S. F., Kebede, A., Al-Bayatti, S. A., Essa, A. A., Ahbara, A., Aljumaah, R. S., Alatiyat, R. M., Mwacharo, J. M., Bjørnstad, G., Naqvi, A. N., Gaouar, S. B. S., & Hanotte, O. (2020). The maternal origin of indigenous domestic chicken from the Middle East, the north and the horn of Africa. BMC Genetics, 21, 30. https://doi.org/10.1186/s12863-020-0830- 0/figures/5

Angelis, K., & dos Reis, M. (2015). The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Current Zoology, 61(5), 874–885. https://doi.org/10.1093/czoolo/61.5.874

Arenas, M., Gorostiza, A., Baquero, J. M., Campoy, E., Branco, C., Rangel-Villalobos, H., & González-Martín, A. (2020). The Early Peopling of the Philippines based on mtDNA. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-61793-7

Austerlitz, F., Jung-Muller, B., Godelle, B., & Gouyon, P. H. (1997). Evolution of coalescence times, genetic diversity and structure during colonization. Theoretical Population Biology, 51(2), 148–164. https://doi.org/10.1006/tpbI.1997.1302

Avise, J. C., Arnold, J., Martin Bal, R., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., & Saunders, N. C. (1987). Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annual Review of Ecology and Systematics, 18, 489–522. www.annualreviews.org

Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.A026036

Bedford, S., Spriggs, M., & Regenvanu, R. (2006). The Teouma Lapita site and the early human settlement of the Pacific Islands. Antiquity, 80(310), 812–828. https://doi.org/10.1017/s0003598x00094448

Bellwood, P. (2005). First Farmers: The Origins of Agricultural Societies. Blackwell Publishing Ltd.

Bellwood, P. (2007). Prehistory of the Indo-Malaysian Archipelago: Revised Edition. ANU E Press. Bellwood, P. (2017). First Islanders: Prehistory and Human Migration in Island Southeast Asia. Wiley Blackwell, Oxford.

Bibi, F. (2013). A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evolutionary Biology, 13(1), 1–15. https://doi.org/10.1186/1471-2148-13-166/figures/3

Bird, M. I., Taylor, D., & Hunt, C. (2005). Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quaternary Science Reviews, 24(20–21), 2228–2242. https://doi.org/10.1016/j.quascirev.2005.04.004

Blust, R. (1995). The prehistory of the Austronesian-speaking peoples: A view from language. Journal of World Prehistory 1995 9:4, 9(4), 453–510. https://doi.org/10.1007/bf02221119

Boettcher, P. J., Tixier-Boichard, M., Toro, M. A., Simianer, H., Eding, H., Gandini, G., Joost, S., Garcia, D., Colli, L., & Ajmone-Marsan, P. (2010). Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Animal Genetics, 41(SUPPL. 1), 64–77. https://doi.org/10.1111/j.1365-2052.2010.02050.x

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., de Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650

Brown, R. M., Siler, C. D., Oliveros, C. H., Esselstyn, J. A., Diesmos, A. C., Hosner, P. A., Linkem, C. W., Barley, A. J., Oaks, J. R., Sanguila, M. B., Welton, L. J., Blackburn, D. C., Moyle, R. G., Townsend Peterson, A., & Alcala, A. C. (2013). Evolutionary Processes of Diversification in a Model Island Archipelago. Annual Reviews of Ecology, Evolution, and Systematics , 44, 411–435. https://doi.org/10.1146/annurev-ecolsys-110411-160323

Castillo, C. C., Bellina, B., Fuller, D. Q., Khao, B., Kaeo, S., & Thong, P. K. (2016). Rice, beans and trade crops on the early maritime Silk Route in Southeast Asia. Antiquity, 90(353), 1255–1269. https://doi.org/10.15184/aqy.2016.175

Chang, C. S., Chen, C. F., Berthouly-Salazar, C., Chazara, O., Lee, Y. P., Chang, C. M., Chang, K. H., Bed’Hom, B., & Tixier-Boichard, M. (2012). A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Animal Genetics, 43(2), 172–182. https://doi.org/10.1111/j.1365-2052.2011.02226.x

Collias, N. E., & Saichuae, P. (1967). Ecology of the red junglefowl in Thailand and Malaya with reference to the origin of domestication. National History Bulletin of the Siam Society, 22, 189– 209.

Compendio, J. D. (2022). Morphological and phylogenetic studies on the genetic diversity and origin of Philippine red junglefowl. Hiroshima University.

Compendio, J. D., Mantana, J. M. N., & Nishibori, M. (2022). Analysis of the mtDNA D-loop Region Casts New Light on Philippine Red Junglefowl Phylogeny and Relationships to Other Junglefowl Species in Asia. The Journal of Poultry Science, in press. https://doi.org/10.2141/jpsa.0210140

Crawford, R. D. (1984). Domestic fowl. In I. Mason (Ed.), Evolution of domesticated animals (pp.298–310). Longman.

Cuc, N. T. K., Simianer, H., Groeneveld, L. F., & Weigend, S. (2011). Multiple maternal lineages of vietnamese local chickens inferred by mitochondrial dna D-loop sequences. Asian-Australasian Journal of Animal Sciences, 24(2), 155–161. https://doi.org/10.5713/ajas.2011.10155

Currat, M., Ruedi, M., Petit, R. J., & Excoffier, L. (2008). The hidden side of invasions: massive introgression by local genes. Evolution, 62(8), 1908–1920. https://doi.org/10.1111/j.1558- 5646.2008.00413.x

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). JModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109

Dancause, K. N., Vilar, M. G., Steffy, R., & Lum, J. K. (2011). Characterizing genetic diversity of contemporary pacific chickens using mitochondrial DNA analyses. PLoS ONE, 6(2), e16843. https://doi.org/10.1371/journal.pone.0016843

Darwin, C. (1868). The Variation of Animals and Plants under Domestication. John Murray.

Delacour, J. (1977). The Pheasant of the World. Saiga Publishing Co. Ltd., Surrey. https://agris.fao.org/agris-search/search.do?recordid=us201300559405

Deng, H., Yuan, J., Song, G., Wang, C., & Eda, M. (2013). Reexamination of the domestic chicken in ancient China. Acta Archaeological Sinica, 6, 83–96. https://doi.org/10.1515/char-2014-0021

Diamond, J., & Bellwood, P. (2003). Farmers and their languages: The first expansions. Science, 300(5619), 597–603. https://doi.org/10.1126/science.1078208

Ding, Z. L., Oskarsson, M., Ardalan, A., Angleby, H., Dahlgren, L. G., Tepeli, C., Kirkness, E., Savolainen, P., & Zhang, Y. P. (2012). Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA. Heredity, 108(5), 507–514. https://doi.org/10.1038/hdy.2011.114

dos Reis, M., Donoghue, P. C. J., & Yang, Z. (2016). Bayesian molecular clock dating of species divergences in the genomics era. Nature Reviews Genetics, 17(2), 71–80. https://doi.org/10.1038/nrg.2015.8

Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22(5), 1185–1192. https://doi.org/10.1093/molbev/msi103

Eda, M. (2021). Origin of the domestic chicken from modern biological and zooarchaeological approaches. Animal Frontiers, 11(3), 52–61. https://doi.org/10.1093/af/vfab016

Eda, M., Lu, P., Kikuchi, H., Li, Z., Li, F., & Yuan, J. (2016). Reevaluation of early Holocene chicken domestication in northern China. Journal of Archaeological Science, 67, 25–31. https://doi.org/10.1016/j.jas.2016.01.012

Eda, M., Shoocongdej, R., Auetrakulvit, P., & Kachajiwa, J. (2019). The history of chicken and other bird exploitation in Thailand: Preliminary analysis of bird remains from four archaeological sites. International Journal of Osteoarchaeology, 29(2), 231–237. https://doi.org/10.1002/oa.2731

Eriksson, J., Larson, G., Gunnarsson, U., Bed’hom, B., Tixier-Boichard, M., Strömstedt, L., Wright, D., Jungerius, A., Vereijken, A., Randi, E., Jensen, P., & Andersson, L. (2008). Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genetics, 4(2), e1000010. https://doi.org/10.1371/journal.pgen.1000010

Evans, S. R., & Sheldon, B. C. (2008). Interspecific patterns of genetic diversity in birds: Correlations with extinction risk. Conservation Biology, 22(4), 1016–1025. https://doi.org/10.1111/j.1523- 1739.2008.00972.x

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Food and Agriculture Organization. (2022). Gateway to poultry production and products: Chickens, Food and Agriculture Organization of the United Nations (FAO, 2022). https://www.fao.org/poultry-production-products/production/poultry-species/chickens/en

Food and Agriculture Organization. (2015). The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture (FAO, 2015). The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. https://doi.org/10.4060/I4787e

Food and Agriculture Organization. (2007). The State of the World’s Animal Genetic Resources for Food and Agriculture. (Rome, 2007).

Frantz, L. A. F., Bradley, D. G., Larson, G., & Orlando, L. (2020). Animal domestication in the era of ancient genomics. Nature Reviews Genetics 2020 21:8, 21(8), 449–460. https://doi.org/10.1038/s41576-020-0225-0

Frantz, L. A. F., Mullin, V. E., Pionnier-Capitan, M., Lebrasseur, O., Ollivier, M., Perri, A., Linderholm, A., Mattiangeli, V., Teasdale, M. D., Dimopoulos, E. A., Tresset, A., Duffraisse, M., McCormick, F., Bartosiewicz, L., Gál, E., Nyerges, É. A., Sablin, M. v., Bréhard, S., Mashkour, M., … Larson, G. (2016). Genomic and archaeological evidence suggests a dual origin of domestic dogs. Science, 352(6290), 1228–1231.

Frantz, L. A. F., Schraiber, J. G., Madsen, O., Megens, H. J., Cagan, A., Bosse, M., Paudel, Y., Crooijmans, R. P. M. A., Larson, G., & Groenen, M. A. M. (2015). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics, 47(10), 1141–1148. https://doi.org/10.1038/ng.3394

Fu, Y. X. (1997). Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics, 147(2), 915–925. https://doi.org/10.1093/genetics/147.2.915

Fumihito, A., Miyake, T., Sumi, S. I., Takada, M., Ohno, S., & Kondo, N. (1994). One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12505–12509. https://doi.org/10.1073/pnas.91.26.12505

Fumihito, A., Miyake, T., Takada, M., Shingu, R., Endo, T., Gojobori, T., Kondo, N., & Ohno, S. (1996). Monophyletic origin and unique dispersal patterns of domestic fowls. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6792–6795. https://doi.org/10.1073/pnas.93.13.6792

Gao, Y. S., Jia, X. X., Tang, X. J., Fan, Y. F., Lu, J. X., Huang, S., & Tang, M. J. (2017). The genetic diversity of chicken breeds from Jiangxi, assessed with BCDO2 and the complete mitochondrial DNA D-loop region. PLoS ONE, 12(3), e0173192. https://doi.org/10.1371/journal.pone.0173192

Giles, F. H. (1932). Miscellaneous notes. No. III. Migration of Jungle-fowl. Nat Hist Bull Siam Soc, 8(4), 333–334.

Godinez, C. J. P., Nishibori, M., Matsunaga, M., & Espina, D. M. (2019). Phylogenetic studies on red jungle fowl (Gallus gallus) and native chicken (gallus gallus domesticus) in samar island, Philippines using the mitochondrial DNA D-loop region. Journal of Poultry Science, 56(4). https://doi.org/10.2141/jpsa.0180131

Godinez, C. J. P., Dadios, P. J. D., Espina, D. M., Matsunaga, M., & Nishibori, M. (2021). Population genetic structure and contribution of Philippine chickens to the Pacific chicken diversity inferred from mitochondrial DNA. Frontiers in Genetics, 12, 698401. https://doi.org/10.3389/fgene.2021.698401

Green, M. R., & Sambrook, J. (2012). Molecular Cloning: a Laboratory Manual (Fourth Ed). Cold Spring Harbor Laboratory Press.

Groeneveld, L. F., Lenstra, J. A., Eding, H., Toro, M. A., Scherf, B., Pilling, D., Negrini, R., Finlay, E. K., Jianlin, H., Groeneveld, E., & Weigend, S. (2010). Genetic diversity in farm animals-a review. Animal Genetics, 41, 6–31. https://doi.org/10.1111/j.1365-2052.2010.02038.x

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010

Guo, H. W., Li, C., Wang, X. N., Li, Z. J., Sun, G. R., Li, G. X., Liu, X. J., Kang, X. T., & Han, R. L. (2017). Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds. British Poultry Science, 58(5), 490–497. https://doi.org/10.1080/00071668.2017.1332403

Gutaker, R. M., Groen, S. C., Bellis, E. S., Choi, J. Y., Pires, I. S., Bocinsky, R. K., Slayton, E. R., Wilkins, O., Castillo, C. C., Negrão, S., Oliveira, M. M., Fuller, D. Q., Guedes, J. A. d’Alpoim, Lasky, J. R., & Purugganan, M. D. (2020). Genomic history and ecology of the geographic spread of rice. Nature Plants 2020 6:5, 6(5), 492–502. https://doi.org/10.1038/s41477-020-0659-6

Hall, T. (1999). BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41, 95–98. https://ci.nii.ac.jp/naid/10030689140

Harpending, H. C. (1994). Signature of Ancient Population Growth in a Low-Resolution Mitochondrial DNA Mismatch Distribution. Human Biology. https://www.jstor.org/stable/41465371?seq=1

Harpending, H. C., Batzer, M., Gurven, M., Jorde, L. B., Rogers, A. R., & Sherry, S. T. (1998). Genetic traces of ancient demography. Proceedings of the National Academy of Sciences of the United States of America, 95(4), 1961–1967. https://doi.org/10.1073/pnas.95.4.1961

Hassaballah, K., Zeuh, V., A. Lawal, R., Hanotte, O., & Sembene, M. (2015). Diversity and Origin of Indigenous Village Chickens (Gallus gallus) from Chad, Central Africa. Advances in Bioscience and Biotechnology, 06(09), 592–600. https://doi.org/10.4236/abb.2015.69062

Hata, A., Nunome, M., Suwanasopee, T., Duengkae, P., Chaiwatana, S., Chamchumroon, W., Suzuki, T., Koonawootrittriron, S., Matsuda, Y., & Srikulnath, K. (2021). Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red junglefowl and indigenous chickens. Scientific Reports, 11, 2035. https://doi.org/10.1038/s41598-021-81589-7

Hata, A., Takenouchi, A., Kinoshita, K., Hirokawa, M., Igawa, T., Nunome, M., Suzuki, T., & Tsudzuki, M. (2020). Geographic origin and genetic characteristics of Japanese indigenous chickens inferred from mitochondrial D-loop region and microsatellite DNA markers. Animals, 10(11), 2074. https://doi.org/10.3390/ani10112074

Heaney, L. R. (1991). A synopsis of climatic and vegetational change in Southeast Asia. Climate Change, 53–61.

Heller, R., Chikhi, L. & Siegismund, H. R. The Confounding Effect of Population Structure on Bayesian Skyline Plot Inferences of Demographic History. PLoS One 8, e62992 (2013).

Herrera, M. J. B. (2015). Genetic studies on prehistoric translocations of chickens in the Indo-Pacific. University of Adelaide.

Herrera, M. B., Thomson, V. A., Wadley, J. J., Piper, P. J., Sulandari, S., Dharmayanthi, A. B., Kraitsek, S., Gongora, J., & Austin, J. J. (2017). East African origins for Madagascan chickens as indicated by mitochondrial DNA. Royal Society Open Science, 4(3). https://doi.org/10.1098/rsos.160787

Herrera, M. B., Kraitsek, S., Alcalde, J. A., Quiroz, D., Revelo, H., Alvarez, L. A., Rosario, M. F., Thomson, V., Jianlin, H., Austin, J. J., & Gongora, J. (2020). European and Asian contribution to the genetic diversity of mainland South American chickens. Royal Society Open Science, 7(2), 191558. https://doi.org/10.1098/rsos.191558

Higham, C. (1989). The archaeology of mainland Southeast Asia: from 10,000 B.C. to the fall of Angkor. Cambridge University Press.

Higham, C. F. W. (2021). The later prehistory of Southeast Asia and southern China: the impact of exchange, farming and metallurgy. Asian Archaeology 2021 4:2, 4(2), 63–93. https://doi.org/10.1007/s41826-021-00040-y

Higham, C., & Higham, T. (2009). A new chronological framework for prehistoric Southeast Asia, based on a Bayesian model from Ban Non Wat. Antiquity, 83(319), 125–144. https://doi.org/10.1017/s0003598x00098136

Ho, P.-T. (1977). The indigenous origins of Chinese agriculture. In C. A. Reed (Ed.), Origins of Agriculture (pp. 413–484). The Hague: Mouton.

Ho, S. Y. W., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., & Cooper, A. (2011). Time-dependent rates of molecular evolution. Molecular Ecology, 20(15), 3087–3101. https://doi.org/10.1111/j.1365-294x.2011.05178.x

Ho, S. Y. W., & Phillips, M. J. (2009). Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology, 58(3), 367–380. https://doi.org/10.1093/sysbio/syp035

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281

Huang, X. H., Wu, Y. J., Miao, Y. W., Peng, M. S., Chen, X., He, D. L., Suwannapoom, C., Du, B. W., Li, X. Y., Weng, Z. X., Jin, S. H., Song, J. J., Wang, M. S., Chen, J. B., Li, W. N., Otecko, N. O., Geng, Z. Y., Qu, X. Y., Wu, Y. P., … Zhang, Y. P. (2018). Was chicken domesticated in northern China? New evidence from mitochondrial genomes. Science Bulletin, 63(12), 743– 746. https://doi.org/10.1016/j.scib.2017.12.004

Hung, H. C., Carson, M. T., Bellwood, P., Campos, F. Z., Piper, P. J., Dizon, E., Bolunia, M. J. L. A., Oxenham, M., & Chi, Z. (2011). The first settlement of remote oceania: The Philippines to the Marianas. Antiquity, 85(329), 909–926. https://doi.org/10.1017/S0003598x00068393

Islam, M. A., Osman, S. A. M., & Nishibori, M. (2019). Genetic diversity of Bangladeshi native chickens based on complete sequence of mitochondrial DNA D-loop region. British Poultry Science, 60(6), 628–637. https://doi.org/10.1080/00071668.2019.1655708

Jinam, T. A., Hong, L. C., Phipps, M. E., Stoneking, M., Ameen, M., Edo, J., & Saitou, N. (2012). Evolutionary history of continental southeast asians: Early train hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution, 29(11), 3513–3527. https://doi.org/10.1093/molbev/mss169

Johnsson, M., Gering, E., Willis, P., Lopez, S., van Dorp, L., Hellenthal, G., Henriksen, R., Friberg, U., & Wright, D. (2016). Feralisation targets different genomic loci to domestication in the chicken. Nature Communications, 7(1), 1–11. https://doi.org/10.1038/ncomms12950

Jones, A. W., & Kennedy, R. S. (2008). Evolution in a tropical archipelago: Comparative phylogeography of Philippine fauna and flora reveals complex patterns of colonization and diversification. Biological Journal of the Linnean Society, 95(3), 620–639. https://doi.org/10.1111/j.1095-8312.2008.01073.x

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 2017 14:6, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285

Kanginakudru, S., Metta, M., Jakati, R. D., & Nagaraju, J. (2008). Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evolutionary Biology, 8, 174. https://doi.org/10.1186/1471-2148-8-174

Kawabe, K., Worawut, R., Taura, S., Shimogiri, T., Nishida, T., & Okamoto, S. (2014). Genetic diversity of mtDNA D-loop polymorphisms in laotian native fowl populations. Asian- Australasian Journal of Animal Sciences, 27(1), 19–23. https://doi.org/10.5713/ajas.2013.13443

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547. https://doi.org/10.1093/molbev/msy096

Larena, M., Sanchez-Quinto, F., Sjödin, P., McKenna, J., Ebeo, C., Reyes, R., Casel, O., Huang, J. Y., Hagada, K. P., Guilay, D., Reyes, J., Allian, F. P., Mori, V., Azarcon, L. S., Manera, A., Terando, C., Jamero, L., Sireg, G., Manginsay-Tremedal, R., … Jakobsson, M. (2021). Multiple migrations to the Philippines during the last 50,000 years. Proceedings of the National Academy of Sciences of the United States of America, 118(13), e2026132118. https://doi.org/10.1073/PNAS.2026132118/-/dcsupplemental

Larson, G., & Burger, J. (2013). A population genetics view of animal domestication. Trends in Genetics, 29(4), 197–205. https://doi.org/10.1016/j.tig.2013.01.003

Larson, G., Cucchi, T., Fujita, M., Matisoo-Smith, E., Robins, J., Anderson, A., Rolett, B., Spriggs, M., Dolman, G., Kim, T. H., Thuy, N. T. D., Randi, E., Doherty, M., Due, R. A., Bollt, R., Djubiantono, T., Griffin, B., Intoh, M., Keane, E., … Dobney, K. (2007). Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 4834–4839. https://doi.org/10.1073/pnas.0607753104

Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Lowden, S., Finlayson, H., Brand, T., Willerslev, E., Rowley-Conwy, F., Andersson, L., & Cooper, A. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 307(5715), 1618–1621. https://doi.org/10.1126/science.1106927/suppl_file/larson.som.pdf

Larson, G., & Fuller, D. Q. (2014). The Evolution of Animal Domestication. Annual Review of Ecology, Evolution, and Systematics, 45, 115–136. https://doi.org/10.1146/annurev-ecolsys- 110512-135813

Larson, G., Karlsson, E. K., Perri, A., Webster, M. T., Ho, S. Y. W., Peters, J., Stahl, P. W., Piper, P. J., Lingaas, F., Fredholm, M., Comstock, K. E., Modiano, J. F., Schelling, C., Agoulnik, A. I., Leegwater, P. A., Dobney, K., Vigne, J. D., Vilà, C., Andersson, L., & Lindblad-Toh, K. (2012). Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8878–8883. https://doi.org/10.1073/pnas.1203005109

Larson, G., Liu, R., Zhao, X., Yuan, J., Fuller, D., Barton, L., Dobney, K., Fan, Q., Gu, Z., Liu, X.-H., Luo, Y., Lv, P., Andersson, L., & Li, N. (2010). Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7686–7691. https://doi.org/10.1073/pnas.0912264107

Larson, G., Piperno, D. R., Allaby, R. G., Purugganan, M. D., Andersson, L., Arroyo-Kalin, M., Barton, L., Vigueira, C. C., Denham, T., Dobney, K., Doust, A. N., Gepts, P., Gilbert, M. T. P., Gremillion, K. J., Lucas, L., Lukens, L., Marshall, F. B., Olsen, K. M., Pires, J. C., … Fuller, D. Q. (2014). Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6139–6146. https://doi.org/10.1073/pnas.1323964111

Lawal, R. A., & Hanotte, O. (2021). Domestic chicken diversity: Origin, distribution, and adaptation. Animal Genetics, 52(4), 385–394. https://doi.org/10.1111/age.13091

Lawal, R. A., Martin, S. H., Vanmechelen, K., Vereijken, A., Silva, P., Al-Atiyat, R. M., Aljumaah, R. S., Mwacharo, J. M., Wu, D.-D., Zhang, Y.-P., Hocking, P. M., Smith, J., Wragg, D., & Hanotte, O. (2020). The wild species genome ancestry of domestic chickens. BMC Biology, 18(13), 13. https://doi.org/10.1186/S12915-020-0738-1

Lawler A. (2015). Why Did The Chicken Cross The World? https://www.andrewlawler.com/chicken- book/

Lawler, A. (2020). Dawn of the chicken revealed in Southeast Asia. Science, 368(6498), 1411. https://doi.org/10.1126/science.368.6498.1411

Layos, J. K. N., Godinez, C. J. P., Liao, L. M., Yamamoto, Y., Masangkay, J. S., Mannen, H., & Nishibori, M. (2022). Origin and Demographic History of Philippine Pigs Inferred from Mitochondrial DNA. Frontiers in Genetics, 12:823364. https://doi.org/10.3389/fgene.2021.823364/bibtex

le Bail, H., & Tournier, A. (2010). From Kunming to Mandalay: The New “Burma Road.” Asie Visions, 25, 1–46.

Leigh, J. W., & Bryant, D. (2015). popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210x.12410

Li, K. Y., Li, K. T., Yang, C. H., Hwang, M. H., Chang, S. W., Lin, S. M., Wu, H. J., Basilio, E. B., Vega, R. S. A., Laude, R. P., & Ju, Y. T. (2017). Insular East Asia pig dispersal and vicariance inferred from Asian wild boar genetic evidence. Journal of Animal Science, 95(4), 1451–1466. https://doi.org/10.2527/jas.2016.1117

Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., Clamp, M., Chang, J. L., Kulbokas, E. J., Zody, M. C., Mauceli, E., Xie, X., Breen, M., Wayne, R. K., Ostrander, E. A., Ponting, C. P., Galibert, F., Smith, D. R., DeJong, P. J., … Kumar, M. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438, 803–819. https://doi.org/10.1038/nature04338

Lipson, M., Loh, P. R., Patterson, N., Moorjani, P., Ko, Y. C., Stoneking, M., Berger, B., & Reich, D. (2014). Reconstructing Austronesian population history in Island Southeast Asia. Nature Communications, 5, 4689. https://doi.org/10.1038/ncomms5689

Liu, L., Lee, G. A., Jiang, L., & Zhang, J. (2007). Evidence for the early beginning (c. 9000 cal. BP) of rice domestication in China: A response. Holocene, 17(8), 1059–1068. https://doi.org/10.1177/0959683607085121

Liu, Y. P., Wu, G. S., Yao, Y. G., Miao, Y. W., Luikart, G., Baig, M., Beja-Pereira, A., Ding, Z. L., Palanichamy, M. G., & Zhang, Y. P. (2006). Multiple maternal origins of chickens: Out of the Asian jungles. Molecular Phylogenetics and Evolution, 38(1), 12–19. https://doi.org/10.1016/j.ympev.2005.09.014

Lohman, D. J., de Bruyn, M., Page, T., von Rintelen, K., Hall, R., Ng, P. K. L., Shih, H. te, Carvalho, G. C., & von Rintelen, T. (2011). Biogeography of the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics, 42, 205–231. https://doi.org/10.1146/annurev- ecolsys-102710-145001

Lohman, D. J., Ingram, K. K., Prawiradilaga, D. M., Winker, K., Sheldon, F. H., Moyle, R. G., Ng, P. K. L., Ong, P. S., Wang, L. K., Braile, T. M., Astuti, D., & Meier, R. (2010). Cryptic genetic diversity in “widespread” Southeast Asian bird species suggests that Philippine avian endemism is gravely underestimated. Biological Conservation, 143(8), 1885–1890. https://doi.org/10.1016/j.biocon.2010.04.042

Luo, W., Luo, C., Wang, M., Guo, L., Chen, X., Li, Z., Zheng, M., Folaniyi, B. S., Luo, W., Shu, D., Song, L., Fang, M., Zhang, X., Qu, H., & Nie, Q. (2020). Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-71421-z

Malomane, D. K., Simianer, H., Weigend, A., Reimer, C., Schmitt, A. O., & Weigend, S. (2019). The SYNBREED chicken diversity panel: A global resource to assess chicken diversity at high genomic resolution. BMC Genomics, 20(1), 345. https://doi.org/10.1186/s12864-019-5727- 9/figures/4

Mariadassou, M., Suez, M., Sathyakumar, S., Vignal, A., Arca, M., Nicolas, P., Faraut, T., Esquerré, D., Nishibori, M., Vieaud, A., Chen, C. F., Manh Pham, H., Roman, Y., Hospital, F., Zerjal, T., Rognon, X., & Tixier-Boichard, M. (2021). Unraveling the history of the genus Gallus through whole genome sequencing. Molecular Phylogenetics and Evolution, 158, 107044. https://doi.org/10.1016/j.ympev.2020.107044

McGowan, P. J. K., & Kirwan, G. M. (2020). Red Junglefowl (Gallus gallus), version 1.0. In Birds of the World (Ed. by J. Del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.redjun.01

Miao, Y. W., Peng, M. S., Wu, G. S., Ouyang, Y. N., Yang, Z. Y., Yu, N., Liang, J. P., Pianchou, G., Beja-Pereira, A., Mitra, B., Palanichamy, M. G., Baig, M., Chaudhuri, T. K., Shen, Y. Y., Kong, Q. P., Murphy, R. W., Yao, Y. G., & Zhang, Y. P. (2013). Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity, 110(3), 277–282. https://doi.org/10.1038/hdy.2012.83

Mittermeier, R. A., Robles Gil, P., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J., & da Fonseca, G. A. (2004). Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX.

Mon, S. L. Y., Lwin, M., Maw, A. A., Htun, L. L., Bawm, S., Kawabe, K., Wada, Y., Okamoto, S., & Shimogiri, T. (2021). Phylogenetic analysis of Myanmar indigenous chickens using mitochondrial D-loop sequence reveals their characteristics as a genetic resource. Animal Science Journal, 92(1), e13647. https://doi.org/10.1111/asj.13647

Mwacharo, J. M., Bjørnstad, G., Mobegi, V., Nomura, K., Hanada, H., Amano, T., Jianlin, H., & Hanotte, O. (2011). Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Molecular Phylogenetics and Evolution, 58(2), 374–382. https://doi.org/10.1016/j.ympev.2010.11.027

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300

Nichols, R. (2001). Gene trees and species trees are not the same. Trends in Ecology & Evolution, 16(7), 358–364. https://doi.org/10.1016/S0169-5347(01)02203-0

Nisar, A., Waheed, A., Khan, S., Feng, X., & Shah, A. H. (2018). Population structure, genetic diversity and phylogenetic analysis of different rural and commercial chickens of Pakistan using complete sequence of mtDNA D-loop. Mitochondrial DNA Part A, 30(2), 273–280. https://doi.org/10.1080/24701394.2018.1484118

Nishibori, M., Hanazono, M., Yamamoto, Y., Tsudzuki, M., & Yasue, H. (2003). Complete nucleotide sequence of mitochondrial DNA in White Leghorn and White Plymouth Rock chickens. Animal Science Journal, 74(5), 437–439. https://doi.org/10.1046/j.1344- 3941.2003.00136.x

Nishibori, M., Hayashi, T., Tsudzuki, M., Yamamoto, Y., & Yasue, H. (2001). Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Animal Genetics, 32(6), 380–385. https://doi.org/10.1046/j.1365- 2052.2001.00795.x

Nishibori, M., Shimogiri, T., Hayashi, T., & Yasue, H. (2005). Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Animal Genetics, 36(5), 367–375. https://doi.org/10.1111/j.1365-2052.2005.01318.x

Nishida, T., Hayashi, Y., Hashiguchi, T., & Supraptini Mansjoer, S. (1985). Morphological Identification and Distribution of Jungle Fowls in Indonesia. Nihon Chikusan Gakkaiho, 56(7), 598–610.

Nishida, T., Rerkamnuaychoke, W., TUNG, D. G., SAIGNALEUS, S., OKAMOTO, S., KAWAMOTO, Y., KIMURA, J., KAWABE, K., TSUNEKAWA, N., OTAKA, H., & HAYASHI, Y. (2000). Morphological Identification and Ecology of the Red Jungle Fowl in Thailand, Laos and Vietnam. Nihon Chikusan Gakkaiho, 71(5), 470–480. https://doi.org/10.2508/chikusan.71.470

Oka, T., Ino, Y., Nomura, K., Kawashima, S., Kuwayama, T., Hanada, H., Amano, T., Takada, M., Takahata, N., Hayashi, Y., & Akishinonomiya, F. (2007). Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Animal Genetics, 38(3), 287–293. https://doi.org/10.1111/j.1365-2052.2007.01604.x

Oskarsson, M. C. R., Klütsch, C. F. C., Boonyaprakob, U., Wilton, A., Tanabe, Y., & Savolainen, P. (2011). Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proceedings of the Royal Society B: Biological Sciences, 279(1730), 967–974. https://doi.org/10.1098/rspb.2011.1395

Osman, S. A. M., Yonezawa, T., & Nishibori, M. (2016). Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region. Poultry Science, 95(6), 1248–1256. https://doi.org/10.3382/ps/pew029

Pang, J. F., Kluetsch, C., Zou, X. J., Zhang, A. B., Luo, L. Y., Angleby, H., Ardalan, A., Ekström, C., Sköllermo, A., Lundeberg, J., Matsumura, S., Leitner, T., Zhang, Y. P., & Savolainen, P. (2009). mtDNA Data Indicate a Single Origin for Dogs South of Yangtze River, Less Than 16,300 Years Ago, from Numerous Wolves. Molecular Biology and Evolution, 26(12), 2849– 2864. https://doi.org/10.1093/molbev/msp195

Parkes, K. C. (1962). The Red Junglefowl of the Philippines: Native or Introduced? The Auk, 79(3), 479–481. https://doi.org/10.2307/4082830

Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1), 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

Peng, M. S., Fan, L., Shi, N. N., Ning, T., Yao, Y. G., Murphy, R. W., Wang, W. Z., & Zhang, Y. P. (2015). DomeTree: a canonical toolkit for mitochondrial DNA analyses in domesticated animals. Molecular Ecology Resources, 15(5), 1238–1242. https://doi.org/10.1111/1755- 0998.12386

Petchey, F., Spriggs, M., Bedford, S., & Valentin, F. (2015). The chronology of occupation at Teouma, Vanuatu: Use of a modified chronometric hygiene protocol and Bayesian modeling to evaluate midden remains. Journal of Archaeological Science: Reports, 4, 95–105. https://doi.org/10.1016/j.jasrep.2015.08.024

Peters, J., Lebrasseur, O., Deng, H., & Larson, G. (2016). Holocene cultural history of red jungle fowl (Gallus gallus) and its domestic descendant in East Asia. Quaternary Science Reviews, 142, 102–119. https://doi.org/10.1016/j.quascirev.2016.04.004

Peters, J., Lebrasseur, O., Irving-Pease, E. K., Paxinos, P. D., Best, J., Smallman, R., Callou, C., Gardeisen, A., Trixl, S., Frantz, L., Sykes, N., Fuller, D. Q., & Larson, G. (2022). The biocultural origins and dispersal of domestic chickens. Proceedings of the National Academy of Sciences, 119(24). https://doi.org/10.1073/pnas.2121978119

Piper, P. J. (2017). The origins and arrival of the earliest domestic animals in Mainland and Island Southeast Asia: a developing story of complexity. In New Perspectives in Southeast Asian and Pacific Prehistory (pp. 251–264). ANU Press.

Piper, P. J., Campos, F. Z., Ngoc Kinh, D., Amano, N., Oxenham, M., Chi Hoang, B., Bellwood, P., & Willis, A. (2014). Early evidence for pig and dog husbandry from the neolithic site of an son, Southern Vietnam. International Journal of Osteoarchaeology, 24(1), 68–78. https://doi.org/10.1002/oa.2226

Pitt, J., Gillingham, P. K., Maltby, M., & Stewart, J. R. (2016). New perspectives on the ecology of early domestic fowl: An interdisciplinary approach. Journal of Archaeological Science, 74, 1–10. https://doi.org/10.1016/j.jas.2016.08.004

Powell, C. L. E., Waskin, S., & Battistuzzi, F. U. (2020). Quantifying the error of secondary vs. distant primary calibrations in a simulated environment. Frontiers in Genetics, 11, 252. https://doi.org/10.3389/fgene.2020.00252/bibtex

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901– 904. https://doi.org/10.1093/sysbio/syy032

Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19(12), 2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.A004034

Ray, N., Currat, M., & Excoffier, L. (2003). Intra-deme molecular diversity in spatially expanding populations. Molecular Biology and Evolution, 20(1), 76–86. https://doi.org/10.1093/molbev/msg009

Reddy, S., Kimball, R. T., Pandey, A., Hosner, P. A., Braun, M. J., Hackett, S. J., Han, K. L., Harshman, J., Huddleston, C. J., Kingston, S., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Witt, C. C., Yuri, T., & Braun, E. L. (2017). Why Do Phylogenomic Data Sets Yield Conflicting Trees? Data Type Influences the Avian Tree of Life more than Taxon Sampling. Systematic Biology, 66(5), 857–879. https://doi.org/10.1093/sysbio/syx041

Ren, T., Nunome, M., Suzuki, T., & Matsuda, Y. (2022). Genetic diversity and population genetic structure of Cambodian indigenous chickens. Animal Bioscience, 35(6), 826–837. https://doi.org/10.5713/ab.21.0351

Rogers, A. R. (1995). Genetic Evidence for a Pleistocene Population Explosion. Evolution, 49(4), 608–615. https://doi.org/10.1111/j.1558-5646.1995.tb02297.x

Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3), 552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727

Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E., & Lundeberg, J. (2004). A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 101(33), 12387–12390. https://doi.org/10.1073/pnaS.0401814101

Slatkin, M., & Hudson, R. R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129(2), 555–562. https://doi.org/10.1093/genetics/129.2.555

Soares, P. A., Trejaut, J. A., Rito, T., Cavadas, B., Hill, C., Eng, K. K., Mormina, M., Brandão, A., Fraser, R. M., Wang, T. Y., Loo, J. H., Snell, C., Ko, T. M., Amorim, A., Pala, M., Macaulay, V., Bulbeck, D., Wilson, J. F., Gusmão, L., … Richards, M. B. (2016). Resolving the ancestry of Austronesian-speaking populations. Human Genetics, 135(3), 309–326. https://doi.org/10.1007/s00439-015-1620-z

Storey, A. A., Athens, J. S., Bryant, D., Carson, M., Emery, K., DeFrance, S., Higham, C., Huynen, L., Intoh, M., Jones, S., Kirch, P. v., Ladefoged, T., McCoy, P., Morales-Muñiz, A., Quiroz, D., Reitz, E., Robins, J., Walter, R., & Matisoo-Smith, E. (2012). Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLOS ONE, 7(7), e39171. https://doi.org/10.1371/journal.pone.0039171

Storey, A. A., Ladefoged, T., & Matisoo-Smith, E. A. (2008). Counting your chickens: density and distribution of chicken remains in archaeological sites of Oceania. International Journal of Osteoarchaeology, 18(3), 240–261. https://doi.org/10.1002/oa.947

Summerhayes, G. (2007). The rise and transformations of Lapita in the Bismarck Archipelago. In S. Chiu & C. Sand (Eds.), From Southeast Asia to the Pacific. Archaeological Perspectives on the Austronesian Expansion and the Lapita Cultural Complex (pp. 141–184). Academica Sinica.

Sykes, N. (2012). A social perspective on the introduction of exotic animals: the case of the chicken. World Archaeology, 44(1), 158–169. https://doi.org/10.1080/00438243.2012.646104

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595.

Tanaka, K., Iwaki, Y., Takizawa, T., Dorji, T., Tshering, G., Kurosawa, Y., Maeda, Y., Mannen, H., Nomura, K., Dang, V. B., Chhum-Phith, L., Bouahom, B., Yamamoto, Y., Daing, T., & Namikawa, T. (2008). Mitochondrial diversity of native pigs in the mainland South and South- east Asian countries and its relationships between local wild boars. Animal Science Journal, 79(4), 417–434. https://doi.org/10.1111/j.1740-0929.2008.00546.x

Teinlek, P., Siripattarapravat, K., & Tirawattanawanich, C. (2018). Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian-Australasian Journal of Animal Sciences, 31(6), 804–811. https://doi.org/10.5713/ajas.17.0611

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Thomson, V. A., Lebrasseur, O., Austin, J. J., Hunt, T. L., Burney, D. A., Denham, T., Rawlence, N. J., Wood, J. R., Gongora, J., Flink, L. G., Linderholm, A., Dobney, K., Larson, G., & Cooper, A. (2014). Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4826–4831. https://doi.org/10.1073/pnas.1320412111

Tiley, G. P., Pandey, A., Kimball, R. T., Braun, E. L., & Burleigh, J. G. (2020). Whole genome phylogeny of Gallus: Introgression and data-type effects. Avian Research, 11(7), 7. https://doi.org/10.1186/S40657-020-00194-w/tables/5

Toro, M. A., Fernández, J., & Caballero, A. (2009). Molecular characterization of breeds and its use in conservation. Livestock Science, 120(3), 174–195. https://doi.org/10.1016/j.livsci.2008.07.003

Ulfah, M., Perwitasari, D., Jakaria, J., Muladno, M., & Farajallah, A. (2017). Multiple maternal origins of Indonesian crowing chickens revealed by mitochondrial DNA analysis. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 28(2), 254–262. https://doi.org/10.3109/19401736.2015.1118069

Wang, M. S., Thakur, M., Peng, M.-S., Jiang, Y., Frantz, L. A. F., Li, M., Zhang, J.-J., Wang, S., Peters, J., Otecko, N. O., Suwannapoom, C., Guo, X., Zheng, Z.-Q., Esmailizadeh, A., Hirimuthugoda, N. Y., Ashari, H., Suladari, S., Zein, M. S. A., Kusza, S., ... Zhang, Y.-P. (2020). 863 genomes reveal the origin and domestication of chicken. Cell Research, 30(8), 693–701. https://doi.org/10.1038/s41422-020-0349-y

Wang, G. D., Zhai, W., Yang, H. C., Wang, L., Zhong, L., Liu, Y. H., Fan, R. X., Yin, T. T., Zhu, C. L., Poyarkov, A. D., Irwin, D. M., Hytönen, M. K., Lohi, H., Wu, C. I., Savolainen, P., & Zhang, Y. P. (2016). Out of southern East Asia: The natural history of domestic dogs across the world. Cell Research, 26(1), 21–33. https://doi.org/10.1038/CR.2015.147

West, B., & Zhou, B. X. (1988). Did chickens go North? New evidence for domestication. Journal of Archaeological Science, 15(5), 515–533. https://doi.org/10.1016/0305-4403(88)90080-5

Wurster, C. M., Rifai, H., Zhou, B., Haig, J., & Bird, M. I. (2019). Savanna in equatorial Borneo during the late Pleistocene. Scientific Reports, 9(1), 6392. https://doi.org/10.1038/s41598-019- 42670-4

Xiang, H., Gao, J., Yu, B., Zhou, H., Cai, D., Zhang, Y., Chen, X., Wang, X., Hofreiter, M., & Zhao, X. (2014). Early Holocene chicken domestication in northern China. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17564–17569. https://doi.org/10.1073/pnas.1411882111

Yang, Z., & Rannala, B. (2006). Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Molecular Biology and Evolution, 23(1), 212–226. https://doi.org/10.1093/molbev/msj024

Zeder, M. A. (2012). The Domestication of Animals. Journal of Anthropological Research, 68(2), 161–190. https://doi.org/10.3998/JAR.0521004.0068.201

Zeuner, F. E. (1963). A history of domesticated animals. Harper & Row.

Zhang, D. X., & Hewitt, G. M. (1996). Nuclear integrations: challenges for mitochondrial DNA markers. Trends in Ecology & Evolution, 11(6), 247–251. https://doi.org/10.1016/0169- 5347(96)10031-8

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る