リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Tropical Cyclone Influences on Climate and Environment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Tropical Cyclone Influences on Climate and Environment

荒金, 匠 東京大学 DOI:10.15083/0002008325

2023.12.27

概要

論文審査の結果の要旨
氏名

荒金



台風を含む熱帯低気圧(Tropical Cyclone, 以下 TC)は、暖かい赤道近くで発生し、発達しな
がら極方向に移動することで、経路上の地域でさまざまな気象災害の原因となることが多
いため、その力学を解明することは気象学における重要な問題のひとつである。気候平均場
や周辺環境場が TC の発生・発達・経路等に与える影響は以前から研究されている。しかし、
TC が逆に気候平均場や環境場にどのような影響を与えるかは未だに理解が不足している。
TC が環境場に与える影響としては、発達した TC が遠隔的に下流の大気場を変調する事例
が報告されているものの、研究事例数は不十分である。また、TC は他の気象擾乱と異なり、
対になる高気圧が存在しないため、時間平均場には TC の痕跡が含まれるはずであるが、そ
れを定量化することは簡単ではなく、力学的に整合性のある TC 除去手法は確立されていな
い。申請者は、このような状況を踏まえ、TC が周辺環境場に与える影響および気候場への
痕跡を定量化する新たな手法を開発し、それを用いて TC を除去した再解析データセットを
作成した。その上で、自ら作成したデータを詳細に解析し、TC と背景場の相互作用を理解
するための研究を行った。
環境場が TC に与える影響および、TC が逆に環境場や気候平均場に作用する可能性につ
いて、先行研究の結果をレビューした第 1 章に続き、第 2 章では、TC が周辺環境場に影響
した事例として、2017 年 6 月に台湾北部で発生した豪雨を解析した。この時期にベンガル
湾に存在した TC が豪雨の発生要因として重要であったことを、高解像度全球大気モデルを
用いたハインドキャスト実験で明らかにした。5 月末の客観解析値でモデルを初期化してア
ンサンブルシミュレーションを行ったが、その際、標準実験に加え、ベンガル湾の TC を初
期値から除去して感度実験を行った。その結果、ベンガル湾の TC は下層境界層ジェットを
強化し、湿潤空気を台湾北部へ流入させるとともに、上層トラフの変調を通じて台湾付近で
下降する北風を強化していたことが分かった。これらの暖湿な南風と冷乾な北風が合流し、
変形・発散過程を経て強い前線が形成された結果、台湾北部で豪雨が引き起こされた。この
TC の遠隔影響は、初期値から TC を除去した数値実験により明確に示されたものである。
第 3 章では、前章の数値実験から着想を得て、渦位逆転法(potential vorticity inversion, PVI)
を用いて、力学的にバランスした TC の場を同定する方法を考案した。従来の手法では TC
に伴う場が力学的バランスを満たさないため、TC を除去した後の流れの場が非現実的であ
ったが、PVI を用いると風速場と質量・温度場が整合するため、TC を除去した後の流れの
場も現実的であった。この手法を気象庁長期再解析データに適用し、2004 年夏季の北西太
平洋 (Western North Pacific, 以下 WNP)において TC を除去した大気データを作成した。元

のデータと TC を除去したデータを比較解析することで、TC による季節平均場への効果を
調査した結果、TC は季節内変動と季節平均場に対して、先行研究で示されたよりも大きな
痕跡を残すことが示された。
第 4 章では、さらに長期間(1958~2019 年)の TC 除去データを作成し、WNP における
気候平均場および季節内変動に対する TC の痕跡を調査した。その結果、TC は気候平均場
だけでなく、様々な時間スケールの大気変動に痕跡を残していることがわかった。TC の存
在により、気候平均場の亜熱帯高気圧は強まる一方、モンスーントラフは弱まっていた。こ
れは、TC が環境場に付加的な擾乱ではなく、WNP のモンスーンシステムの重要な要素とみ
なされるべきであることを示す。また、TC は季節内・経年変動の分散に対して最大 70%の
寄与を示した。20~80 日周期で定義される北半球夏季季節内振動は WNP 上の TC 発生の重
要な要素と考えられているが、TC は逆に季節内振動の伝播に影響を与えていることが示唆
された。さらに、多くの台風が発生した年に着目して、下層渦度場を解析した結果、TC 活
動がその後の TC 発生を引き起こす可能性が示された。
本研究では、TC が気候の場に残す痕跡を、TC のない仮想的な、しかし力学的には整合す
る大気データセットを作成し、それを解析することで定量化に成功した点に新規性がある。
本研究の結果は、WNP における気候平均場や季節内変動に TC の集団が有意な痕跡を残す
ことを明快に示している。TC を除去したデータセットは、WNP 領域に限定されているが、
本研究で開発された手法は他の海域にも適用可能であり、将来的には、全球で TC を除去し
たデータセットの作成と活用が期待される。本論文第 2~4 章の内容は、Huang-Hsiung Hsu
氏ほか共同研究者らとの共著論文として一部を除き公表済みであるが、これらはすべて申
請者が筆頭著者であり、主体となって計算および解析をおこなったものであるため、申請者
の寄与が十分であると判断される。
上記の理由から、博士(理学)の学位を授与できると認める。

この論文で使われている画像

参考文献

Arakane, S., and Coauthors, 2019: Remote effect of a tropical cyclone in the Bay of Bengal on a heavy-rainfall

event in subtropical East Asia. npj Clim. Atmos. Sci., 2, 25, https://doi.org/10.1038/s41612-019-0082-8.

––––, and H.-H. Hsu, 2020: A tropical cyclone removal technique based on potential vorticity inversion to better

quantify tropical cyclone contribution to the background circulation. Climate Dyn., 54, 3201–3226,

https://doi.org/10.1007/s00382-020-05165-x.

––––, and ––––, 2021: Tropical cyclone footprints in long-term mean state and multiscale climate variability in the

western North Pacific as seen in the JRA-55 reanalysis. J. Climate, 34, 7443–7460,

https://doi.org/10.1175/JCLI-D-20-0887.1.

Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment,

Part I. J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

Archambault, H. M., L. F. Bosart, D. Keyser, and J. M. Cordeira, 2013: A climatological analysis of the

extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141,

2325–2346, https://doi.org/10.1175/MWR-D-12-00257.1.

––––, D. Keyser, L. F. Bosart, C. A. Davis, and J. M. Cordeira, 2015: A composite perspective of the extratropical

flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 1122–1141,

https://doi.org/10.1175/MWR-D-14-00270.1.

Bessho, K., and Coauthors, 2016: An introduction to Himawari8/9–Japan’s new-generation geostationary

meteorological satellites. J. Meteor. Soc. Japan, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009.

Bishop, C. H., and A. J. Thorpe, 1994: Potential vorticity and the electrostatic analogy: Quasi-geostrophic theory.

Quart. J. Roy. Meteor. Soc., 120, 713–731, https://doi.org/10.1002/qj.49712051710.

Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity. 1.

Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

Brennan, M. J., G. M. Lackmann, and K. M. Mahoney, 2008: Potential vorticity (PV) thinking in operations: The

utility of nonconservation. Wea. Forecasting, 23, 168–182, https://doi.org/10.1175/2007WAF2006044.1.

Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26,

104

9880–9902, https://doi.org/10.1175/JCLI-D-12-00549.1.

––––, K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical

cyclone genesis. J. Climate, 20, 4819–4834, https://doi.org/10.1175/JCLI4282.1.

––––, and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7,

211–237, https://doi.org/10.1002/wcc.373.

Cha, D.-H., and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones

using the WRF model. Mon. Wea. Rev., 141, 964–986, https://doi.org/10.1175/MWR-D-12-00077.1.

Chang, C.-W. J., S.-Y. S. Wang, and H.-H. Hsu, 2016: Changes in tropical cyclone activity offset the ocean surface

warming in northwest Pacific: 1981–2014. Atmos. Sci. Lett., 17, 251–257, https://doi.org/10.1002/asl.651.

Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341,

https://doi.org/10.1175/1520-0493(2003)131<1323:TRCOT>2.0.CO;2.

Chen, G. T.-J., 1992: Mesoscale features observed in the Taiwan Mei-Yu season. J. Meteor. Soc. Japan, 70, 497–

516, https://doi.org/10.2151/jmsj1965.70.1B_497.

––––, 2005: Characteristics of low-level jets over northern Taiwan in Mei-Yu season and their relationship to heavy

rain events. Mon. Wea. Rev., 133, 20–43, https://doi.org/:10.1175/MWR-2813.1.

––––, and C.-P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (Mei-Yu)

over southeastern China and Japan. Mon. Wea. Rev., 108, 942–953, https://doi.org/10.1175/15200493(1980)108<0942:TSAVBO>2.0.CO;2.

––––, and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu

season. Mon. Wea. Rev., 116, 884–891, https://doi.org/10.1175/15200493(1988)116<0884:SOLLJA>2.0.CO;2.

––––, C.-C. Wang, and L.-F. Lin, 2006: A diagnostic study of a retreating Mei-Yu front and the accompanying

low-level jet formation and intensification. Mon. Wea. Rev., 134, 874–896,

https://doi.org/10.1175/MWR3099.1.

Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general

circulation model. J. Climate, 26, 380–398, https://doi.org/10.1175/JCLI-D-12-00061.1.

105

Cheung, K. K. W., and J. C. L. Chan, 1999: Ensemble forecasting of tropical cyclone motion using a barotropic

model. Part I: Perturbations of the environment. Mon. Wea. Rev., 127, 1229–1243,

https://doi.org/10.1175/1520-0493(1999)127<1229:EFOTCM>2.0.CO;2.

Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. M.S. thesis, Department of

Atmospheric and Environmental Sciences, University at Albany, State University of New York, 200 pp.

[Available online at http://cstar.cestm.albany.edu/CAP_Projects/Project10/index.htm.]

Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119,

1929–1953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–

2088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

––––, and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin.

Wea. Forecasting, 9, 209–220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

––––, and ––––, 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and

eastern North Pacific basins. Wea. Forecasting, 14, 326–337, https://doi.org/10.1175/15200434(1999)014<0326:AUSHIP>2.0.CO;2.

––––, M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane

Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543, https://doi.org/10.1175/WAF862.1.

Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J.

Atmos. Sci., 43, 585–604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

––––, 2001: Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106,

14771–14782, https://doi.org/10.1029/2000JD900641.

––––, and D. S. Nolan, 2004: Tropical cyclone activity and global climate system. Preprints, 26th Conference on

Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.

Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and

direct impacts. Mon. Wea. Rev., 145, 4317–4344, https://doi.org/10.1175/MWR-D-17-0027.1.

Feng, T., X. Yang, X. Sun, D. Yang, and C. Chu, 2020: Reexamination of the climatology and variability of the

106

northwest Pacific monsoon trough using a daily index. J. Climate, 33, 5919–5938,

https://doi.org/10.1175/JCLI-D-19-0459.1.

Franklin, J. L., S. E. Feuer, J. Kaplan, and S. D. Aberson, 1996: Tropical cyclone motion and surrounding flow

relationships: Searching for beta gyres in omega dropwindsonde datasets. Mon. Wea. Rev., 124, 64–84,

https://doi.org/10.1175/1520-0493(1996)124<0064:TCMASF>2.0.CO;2.

Fudeyasu, H., and Coauthors, 2020: Development conditions for tropical storms over the western North Pacific

stratified by large-scale flow patterns. J. Meteor. Soc. Japan, 98, 61–72, https://doi.org/10.2151/jmsj.2020004.

Galarneau, T. J., Jr., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones.

Mon. Wea. Rev., 138, 3272–3297, https://doi.org/10.1175/2010MWR3243.1.

––––, and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405–

430, https://doi.org/10.1175/MWR-D-12-00071.1.

Gong, C.-Y., and Coauthors, 2015: The rank of extreme rainfall events over Taiwan (in Chinese). National Science

and Technology Center for Disaster Reduction (available at

https://watch.ncdr.nat.gov.tw/watch_ebook.aspx).

Grams, C. M., and Coauthors, 2013a: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I:

Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 2148–2164,

https://doi.org/10.1002/qj.2091.

––––, S. C. Jones, and C. A. Davis, 2013b: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II:

Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 2165–2180, https://doi.org/10.1002/qj.2119.

––––, and S. R. Blumer, 2015: European high-impact weather caused by the downstream response to the

extratropical transition of North Atlantic Hurricane Katia (2011). Geophys. Res. Lett., 42, 8738–8748,

https://doi.org/10.1002/2015GL066253.

––––, and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A

representative case study of weather systems surrounding western North Pacific extratropical transition.

Mon., Wea., Rev., 144, 3847–3869, https://doi.org/10.1175/MWR-D-15-0419.1.

107

Gray, W. M., 1975: Tropical Cyclone Genesis. Dept. of Atmospheric Science Paper, 234, Colorado State

University, Fort Collins, CO, 121 pp.

––––, 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37–69,

https://doi.org/10.1007/BF01277501.

Hakim, G. J., D. Keyser, and L. F. Bosart, 1996: The Ohio valley wave-merger cyclogenesis event of 25–26

January 1978. Part II: Diagnosis using quasigeostrophic potential vorticity inversion. Mon. Wea. Rev., 124,

2176–2205, https://doi.org/10.1175/1520-0493(1996)124<2176:TOVWMC>2.0.CO;2.

Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast

System. Wea. Forecasting, 26, 520–533, https://doi.org/10.1175/WAF-D-10-05038.1.

Harada, Y., and Coauthors, 2016: The JRA-55 reanalysis: Representation of atmospheric circulation and climate

variability. J. Meteor. Soc. Japan, 94, 269–302, https://doi.org/10.2151/jmsj.2016-015.

Hart, R. E., 2011: An inverse relationship between aggregate northern hemisphere tropical cyclone activity and

subsequent winter climate. Geophys. Res. Lett., 38, L01705, https://doi.org/10.1029/2010GL045612.

Haynes, P., and M. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic

heating and frictional or other forces. J. Atmos. Sci., 44, 828–841, https://doi.org/10.1175/15200469(1987)044<0828:OTEOVA>2.0.CO;2.

Hazelton, A. T., L. Harris, and S.-J. Lin, 2018: Evaluation of tropical cyclone structure forecasts in a highresolution version of the multiscale GFDL fvGFS model. Wea. Forecasting, 33, 419–442,

https://doi.org/10.1175/WAF-D-17-0140.1.

He, H., J. Yang, and D. Gong, 2015: Decadal changes in tropical cyclone activity over the western North Pacific in

the late 1990s. Climate Dyn., 45, 3317–3329, https://doi.org/10.1007/s00382-015-2541-1.

Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone

intensity change. Mon. Wea. Rev., 138, 3243–3271, https://doi.org/10.1175/2010MWR3185.1.

Hirata, H., and R. Kawamura, 2013: Remote forcing and response of tropical cyclones over the Bay of Bengal to

the Asian jet variability in late fall. SOLA, 9, 27–31, https://doi.org/10.2151/sola.2013-007.

Hirota, N., Y. N. Takayabu, M. Kato, and S. Arakane, 2016: Roles of an atmospheric river and a cutoff low in the

108

extreme precipitation event in Hiroshima on 19 August 2014. Mon. Wea. Rev., 144, 1145–1160,

https://doi.org/10.1175/MWR-D-15-0299.1.

Holopainen, E., and J. Kaurola, 1991: Decomposing the atmospheric flow using potential vorticity framework. J.

Atmos. Sci., 48, 2614–2625, https://doi.org/10.1175/1520-0469(1991)048<2614:DTAFUP>2.0.CO;2.

Hong, C., Y. Wu, and T. Li, 2016: Influence of climate regime shift on the interdecadal change in tropical cyclone

activity over the Pacific basin during the middle to late 1990s. Climate Dyn., 47, 2587–2600,

https://doi.org/10.1007/s00382-016-2986-x.

Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential

vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002.

Hsu, H.-H., C.-H. Hung, A.-K. Lo, C.-C. Wu, and C.-W. Hung, 2008a: Influence of tropical cyclones on the

estimation of climate variability in the tropical western North Pacific. J. Climate, 21, 2960–2975,

https://doi.org/10.1175/2007JCLI1847.1.

––––, A.-K. Lo, C.-H. Hung, W.-S. Kau, C.-C. Wu, and Y.-L. Chen, 2008b: Coupling of the intraseasonal

oscillation with the tropical cyclone in the western North Pacific during the 2004 typhoon season. Recent

progress in atmospheric sciences: Applications to the Asia-Pacific region, Liou KN and Chou M-D Eds.,

World Scientific, 49–65, https://doi.org/10.1142/9789812818911_0003.

Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and

synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927–

941, https://doi.org/10.1175/2010JCLI3833.1.

Hu, A., and G. A. Meehl, 2009: Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation

and heat transport. Geophys. Res. Lett., 36, L03702, https://doi.org/10.1029/2008GL036680.

Iacono, M. J., and Coauthors, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER

radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

Jones, S. C., and Coauthors, 2003: The extratropical transition of tropical cyclones: forecast challenges, current

understanding, and future directions. Wea. Forecasting, 18, 1052–1092, https://doi.org/10.1175/15200434(2003)018<1052:TETOTC>2.0.CO;2.

109

Keller, J. H., and Coauthors, 2019: The extratropical transition of tropical cyclones. Part II: Interaction with the

midlatitude flow, downstream impacts, and implications for predictability. Mon. Wea. Rev., 147, 1077–

1106, https://doi.org/10.1175/MWR-D-17-0329.1.

Kendall, M. G., 1948: Rank correlation methods. Charles Griffin, London.

Kikuchi, K., 2021: The boreal summer intraseasonal oscillation (BSISO): A review. J. Meteor. Soc. Japan, 99,

https://doi.org/10.2151/jmsj.2021-045.

Knutson, T. R., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I. Detection and

attribution. Bull. Amer. Meteor. Soc., 100, 1987–2007, https://doi.org/10.1175/BAMS-D-18-0189.1.

––––, and ––––, 2020: Tropical cyclones and climate change assessment: Part II. Projected response to

anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303–E322, https://doi.org/10.1175/BAMS-D-180194.1.

––––, ––––, and C. Chou, 2012: Propagation and maintenance mechanism of the TC/submonthly wave pattern and

TC feedback in the western North Pacific. J. Climate, 25, 8591–8610, https://doi.org/10.1175/JCLI-D-1100643.1.

Ko, K.-C., and H.-H. Hsu, 2009: ISO modulation on the submonthly wave pattern and recurving tropical cyclones

in the tropical western North Pacific, J. Climate, 22, 582–599, https://doi.org/10.1175/2008JCLI2282.1.

Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J.

Meteor. Soc. Japan, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001.

Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection

pattern. Quart. J. Roy. Meteor. Soc., 132, 2009–2030, https://doi.org/10.1256/qj.05.204.

––––, and ––––, 2008: A comparative study on the dynamics of the Pacific–Japan (PJ) teleconnection pattern based

on reanalysis datasets. SOLA, 4, 9–12, https://doi.org/10.2151/sola.2008-003.

––––, and ––––, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and

a subtropical anticyclone. Part I: The Pacific–Japan pattern, J. Climate, 23, 5085–5108,

https://doi.org/10.1175/2010JCLI3413.1.

Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104–107,

110

https://doi.org/10.1038/s41586-018-0158-3.

––––, K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone

maximum intensity. Nature, 509, 349–352, https://doi.org/10.1038/nature13278.

––––, ––––, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone

exposure. J. Climate, 29, 5725–5739, https://doi.org/10.1175/JCLI-D-16-0076.1.

Kubota, T., and Coauthors, 2020: Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era.

Satellite precipitation measurement, Springer, https://doi.org/10.1007/978-3-030-24568-9_20.

Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction

system. Mon. Wea. Rev., 123, 2791–2801, https://doi.org/10.1175/15200493(1995)123<2791:IITGHP>2.0.CO;2.

Kwon, H. J., S.-H. Won, M.-H. Ahn, A.-S. Suh, and H.-S. Chung, 2002: GFDL-type typhoon initialization in

MM5. Mon. Wea. Rev., 130, 2966–2974, https://doi.org/10.1175/15200493(2002)130<2966:GTTIIM>2.0.CO;2.

Kwon, I.-H., and H.-B. Cheong, 2010: Tropical cyclone initialization with a spherical high-order filter and an

idealized three-dimensional bogus vortex. Mon. Wea. Rev., 138, 1344–1367,

https://doi.org/10.1175/2009MWR2943.1.

Li, K., Q. He, Y. Yang, and W. Yu, 2020. Equatorial moisture dynamics of the quasi-biweekly oscillation in the

tropical northwestern Pacific during boreal summer. Geophys. Res. Lett., 47, e2020GL090929,

https://doi.org/10.1029/2020GL090929.

Li, T., and B. Fu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting

typhoon. Part I: satellite data analyses. J. Atmos. Sci., 63, 1377–1389, https://doi.org/10.1175/JAS3692.1.

Lin, S.-J., 1997: A finite-volume integration method for computing pressure gradient force in general vertical

coordinates. Quart. J. Roy. Meteor. Soc., 123, 1749–1762, https://doi.org/10.1002/qj.49712354214.

––––, 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132,

2293–2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

––––, and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J.

111

Roy. Meteor. Soc., 123, 2477–2498, https://doi.org/10.1002/qj.49712354416.

Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J.

Climate Appl. Meteor., 22, 1065–1092, https://doi.org/10.1175/15200450(1983)022<1065:BPOTSF>2.0.CO;2.

Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–

2011. J. Climate, 26, 2614–2630, https://doi.org/10.1175/JCLI-D-12-00053.1.

Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity

over the western North Pacific. Climate Dyn., 21, 105–117, https://doi.org/10.1007/s00382-003-0327-3.

Menkes, C. E., and Coauthors, 2012: Comparison of tropical cyclogenesis indices on seasonal to interannual

timescales. Climate Dyn., 38, 301–321, https://doi.org/10.1007/s00382-011-1126-x.

Murakami, H., 2014: Tropical cyclones in reanalysis data sets. Geophys. Res. Lett., 41, 2133–2141,

https://doi.org/10.1002/2014GL059519.

––––, T. Li, and M. Peng, 2013: Changes to environmental parameters that control tropical cyclone genesis under

global warming. Geophys. Res. Lett., 40, 2265–2270, https://doi.org/10.1002/grl.50393.

Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere

summer circulation. J. Meteor. Soc. Japan, 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3_373.

Ogura, Y., and D. Portis, 1982: Structure of the cold front observed in SESAME-AVE III and its comparison with

the Hoskins–Bretherton frontogenesis model. J. Atmos. Sci., 39, 2773–2792, https://doi.org/10.1175/15200469(1982)039<2773:SOTCFO>2.0.CO;2.

Quinting, J. F., and S. C. Jones, 2016: On the impact of tropical cyclones on Rossby wave packets: A

climatological perspective. Mon., Wea., Rev., 144, 2021–2048, https://doi.org/10.1175/MWR-D-1400298.1.

Riboldi, J., M. Röthlisberger, and C. M. Grams, 2018: Rossby wave initiation by recurving tropical cyclones in the

western North Pacific. Mon., Wea., Rev., 146, 1283–1301, https://doi.org/10.1175/MWR-D-17-0219.1.

Riemer, M., S. C. Jones, and C. A. Davis, 2008: The impact of extratropical transition on the downstream flow: An

idealized modelling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 69–91,

112

https://doi.org/10.1002/qj.189.

––––, and ––––, 2010: The downstream impact of tropical cyclones on a developing baroclinic wave in idealized

scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617–637,

https://doi.org/10.1002/qj.605.

Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western

Pacific. Mon. Wea. Rev., 127, 2027–2043, https://doi.org/10.1175/15200493(1999)127<2027:LSPAWT>2.0.CO;2.

––––, and W. M. Frank, 2007: Interactions between simulated tropical cyclones and an environment with a variable

Coriolis parameter. Mon. Wea. Rev., 135, 1889–1905, https://doi.org/10.1175/MWR3359.1.

Robinson, W. A., 1988: Analysis of LIMS data by potential vorticity inversion. J. Atmos. Sci., 45, 2319–2342,

https://doi.org/10.1175/1520-0469(1988)045<2319:AOLDBP>2.0.CO;2.

Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204,

https://doi.org/10.1029/2004GL019448.

Rogers, R. F., S. S. Chen, J. Tenerelli, and H. E. Willoughby, 2003: A numerical study of the impact of vertical

shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 1577–1599,

https://doi.org/10.1175/2546.1.

Ross, R. J., and Y. Kurihara, 1995: A numerical study on influences of Hurricane Gloria (1985) on the

environment. Mon. Wea. Rev., 123, 332–346, https://doi.org/10.1175/15200493(1995)123<0332:ANSOIO>2.0.CO;2.

Schumacher, R. S., T. J., Galarneau, Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on

rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon., Wea., Rev., 139,

650–667, https://doi.org/10.1175/MWR-D-11-00307.1.

Seiki, A., Y. Kosaka, and S. Yokoi, 2021: Relationship between the boreal summer intraseasonal oscillation and the

Pacific–Japan pattern and its interannual modulations. SOLA, 17, 177–183,

https://doi.org/10.2151/sola.2021-031.

Seiler, C., 2019: A climatological assessment of intense extratropical cyclones from the potential vorticity

113

perspective. J. Climate, 32, 2369–2380, https://doi.org/10.1175/JCLI-D-18-0461.1.

Sekioka, M., 1956: A hypothesis on complex of tropical and extratropical cyclones for typhoon in the middle

latitudes. J. Meteor. Soc. Japan, 34, 276–287, https://doi.org/10.2151/jmsj1923.34.5_276.

Shapiro, L. J., 1996: The motion of Hurricane Gloria: A potential vorticity diagnosis. Mon. Wea. Rev., 124, 2497–

2508, https://doi.org/10.1175/1520-0493(1996)124<2497:TMOHGA>2.0.CO;2.

Shimada, U., and Coauthors, 2018: Further improvements to the statistical hurricane intensity prediction scheme

using tropical cyclone rainfall and structural features. Wea. Forecasting, 33, 1587–1603,

https://doi.org/10.1175/WAF-D-18-0021.1.

Sobel, A. H., and S. J. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale

environment. J. Atmos. Sci., 62, 3396–3407, https://doi.org/10.1175/JAS3539.1.

Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An

experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249–272,

https://doi.org/10.2151/jmsj.80.249.

Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and

migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627,

https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

Takemura, K., and H. Mukougawa, 2021: A new perspective of Pacific–Japan pattern: Estimated percentage of the

cases triggered by Rossby wave breaking. J. Meteor. Soc. Japan, https://doi.org/10.2151/jmsj.2022-006.

Thorpe, A. J., 1985: Diagnosis of balanced vortex structure using potential vorticity. J. Atmos. Sci., 42, 397–406,

https://doi.org/10.1175/1520-0469(1985)042<0397:DOBVSU>2.0.CO;2.

––––, and C. H. Bishop, 1995: Potential vorticity and the electrostatics analogy: Ertel–Rossby formulation. Quart.

J. Roy. Meteor. Soc., 121, 1477–1495, https://doi.org/10.1002/qj.49712152612.

Tu, C.-C., Y.-L. Chen, P.-L. Lin, and Y. Du, 2019: Characteristics of the marine boundary layer jet over the South

China Sea during the early summer rainy season of Taiwan. Mon. Wea. Rev., 147, 457–475,

https://doi.org/10.1175/MWR-D-18-0230.1.

Wang, C., and L. Wu, 2018: Future changes of the monsoon trough: Sensitivity to sea surface temperature gradient

114

and implications for tropical cyclone activity. Earth’s Future, 6, 919–936,

https://doi.org/10.1029/2018EF000858.

Wang, C.-C., G. T.-J. Chen, and K.-H. Ho, 2016: A diagnostic case study of Mei-Yu frontal retreat and associated

low development near Taiwan. Mon. Wea. Rev., 144, 2327–2349, https://doi.org/10.1175/MWR-D-150391.1.

Wang, H., Y. Wang, and H. Xu, 2013: Improving simulation of a tropical cyclone using dynamical initialization

and large-scale spectral nudging: A case study of Typhoon Megi (2010). Acta Meteor. Sinica, 27, 455–475,

https://doi.org/10.1007/s13351-013-0418-y.

Wang, X., and D.-L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane. Part I: Formulation and

quasi-balanced flow. J. Atmos. Sci., 60, 1593–1607, https://doi.org/10.1175/2999.1.

Wang, Y., Y. Rao, Z.-M. Tan, and D. Schnemann, 2015: A statistical analysis of the effects of vertical wind shear

on tropical cyclone intensity change over the western North Pacific. Mon. Wea. Rev., 143, 3434–3453,

https://doi.org/10.1175/MWR-D-15-0049.1.

Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and

cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 1569–1586, https://doi.org/10.1175/JAS3912.1.

Winterbottom, H. R., and E. P. Chassignet, 2011: A vortex isolation and removal algorithm for numerical weather

prediction model tropical cyclone applications. J. Adv. Model. Earth Syst., 3:8pp,

https://doi.org/10.1029/2011MS000088.

Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude

waveguide—A review. Mon. Wea. Rev., 146, 1965–2001, https://doi.org/10.1175/MWR-D-16-0483.1.

Wu, C.-C., and K. A. Emanuel, 1995: Potential vorticity diagnostics of hurricane movement. Part I: A case study of

Hurricane Bob (1991). Mon. Wea. Rev., 123, 69–92, https://doi.org/10.1175/15200493(1995)123<0069:PVDOHM>2.0.CO;2.

––––, T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near

Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001–1015, https://doi.org/10.1175/15200434(2003)017,1001:RSAWTH.2.0.CO;2.

115

––––, T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity

diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with

Supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 1289–1300, https://doi.org/10.1175/15200493(2003)131<1289:ANLATB>2.0.CO;2.

––––, ––––, and K.-H. Chou, 2004: Potential vorticity diagnosis of the key factors affecting the motion of Typhoon

Sinlaku (2002). Mon. Wea. Rev., 132, 2084–2093, https://doi.org/10.1175/15200493(2004)132<2084:PVDOTK>2.0.CO;2.

Yamada, Y., and Coauthors, 2017: Response of tropical cyclone activity and structure to global warming in a highresolution global nonhydrostatic model. J. Climate, 30, 9703–9724, https://doi.org/10.1175/JCLI-D-170068.1.

Yan, X., and Coauthors, 2019: Quasi-biweekly oscillation of the Asian monsoon rainfall in late summer and

autumn: different types of structure and propagation. Climate Dyn., 53, 6611–6628,

https://doi.org/10.1007/s00382-019-04946-3.

Yeh, H.-C., G. T.-J. Chen, and W. T. Liu, 2002: Kinematic characteristics of a Mei-Yu front detected by the

QuikSCAT oceanic winds. Mon. Wea. Rev., 130, 700–711, https://doi.org/10.1175/15200493(2002)130<0700:KCOAMY>2.0.CO;2.

Yokoi, S., and Y. N. Takayabu, 2009: Multi-model projection of global warming impact on tropical cyclone

genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525–538,

https://doi.org/10.2151/jmsj.87.525.

––––, C. Takahashi, K. Yasunaga, and R. Shirooka, 2012: Multi-model projection of tropical cyclone genesis

frequency over the western North Pacific: CMIP5 results. SOLA, 8, 137–140,

https://doi.org/10.2151/sola.2012-034.

Yoshida, R., and H. Ishikawa, 2013: Environmental factors contributing to tropical cyclone genesis over the

western North Pacific. Mon. Wea. Rev., 141, 451–467, https://doi.org/10.1175/MWR-D-11-00309.1.

––––, Y. Kajikawa, and H. Ishikawa, 2014: Impact of boreal summer intraseasonal oscillation on environment of

tropical cyclone genesis over the western North Pacific. SOLA, 10, 15–18,

https://doi.org/10.2151/sola.2014-004.

116

Zhao, H., X. Duan, G. B. Raga, and P. J. Klotzbach, 2018: Changes in characteristics of rapidly intensifying

western North Pacific tropical cyclones related to climate regime shifts. J. Climate, 31, 8163–8179,

https://doi.org/10.1175/JCLI-D-18-0029.1.

117

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る