リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cross-scale Interaction in the Realization Processes of the Madden-Julian Oscillation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cross-scale Interaction in the Realization Processes of the Madden-Julian Oscillation

髙須賀, 大輔 東京大学 DOI:10.15083/0002004734

2022.06.22

概要

The Madden–Julian oscillation (MJO) is characterized by slow eastward propagation of organized convective envelopes coupled with a planetary-scale zonal overturning circulation over the Indo-Pacific warm pool. Since the MJO is the most dominant intraseasonal variability in the tropics and globally affects various meteorological and climatological phenomena, there have been dedicated efforts to reveal physical processes of the MJO and improve its predictability. While previous studies have primarily focused on MJO-scale dynamical and thermodynamical variations to propose the mechanisms of MJO initiation and propagation, there are also some evidences which implicate the importance of synoptic-scale and interannual variabilities to MJO dynamics. However, our knowledge of such cross-scale processes in MJO realization is piecemeal compared to MJO-scale process-oriented understanding. The aim of this study is to clarify the detailed mechanisms which explain MJO convective initiation and subsequent propagation based on the multi-scale framework involving active roles of synoptic-scale equatorial waves and the mutual relationship between the intraseasonal and interannual variability.

In Chapter 2, mainly from observational data analyses of an MJO event initiated in December 2017 during the field campaign of the Years of the Maritime Continent Project, it is found that dynamical variations associated with mixed Rossby–gravity waves (MRGs) are directly responsible for MJO convective initiation and propagation in the Indian Ocean (IO). The in-situ intensive observation and reanalysis data have captured westward-propagating MRG-related meridional wind signals in the mid-troposphere over the IO during the MJO-suppressed phase. Before MJO convection is activated, tight MRG–convection coupling is enhanced in accordance with zonal wave contraction due to weak mid-tropospheric convergence in the western IO. Basinscale midlevel moisture resurgence caused by MRG shallow circulations is also observed. These processes stimulate the MRG wave packet formation in the lower-troposphere and successive triggering of MJO convection via MRG dynamics, with the eastward MRG group velocity corresponding to MJO propagation. This MRG-driving mechanism is also confirmed to a certain degree in other two MJO events initiated in October and November 2011, although it is not so evident in the October event.

In Chapter 3, the robustness and inevitability of the MJO–MRG relationship is explored by statistical analyses of 47 MJO events realized in the IO during December–March in 1982–2012. On average, MJO convection is initiated in the southwestern IO (SWIO), where strong MRG– convection coupling is statistically found. Further classification suggests that initiation of 26 of 47 MJO cases is related to more enhanced MRG activities than any other convectively coupled equatorial waves. MJO initiation for MRG-enhanced cases is characterized as convective triggering by low-level MRG circulations which develop via active downward energy dispersion related to upper-tropospheric baroclinic conversion, consistent with Chapter 2. This is supported by the modulation of MRG structure associated with upper-level background zonal convergence, and plentiful moisture advected into the western IO. In addition to this MRG-induced convection in the SWIO, mid-tropospheric pre-moistening in the IO due to MRG shallow circulations and MJO convective propagation driven by low-level MRG winds are also recognized as in Chapter 2. The comparison between the MRG-enhanced events and all others suggests that intraseasonal crossequatorial circulations during the MJO-suppressed phase in the IO, which is possibly originated from the equatorial asymmetry of background convective activities, may be the source of MRGs. Whether the MRG-related processes are effective or not may depend on the strength in this asymmetry modulated by the low-frequency variability and seasonal march.

Chapter 4 focuses on the diversity of MJO initiation regions associated with the intraseasonal and interannual variability to understand favorable environments for MJO initiation comprehensively. MJOs initiated in the IO (IO-MJO), Maritime Continent (MC-MJO), and western Pacific (WP-MJO) are targeted. Both observations and a series of 15-yr perpetual-borealwinter experiments using an atmospheric GCM reveal the following two points: (i) horizontal moisture advection mainly by equatorial intraseasonal circulations is commonly important before MJO initiation in every region, and (ii) the variety of MJO source basins is partly generated by the change of where advective moistening is more likely to work due to the modulation of background circulations forced by interannual SST variability. For IO-MJO cases as the canonical MJO, because climatological ascent in the MC–WP can support intraseasonal convective organization there, resultant convective suppression around the western MC can lead to moisture advection to the IO via intraseasonal low-level easterly anomalies. MC-MJO cases are more favored under the eastern-Pacific (EP) El Niño-like condition, because SST-induced background suppressed convection in the eastern MC can cause the eastward shift of the intraseasonal circulation and convective pattern seen in IO-MJO cases and result in efficient moistening and subsequent development of convection around the western MC. WP-MJO cases tend to occur under the centralPacific (CP) Niño-like state and dipole SST structure in the southern IO. This is owing to selective moistening in the WP associated with westward intrusion of enhanced disturbances as a result of background convective enhancement in the WP–CP and suppression in the southeastern IO and EP.

Taken together, my results suggest that potential roles of interannual, intraseasonal, and synoptic-scale variations in the mechanics of the MJO are to affect the existence of equatorial intraseasonal zonal circulations related to the MJO, to provide a necessary environment for MJO realization through allowance of sufficient moistening, and to directly trigger MJO convection and assist moisture transport in a favorable environment for the MJO, respectively. This study has emphasized that considering the hierarchical relationship ranging from synoptic-scale variations to interannual variabilities is important to the precise and comprehensive understanding of MJO realization.

参考文献

Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73 (3), 913–941, doi: 10.1175/JAS-D-15-0170.1.

Adames, Á. F., and J. M. Wallace, 2015: Three-Dimensional Structure and Evolution of the Moisture Field in the MJO. J. Atmos. Sci., 72 (10), 3733–3754, doi: 10.1175/JAS-D-15-0003.1.

Ahn, M. S., D. Kim, K. R. Sperber, I. S. Kang, E. Maloney, D. Waliser, and H. Hendon, 2017:MJO simulation in CMIP5 climate models: MJO skill metrics and process-orienteddiagnosis. Clim. Dyn., 49 (11-12), 4023–4045, doi:10.1007/s00382-017-3558-4.

Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbancesin the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25 (8), 2782–2804,doi:10.1175/JCLI-D-11-00168.1.

Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at highSST. J. Climate, 26 (3), 988–1001, doi:10.1175/JCLI-D-12-00272.1.

Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implicationsfor the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 7 (4), 1499–1518,doi:10.1002/2015MS000498.

Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modokiand its possible teleconnection. J. Geophys. Res. Oceans, 112 (11), 1–27, doi:10.1029/2006JC003798.

Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, andG. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWFmodel: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134 (634),1337–1351, doi:10.1002/qj.289.

Bellenger, H., and J. P. Duvel, 2012: The event-to-event variability of the boreal winter MJO.Geophys. Res. Lett., 39 (8), 1–7, doi:10.1029/2012GL051294.

Benedict, J. J., and D. A. Randall, 2007: Observed Characteristics of the MJO Relative toMaximum Rainfall. J. Atmos. Sci., 64 (7), 2332–2354, doi:10.1175/JAS3968.1.

Benedict, J. J., and D. A. Randall, 2009: Structure of the Madden–Julian Oscillation in the Superparameterized CAM. J. Atmos. Sci., 66 (11), 3277–3296, doi:10.1175/2009JAS3030.1.

Benedict, J. J., and D. A. Randall, 2011: Impacts of Idealized Air–Sea Coupling on Madden–Julian Oscillation Structure in the Superparameterized CAM. J. Atmos. Sci., 68 (9),1990–2008, doi:10.1175/JAS-D-11-04.1.

Beucler, T., T. Cronin, and K. Emanuel, 2018: A Linear Response Framework for RadiativeConvective Instability. J. Adv. Model. Earth Syst., 10 (8), 1924–1951, doi:10.1029/2018MS001280.

Biello, J. A., and A. J. Majda, 2005: A New Multiscale Model for the Madden–JulianOscillation. J. Atmos. Sci., 62 (6), 1694–1721, doi:10.1175/JAS3455.1.

Bladé, I., and D. L. Hartmann, 1993: Tropical Intraseasonal Oscillations in a Simple NonlinearModel. J. Atmos. Sci., 50 (17), 2922–2939, doi:10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

Bony, S., and K. A. Emanuel, 2005: On the role of moist processes in tropical intraseasonalvariability: Cloud-radiation and moisture-convection feedbacks. J. Atmos. Sci., 62 (8),2770–2789, doi:10.1175/JAS3506.1.

Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between Water VaporPath and Precipitation over the Tropical Oceans. J. Climate, 17 (7), 1517–1528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

Chen, G., and B. Wang, 2018a: Does the MJO have a westward group velocity? J. Climate,31 (6), 2435–2443, doi:10.1175/JCLI-D-17-0446.1.

Chen, G., and B. Wang, 2018b: Effects of enhanced front Walker cell on the eastwardpropagation of the MJO. J. Climate, 31 (10), 7719–7738, doi:10.1175/JCLI-D-17-0383.1.

Chen, S., and Coauthors, 2015: A Study of CINDY/DYNAMO MJO Suppressed Phase. J.Atmos. Sci., 72 (10), 3755–3779, doi:10.1175/JAS-D-13-0348.1.

Chen, S. S., R. A. Houze, and B. E. Mapes, 1996: Multiscale Variability of Deep ConvectionIn Realation to Large-Scale Circulation in TOGA COARE. J. Atmos. Sci., 53 (10),1380–1409, doi:10.1175/1520-0469(1996)053<1380:MVODCI>2.0.CO;2.

Chen, X., J. Ling, and C. Li, 2016: Evolution of the Madden-Julian oscillation in two typesof El Niño. J. Climate, 29 (5), 1919–1934, doi:10.1175/JCLI-D-15-0486.1.

Chen, X., and F. Zhang, 2019: Relative Roles of Preconditioning Moistening and GlobalCircumnavigating Mode on the MJO Convective Initiation During DYNAMO. Geophys.Res. Lett., 46 (2), 1079–1087, doi:10.1029/2018GL080987.

Crueger, T., and B. Stevens, 2015: The effect of atmospheric radiative heating by cloudson the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 7 (2), 854–864, doi:10.1002/2015MS000434.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137 (656), 553–597,doi:10.1002/qj.828.

Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO Transition from Shallow to Deep Convection in CloudSat /CALIPSO Data and GISS GCM Simulations. J. Climate,25 (11), 3755–3770, doi:10.1175/JCLI-D-11-00384.1.

Demott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, doi:10.1002/2014RG000478.

DeMott, C. A., C. Stan, D. A. Randall, and M. D. Branson, 2014: Intraseasonal variability incoupled GCMs: The roles of ocean feedbacks and model physics. J. Climate, 27 (13),4970–4995, doi:10.1175/JCLI-D-13-00760.1.

Dias, J., S. Leroux, S. N. Tulich, and G. N. Kiladis, 2013: How systematic is organize tropical convection within the MJO? Geophys. Res. Lett., 40 (7), 1420–1425, doi:10. 1002/grl.50308.

Dias, J., N. Sakaeda, G. N. Kiladis, and K. Kikuchi, 2017: Influences of the MJO on the spacetime organization of tropical convection. J. Geophys. Res. Atmos., 122 (15),8012–8032,doi:10.1002/2017JD026526.

Duchon, C. E., 1979: Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorol.,18 (8), 1016–1022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

Dunkerton, T. J., and M. P. Baldwin, 1995: Observation of 3–6-Day Meridional WindOscillations over the Tropical Pacific, 1973–1992: Horizontal Structure and Propagation. J. Atmos. Sci., 52 (10), 1585–1601, doi:10.1175/1520-0469(1995)052<1585:OODMWO>2.0.CO;2.

Dunkerton, T. J., and F. X. Crum, 1995: Eastward propagating ∼2- to 15-day equatorialconvection and its relation to the tropical intraseasonal oscillation. J. Geophys. Res.Atmos., 100 (D12), doi:10.1029/95jd02678.

Emanuel, K. A., 1987: An Air-Sea Interaction Model of Intraseasonal Oscillations in theTropics. J. Atmos. Sci., 44 (16), 2324–2340, doi:10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

Feng, J., P. Liu, W. Chen, and X. Wang, 2015: Contrasting Madden–Julian oscillationactivity during various stages of EP and CP El Niños. Atmos. Sci. Lett., 16 (1), 32–37,doi:10.1002/asl2.516.

Fink, A., and P. Speth, 1997: Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25–70-day) variability. Int.J. Clim., 17 (14), 1513–1534, doi:10.1002/(SICI)1097-0088(19971130)17:14<1513::AID-JOC210>3.0.CO;2-U.

Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The Feedback betweenEquatorial Convection and Local Radiative and Evaporative Processes: The Implications for Intraseasonal Oscillations. J. Atmos. Sci., 54 (19), 2373–2386, doi:10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.

Frank, W. M., and P. E. Roundy, 2006: The Role of Tropical Waves in Tropical Cyclogenesis.Mon. Wea. Rev., 134 (9), 2397–2417, doi:10.1175/MWR3204.1.

Fu, X., W. Wang, J.-Y. Lee, B. Wang, K. Kikuchi, J. Xu, J. Li, and S. Weaver, 2015: Distinctive Roles of Air–Sea Coupling on Different MJO Events: A New Perspective Revealed from the DYNAMO/CINDY Field Campaign. Mon. Wea. Rev., 143 (3), 794– 812, doi:10.1175/MWR-D-14-00221.1.

Fukutomi, Y., 2019: Tropical Synoptic-Scale Waves Propagating Across the Maritime Continent and Northern Australia. J. Geophys. Res. Atmos., 124 (14), 7665–7682, doi: 10.1029/2018JD029795.

Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106 (449), 447–462, doi:10.1002/qj.49710644905.

Grabowski, W. W., and M. W. Moncrieff, 2004: Moisture–convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130 C (604), 3081–3104, doi:10.1256/qj.03.135.

Guo, Y., D. E. Waliser, and X. Jiang, 2015: A Systematic relationship between the representations of convectively coupled equatorial wave activity and the MaddenJulian oscillation in climate model simulations. J. Climate, 28 (5), 1881–1904, doi: 10.1175/JCLI-D-14-00485.1.

Haertel, P., K. Straub, and A. Budsock, 2015: Transforming circumnavigating Kelvin waves that initiate and dissipate the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 141 (690), 1586–1602, doi:10.1002/qj.2461.

Hagos, S., Z. Feng, K. Landu, and C. N. Long, 2014: Advection, moistening, and shallowto-deep convection transitions during the initiation and propagation of Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 6 (3), 938–949, doi:10.1002/2014MS000335.

Hannah, W. M., and E. D. Maloney, 2011: The role of moisture-convection feedbacks in simulating the Madden-Julian oscillation. J. Climate, 24 (11), 2754–2770, doi:10.1175/ 2011JCLI3803.1.

Hendon, H. H., and B. Liebmann, 1990: The Intraseasonal (30–50 day) Oscillation of the Australian Summer Monsoon. J. Atmos. Sci., 47 (24), 2909–2924, doi:10.1175/ 1520-0469(1990)047<2909:TIDOOT>2.0.CO;2.

Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden-Julian oscillation. J. Geophys. Res. Atmos., 99 (D4), 8073–8083, doi:10.1029/94JD00045.

Hendon, H. H., and M. L. Salby, 1994: The Life Cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51 (15), 2225–2237, doi:10.1175/1520-0469(1994)051<2225:TLCOTM> 2.0.CO;2.

Hendon, H. H., M. C. Wheeler, and C. Zhang, 2007: Seasonal Dependence of the MJO–ENSO Relationship. J. Climate, 20 (3), 531–543, doi:10.1175/JCLI4003.1.

Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the MaddenJulian oscillation during austral summer. J. Climate, 12 (8), 2538–2550, doi:10.1175/ 1520-0442(1999)012<2538:ivotmj>2.0.co;2.

Hirata, F. E., P. J. Webster, and V. E. Toma, 2013: Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophys. Res. Lett., 40 (12), 3337–3341, doi:10.1002/grl.50632.

Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70 (2), 448–464, doi:10.1175/JAS-D-12-089.1.

Holloway, C. E., and D. J. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66 (6), 1665–1683, doi:10.1175/2008JAS2806.1.

Hsu, P. C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation. J. Climate, 25 (14), 4914–4931, doi:10.1175/JCLI-D-11-00310.1.

Hung, C.-S., and C.-H. Sui, 2018: A Diagnostic Study of the Evolution of the MJO from Indian Ocean to Maritime Continent: Wave Dynamics versus Advective Moistening Processes. J. Climate, 31 (10), 4095–4115, doi:10.1175/JCLI-D-17-0139.1.

Hung, M. P., J. L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26 (17), 6185–6214, doi:10.1175/JCLI-D-12-00541.1.

Ichikawa, H., and T. Yasunari, 2007: Propagating diurnal disturbances embedded inthe Madden-Julian Oscillation. Geophys. Res. Lett., 34 (18), L18 811, doi:10.1029/ 2007GL030480.

Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian Oscillation in a Coupled General Circulation Model. Part I: Comparison with Observations and an Atmosphere-Only GCM. J. Climate, 16 (3), 345–364, doi:10.1175/1520-0442(2003) 016<0345:SOTMJO>2.0.CO;2.

Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden-Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16 (3), 365–382, doi:10.1175/1520-0442(2003)016<0365:SOTMJO>2.0.CO;2.

Janiga, M. A., and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloudresolving model. J. Atmos. Sci., 73 (6), 2257–2278, doi:10.1175/JAS-D-14-0379.1.

Jiang, X., 2017: Key processes for the eastward propagation of the Madden-Julian Oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122 (2), 755–770, doi: 10.1002/2016JD025955.

Jiang, X., á. F. Adames, M. Zhao, D. Waliser, and E. Maloney, 2018: A unified moisture mode framework for seasonality of the Madden-Julian oscillation. J. Climate, 31 (11), 4215–4224, doi:10.1175/JCLI-D-17-0671.1.

Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the MaddenJulian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120 (10), 4718–4748, doi:10.1002/2014JD022375.

Kang, I.-S., F. Liu, M.-S. Ahn, Y.-M. Yang, and B. Wang, 2013: The Role of SST Structure in Convectively Coupled Kelvin–Rossby Waves and Its Implications for MJO Formation. J. Climate, 26 (16), 5915–5930, doi:10.1175/JCLI-D-12-00303.1.

Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Climate, 22 (3), 615–632, doi:10.1175/2008JCLI2309.1.

Kemball-Cook, S., B. Wang, and X. Fu, 2002: Simulation of the Intraseasonal Oscillation in the ECHAM-4 Model: The Impact of Coupling with an Ocean Model. J. Atmos. Sci.,59 (9), 1433–1453, doi:10.1175/1520-0469(2002)059<1433:SOTIOI>2.0.CO;2.

Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the MaddenJulian oscillation. J. Climate, 14 (5), 780–793, doi:10.1175/1520-0442(2001)014<0780: TOOCIT>2.0.CO;2.

Kerns, B. W., and S. S. Chen, 2014: Equatorial Dry Air Intrusion and Related Synoptic Variability in MJO Initiation during DYNAMO. Mon. Wea. Rev., 142 (3), 1326–1343, doi:10.1175/MWR-D-13-00159.1.

Kessler, W. S., 2001: EOF representations of the Madden-Julian and its connection with ENSO. J. Climate, 14 (13), 3055–3061, doi:10.1175/1520-0442(2001)014<3055: EROTMJ>2.0.CO;2.

Khairoutdinov, M. F., and K. Emanuel, 2018: Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J. Atmos. Sci., 75 (12), 4337–4355, doi:10. 1175/JAS-D-18-0152.1.

Kikuchi, K., G. N. Kiladis, J. Dias, and T. Nasuno, 2018: Convectively coupled equatorial waves within the MJO during CINDY/DYNAMO: slow Kelvin waves as building blocks. Clim. Dyn., 50 (11-12), 4211–4230, doi:10.1007/s00382-017-3869-5.

Kikuchi, K., and Y. N. Takayabu, 2003: Equatorial Circumnavigation of Moisture Signal Associated with the Madden-Julian Oscillation (MJO) during Boreal Winter. J. Meteor. Soc. Japan, 81 (4), 851–869, doi:10.2151/jmsj.81.851.

Kikuchi, K., and B. Wang, 2010: Spatiotemporal wavelet transform and the multiscale behavior of the Madden-Julian oscillation. J. Climate, 23 (14), 3814–3834, doi:10.1175/ 2010JCLI2693.1.

Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Clim. Dyn., 38 (9-10), 1989–2000, doi:10.1007 s00382-011-1159-1.

Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and Vertical Structure of the Madden–Julian Oscillation. J. Atmos. Sci., 62 (8), 2790–2809, doi:10.1175/JAS3520.1.

Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47 (2), RG2003, doi:10.1029/2008RG000266.

Kim, D., H. Kim, and M. I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44 (5), 2579–2587, doi: 10.1002/2017GL072643.

Kiranmayi, L., and E. D. Maloney, 2011: Intraseasonal moist static energy budget in reanalysis data. J. Geophys. Res. Atmos., 116 (21), 1–12, doi:10.1029/2011JD016031.

Klingaman, N. P., and S. J. Woolnough, 2014: The role of air-sea coupling in the simulation of the Madden-Julian oscillation in the Hadley Centre model. Quart. J. Roy. Meteor. Soc., 140 (684), 2272–2286, doi:10.1002/qj.2295.

Knapp, K. R., and Coauthors, 2011: Globally Gridded Satellite Observations for Climate Studies. Bull. Amer. Meteor. Soc., 92 (7), 893–907, doi:10.1175/2011BAMS3039.1.

Knutson, T. R., and K. M. Weickmann, 1987: 30–60 Day Atmospheric Oscillations: Composite Life Cycles of Convection and Circulation Anomalies. Mon. Wea. Rev., 115 (7), 1407–1436, doi:10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

Kuang, Z., 2008: A Moisture-Stratiform Instability for Convectively Coupled Waves. J. Atmos. Sci., 65 (3), 834–854, doi:10.1175/2007JAS2444.1.

Kubota, H., K. Yoneyama, J.-I. Hamada, P. Wu, A. Sudaraynto, and I. B. Wahyono, 2015: Role of Maritime Continent Convection during the Preconditioning Stage of the MaddenJulian Oscillation Observed in CINDY2011/DYNAMO. J. Meteor. Soc. Japan. Ser. II, 93A (0), 101–114, doi:10.2151/jmsj.2015-050.

Lau, K. K.-M., and L. Peng, 1987: Origin of Low-Frequency (Intraseasonal) Oscillations in the Tropical Atmosphere. Part I: Basic Theory. J. Atmos. Sci., 44 (6), 950–972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

Lau, W. K.-M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere-Ocean Climate System. 2nd ed., Springer-Verlag, 614 pp.

Li, T., C. Zhao, P. C. Hsu, and T. Nasuno, 2015: MJO initiation processes over the tropical Indian ocean during DYNAMO/CINDY2011. J. Climate, 28 (6), 2121–2135, doi:10. 1175/JCLI-D-14-00328.1.

Liebmann, B., and H. H. Hendon, 1990: Synoptic-Scale Disturbances near the Equator. 47 (12), 1463–1479, doi:10.1175/1520-0469(1990)047<1463:SSDNTE>2.0.CO;2.

Lighthill, J., 1978: Waves in fluids. 1st ed., Cambridge University Press., 504 pp. Ling, J., C. Zhang, S. Wang, and C. Li, 2017: A new interpretation of the ability of global models to simulate the MJO. Geophys. Res. Lett., 44 (11), 5798–5806, doi:10.1002/ 2017GL073891.

Ling, J., Y. Zhao, and G. Chen, 2019: Barrier effect on MJO propagation by the Maritime Continent in the MJO Task Force/GeWEX atmospheric system study models. J. Climate, 32 (17), 5529–5547, doi:10.1175/JCLI-D-18-0870.1.

Liu, F., and B. Wang, 2013: An Air–Sea Coupled Skeleton Model for the Madden–Julian Oscillation. J. Atmos. Sci., 70 (10), 3147–3156, doi:10.1175/JAS-D-12-0348.1.

Ma, D., and Z. Kuang, 2016: A mechanism-denial study on the Madden-Julian Oscillation. Geophys. Res. Lett., 43, 2989–2997, doi:10.1002/2016GL067702.

Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific. J. Atmos. Sci., 28 (5), 702–708, doi:10.1175/1520-0469(1971) 028<0702:DOADOI>2.0.CO;2.

Madden, R. A., and P. R. Julian, 1972: Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci., 29 (6), 1109–1123, doi:10.1175/ 1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

Majda, A. J., and J. A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. (USA), 101 (14), 4736–4741, doi:10.1073/pnas.0401034101.

Majda, A. J., and R. Klein, 2003: Systematic multiscale models for the tropics. J. Atmos. Sci., 60 (2), 393–408, doi:10.1175/1520-0469(2003)060<0393:SMMFTT>2.0.CO;2.

Majda, A. J., and S. N. Stechmann, 2009a: A Simple Dynamical Model with Features of Convective Momentum Transport. J. Atmos. Sci., 66 (2), 373–392, doi:10.1175/ 2008JAS2805.1.

Majda, A. J., and S. N. Stechmann, 2009b: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. (USA), 106 (21), 8417–8422, doi:10.1073/pnas.0903367106.

Majda, A. J., and S. N. Stechmann, 2011: Nonlinear Dynamics and Regional Variations in the MJO Skeleton. J. Atmos. Sci., 68 (12), 3053–3071, doi:10.1175/JAS-D-11-053.1.

Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22 (3), 711–729, doi:10.1175/2008JCLI2542.1.

Maloney, E. D., and D. L. Hartmann, 1998: Frictional Moisture Convergence in a Composite Life Cycle of the Madden–Julian Oscillation. J. Climate, 11 (9), 2387–2403, doi:10. 1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

Maloney, E. D., and D. L. Hartmann, 2000: Modulation of Eastern North Pacific Hurricanes by the Madden–Julian Oscillation. J. Climate, 13 (9), 1451–1460, doi: 10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17 (22), 4368–4386, doi:10.1175/JCLI-3212.1.

Maloney, E. D., and B. O. Wolding, 2015: Initiation of an intraseasonal oscillation in an aquaplanet general circulation model. J. Adv. Model. Earth Syst., 7 (4), 1956–1976, doi:10.1002/2015MS000495.

Masunaga, H., 2013: A satellite study of tropical moist convection and environmental variability: A moisture and thermal budget analysis. J. Atmos. Sci., 70 (8), 2443–2466, doi:10.1175/JAS-D-12-0273.1.

Masunaga, H., T. S. L’Ecuyer, and C. D. Kummerow, 2006: The Madden–Julian Oscillation Recorded in Early Observations from the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Sci., 63 (11), 2777–2794, doi:10.1175/JAS3783.1.

Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44 (2), 25–43, doi:10.1002/qj.49710644905.

Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126 (569), 2637–2651, doi:10.1256/smsqj.56901.

Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134 (631), 439–453, doi:10.1002/qj.224.

Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130 (601), 1991–2011, doi:10.1256/qj.02.123.

McPhaden, M. J., 1999: Genesis and Evolution of the 1997-98 El Niño. Science, 283 (5404), 950–954, doi:10.1126/science.283.5404.950.

Miura, H., M. Satoh, and M. Katsumata, 2009: Spontaneous onset of a Madden-Julian oscillation event in a cloud-system-resolving simulation. Geophys. Res. Lett., 36 (13), 2–6, doi:10.1029/2009GL039056.

Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian Oscillation Event Realistically Simulated by a Global Cloud-Resolving Model. Science, 318 (5857), 1763–1765, doi:10.1126/science.1148443.

Miyakawa, T., H. Yashiro, T. Suzuki, H. Tatebe, and M. Satoh, 2017: A Madden-Julian Oscillation event remotely accelerates ocean upwelling to abruptly terminate the 1997 1998 super El Niño. Geophys. Res. Lett., 44 (18), 9489–9495, doi:10.1002/2017GL074683.

Miyakawa, T., and Coauthors, 2014: Madden–Julian Oscillation prediction skill of a newgeneration global model demonstrated using a supercomputer. Nature Communications, 5 (5), 1–6, doi:10.1038/ncomms4769.

Muraleedharan, P. M., S. Prasanna Kumar, K. Mohana kumar, S. Sijikumar, K. U. Sivakumar, and T. Mathew, 2015: Observational evidence of Mixed Rossby Gravity waves at the central equatorial Indian Ocean. Meteor. Atmos. Phys., 127 (4), 407–417, doi:10.1007/ s00703-015-0376-2.

Nakazawa, N., 1988: Tropical Super Clusters within Intraseasonal Variations over the Western Pacific. J. Meteor. Soc. Japan, 66 (6), 823–839, doi:10.2151/jmsj1965.66.6_823.

Nasuno, T., T. Li, and K. Kikuchi, 2015: Moistening Processes before the Convective Initiation of Madden–Julian Oscillation Events during the CINDY2011/DYNAMO Period. Mon. Wea. Rev., 143 (2), 622–643, doi:10.1175/MWR-D-14-00132.1.

Nasuno, T., H. Miura, M. Satoh, A. T. Noda, and K. Oouchi, 2009: Multi-scale Organization of Convection in a Global Numerical Simulation of the December 2006 MJO Event Using Explicit Moist Processes. J. Meteor. Soc. Japan, 87 (2), 335–345, doi:10.2151/ jmsj.87.335.

Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-Wind Feedback and LowFrequency Variability in the Tropical Atmosphere. J. Atmos. Sci., 44 (16), 2341–2348, doi:10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

Neelin, J. D., and J.-Y. Yu, 1994: Modes of Tropical Variability under Convective Adjustment and the Madden–Julian Oscillation. Part I: Analytical Theory. J. Atmos. Sci., 51 (13), 1876–1894, doi:10.1175/1520-0469(1994)051<1876:MOTVUC>2.0.CO;2.

Nitta, T., 1970: Statistical Study of Tropospheric Wave Disturbances in the Tropical Pacific Region. J. Meteor. Soc. Japan, 48 (1), 1876–1894, doi:10.2151/jmsj1965.48.1_47.

Okamoto, K., T. Ushio, T. Iguchi, N. Takahashi, and K. Iwanami, 2005: The Global Satellite Mapping of Precipitation (GSMaP) project. International Geoscience and Remote Sensing Symposium (IGARSS), 5 (3), 3414–3416, doi:10.1109/IGARSS.2005.1526575.

Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden-Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140 (680), 814–825, doi:10.1002/qj.2161.

Powell, S. W., and R. A. Houze, 2013: The cloud population and onset of the Madden-Julian Oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118 (21), 11 979–11 995, doi:10.1002/2013JD020421.

Powell, S. W., and R. A. Houze, 2015a: Effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res. Atmos., 120 (10), 4783–4805, doi:10.1002/2014JD022961.

Powell, S. W., and R. A. Houze, 2015b: Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 120 (9), 3906–3919, doi:10.1002/2014JD022934.

Pritchard, M. S., and C. S. Bretherton, 2014: Causal Evidence that Rotational Moisture Advection is Critical to the Superparameterized Madden–Julian Oscillation. J. Atmos. Sci., 71 (2), 800–815, doi:10.1175/JAS-D-13-0119.1.

Pritchard, M. S., and D. Yang, 2016: Response of the superparameterized Madden-Julian oscillation to extreme climate and basic-state variation challenges a moisture mode view. J. Climate, 29 (13), 4995–5008, doi:10.1175/JCLI-D-15-0790.1.

Raymond, D. J., 2001: A New Model of the Madden–Julian Oscillation. J. Atmos. Sci., 58 (18), 2807–2819, doi:10.1175/1520-0469(2001)058<2807:ANMOTM>2.0.CO;2.

Raymond, D. J., and Ž. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59 (5), 627–640, doi:10.1111/j.1600-0870.2007. 00268.x.

Raymond, D. J., and Ž. Fuchs, 2009: Moisture modes and the Madden-Julian oscillation. J. Climate, 22 (11), 3031–3046, doi:10.1175/2008JCLI2739.1.

Riley, E. M., B. E. Mapes, and S. N. Tulich, 2011: Clouds Associated with the Madden–Julian Oscillation: A New Perspective from CloudSat. J. Atmos. Sci., 68 (12), 3032–3051, doi: 10.1175/JAS-D-11-030.1.

Seiki, A., and Y. N. Takayabu, 2007: Westerly Wind Bursts and Their Relationship with Intraseasonal Variations and ENSO. Part II: Energetics over the Western and Central

Pacific. Mon. Wea. Rev., 135 (10), 3346–3361, doi:10.1175/MWR3503.1.

Seo, K.-H., and K.-Y. Kim, 2003: Propagation and initiation mechanisms of the Madden-Julian oscillation. J. Geophys. Res. Atmos., 108 (D13), 4384, doi:10.1029/2002JD002876.

Seo, K.-H., and S.-W. Son, 2012: The Global Atmospheric Circulation Response to Tropical Diabatic Heating Associated with the Madden–Julian Oscillation during Northern Winter. J. Atmos. Sci., 69 (1), 79–96, doi:10.1175/2011JAS3686.1.

Shi, X., D. Kim, Á. F. Adames, and J. Sukhatme, 2018: WISHE-moisture mode in an aquaplanet simulation. J. Adv. Model. Earth Syst., 10 (10), 2393–2407, doi:10.1029/ 2018MS001441.

Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal Variability of Surface Fluxes and Sea Surface Temperature in the Tropical Western Pacific and Indian Oceans. J. Climate, 11 (7), 1685–1702, doi:10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2.

Sobel, A., and E. Maloney, 2012: An Idealized Semi-Empirical Framework for Model76ing the Madden–Julian Oscillation. J. Atmos. Sci., 69 (5), 1691–1705, doi:10.1175/ JAS-D-11-0118.1.

Sobel, A., and E. Maloney, 2013: Moisture Modes and the Eastward Propagation of the MJO. J. Atmos. Sci., 70 (1), 187–192, doi:10.1175/JAS-D-12-0189.1.

Sobel, A. H., and C. S. Bretherton, 1999: Development of Synoptic-Scale Disturbances over the Summertime Tropical Northwest Pacific. J. Atmos. Sci., 56 (17), 3106–3127, doi:10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geoscience, 1 (10), 653–657, doi:10.1038/ngeo312.

Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2, 1–27, doi:10.3894/JAMES.2010.2.2.

Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The Weak Temperature Gradient Approximation and Balanced Tropical Moisture Waves. J. Atmos. Sci., 58 (23), 3650–3665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

Sperber, K. R., 2003: Propagation and the Vertical Structure of the Madden–Julian Oscillation. Mon. Wea. Rev., 131 (12), 3018–3037, doi:10.1175/1520-0493(2003)131<3018: PATVSO>2.0.CO;2.

Straub, K. H., and G. N. Kiladis, 2003: Interactions between the Boreal Summer Intraseasonal Oscillation and Higher-Frequency Tropical Wave Activity. Mon. Wea. Rev., 131 (5), 945–960, doi:10.1175/1520-0493(2003)131<0945:IBTBSI>2.0.co;2.

Suematsu, T., 2018: A study on the background sea surface temperature field and moist processes contributing to the realization of the Madden-Julian Oscillation (Doctoral Dissertation). The University of Tokyo.

Suematsu, T., and H. Miura, 2018: Zonal SST difference as a potential environmental factor supporting the longevity of the Madden-Julian oscillation. J. Climate, 31 (18), 7549–7564, doi:10.1175/JCLI-D-17-0822.1.

Sugiyama, M., 2009: The Moisture Mode in the Quasi-Equilibrium Tropical Circulation Model. Part I: Analysis Based on the Weak Temperature Gradient Approximation. J. Atmos. Sci., 66 (6), 1507–1523, doi:10.1080/07349165.1996.9725892.

Takasuka, D., M. Satoh, T. Miyakawa, and H. Miura, 2018: Initiation Processes of the Tropical Intraseasonal Variability Simulated in an Aqua-Planet Experiment: What is the Intrinsic Mechanism for MJO Onset? J. Adv. Model. Earth Syst., 10 (4), 1047–1073, doi:10.1002/2017MS001243.

Takayabu, Y. N., 1994: Large-Scale Cloud Disturbances Features Associated of the with Cloud Equatorial Disturbances Waves. Part I: Spectral Features of the Cloud Disturbances. J. Meteor. Soc. Japan, 72 (3), 433–449.

Takayabu, Y. N., T. Iguchi, M. Kachi, A. Shibata, and H. Kanzawa, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden–Julian oscillation. Nature, 402 (6759), 279–282, doi:10.1038/46254.

Takayabu, Y. N., K.-M. Lau, and C.-H. Sui, 1996: Observation of a Quasi-2-Day Wave during TOGA COARE. Mon. Wea. Rev., 124 (9), 1892–1913.

Takayabu, Y. N., and T. Nitta, 1993: 3–5 Day-Period Disturbances Coupled with Convection over the Tropical Pacific Ocean. J. Meteor. Soc. Japan. Ser. II, 71 (2), 221–246, doi: 10.2151/jmsj1965.71.2_221.

Tam, C. Y., and N. C. Lau, 2005: Modulation of the Madden-Julian Oscillation by ENSO: Inferences from observations and GCM simulations. J. Meteor. Soc. Japan, 83 (5), 727–743, doi:10.2151/jmsj.83.727.

Toh, Y. Y., A. G. Turner, S. J. Johnson, and C. E. Holloway, 2018: Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble. Clim. Dyn., 50 (3-4), 777–800, doi:10.1007/s00382-017-3641-x.

Tseng, W.-L., B.-J. Tsuang, N. S. Keenlyside, H.-H. Hsu, and C.-Y. Tu, 2015: Resolving the upper-ocean warm layer improves the simulation of the Madden–Julian oscillation. Clim. Dyn., 44 (5-6), 1487–1503, doi:10.1007/s00382-014-2315-1.

Vincent, D. G., A. Fink, J. M. Schrage, and P. Speth, 1998: High- and Low-Frequency Intraseasonal Variance of OLR on Annual and ENSO Timescales. J. Climate, 11 (5), 968–986, doi:10.1175/1520-0442(1998)011<0968:HALFIV>2.0.CO;2.

Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate and Atmospheric Science, 1 (1), 1–7, doi:10.1038/s41612-018-0013-0.

Wallace, J. M., 1971: Spectral studies of tropospheric wave disturbances in the tropical western Pacific. Rev. Geophys., 9 (3), 557–612, doi:10.1029/RG009i003p00557.

Wang, B., and G. Chen, 2017: A general theoretical framework for understanding essential dynamics of Madden–Julian oscillation. Clim. Dyn., 49 (7-8), 2309–2328, doi:10.1007/s00382-016-3448-1.

Wang, B., and T. Li, 1994: Convective Interaction with Boundary-Layer Dynamics in the Development of a Tropical Intraseasonal System. J. Atmos. Sci., 51 (11), 1386–1400, doi:10.1175/1520-0469(1994)051<1386:ciwbld>2.0.co;2.

Wang, B., and F. Liu, 2011: A model for scale interaction in the Madden-Julian oscillation. J. Atmos. Sci., 68 (11), 2524–2536, doi:10.1175/2011JAS3660.1.

Wang, B., F. Liu, and G. Chen, 2016: A trio-interaction theory for Madden–Julian oscillation. Geosci. Lett., 3 (1), doi:10.1186/s40562-016-0066-z.

Wang, B., and H. Rui, 1990: Dynamics of the Coupled Moist Kelvin–Rossby Wave on an Equatorial β-Plane. J. Atmos. Sci., 47 (4), 397–413, doi:10.1175/1520-0469(1990) 047<0397:DOTCMK>2.0.CO;2.

Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian oscillation. J. Climate, 11 (8), 2116–2135, doi:10.1175/1520-0442-11.8.2116.

Wang, B., and Coauthors, 2018a: Dynamics-oriented diagnostics for the Madden-Julian oscillation. J. Climate, 31 (8), 3117–3135, doi:10.1175/JCLI-D-17-0332.1.

Wang, L., T. Li, L. Chen, S. K. Behera, and T. Nasuno, 2018b: Modulation of the MJO intensity over the equatorial western Pacific by two types of El Niño. Clim. Dyn., 51 (1-2), 687–700, doi:10.1007/s00382-017-3949-6.

Wei, Y., and H.-L. Ren, 2019: Modulation of ENSO on Fast and Slow MJO Modes during Boreal Winter. J. Climate, 32 (21), 7483–7506, doi:10.1175/JCLI-D-19-0013.1.

Wheeler, M., and G. N. Kiladis, 1999: Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain. J. Atmos. Sci., 56 (3), 374–399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

Wheeler, M. C., and H. H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Wea. Rev., 132 (8), 1917–1932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

Widiyatmi, I., M. D. Yamanaka, H. Hashiguchi, S. Fukao, T. Tsuda, S. Y. Ogino, S. W. B. Harijono, and H. Wiryosumarto, 1999: Quasi 4 day mode observed by a boundary layer radar at Serpong (6◦ S, 107◦E), Indonesia. J. Meteor. Soc. Japan, 77 (6), 1177–1184, doi:10.2151/jmsj1965.77.6_1177.

Widiyatmi, I., and Coauthors, 2001: Examination of 3-6 day disturbances over quatorial Indonesia based on boundary layer radar observations during 1996-1999 at Bukittinggi, Serpong and Biak. J. Meteor. Soc. Japan, 79 (1 SPEC. ISSUE), 317–331, doi:10.2151/jmsj.79.317.

Wing, A. A., and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142 (694), 1–15, doi:10.1002/qj.2628.

Xu, W., and S. A. Rutledge, 2016: Time scales of shallow-to-deep convective transition associated with the onset of Madden-Julian Oscillations. Geophys. Res. Lett., 43 (6), 2880–2888, doi:10.1002/2016GL068269.

Yanai, M., and Y. Hayashi, 1969: Large-Scale Equatorial Waves Penetrating from the Upper Troposphere into the. Lower Stratosphere. J. Meteor. Soc. Japan, 47 (3), 167–182, doi: 10.2151/jmsj1965.47.3_167.

Yanai, M., and T. Maruyama, 1966: Stratospheric Wave Disturbances Propagating over the Equatorial Pacific. J. Meteor. Soc. Japan, 44 (5), 291–294, doi:10.2151/jmsj1965.44.5_291.

Yanai, M., T. Maruyama, T. Nitta, and Y. Hayashi, 1968: Power Spectra of Large-ScaleDisturbances over the Tropical Pacific. J. Meteor. Soc. Japan, 46 (4), 308–323, doi: 10.2151/jmsj1965.46.4_308.

Yanai, M., and M. Murakami, 1970: Spectrum Analysis of Symmetric and Antisymmetric Equatorial Waves. J. Meteor. Soc. Japan, 48 (4), 331–347.

Yang, D., 2018: Boundary-layer diabatic processes, the virtual effect, and convective selfaggregation. J. Adv. Model. Earth Syst., doi:10.1029/2017MS001261.

Yang, D., and A. P. Ingersoll, 2011: Testing the Hypothesis that the MJO is a Mixed Rossby– Gravity Wave Packet. J. Atmos. Sci., 68 (2), 226–239, doi:10.1175/2010JAS3563.1.

Yang, D., and A. P. Ingersoll, 2013: Triggered Convection, Gravity Waves, and the MJO: A Shallow-Water Model. J. Atmos. Sci., 70 (8), 2476–2486, doi:10.1175/JAS-D-12-0255.1.

Yang, D., and A. P. Ingersoll, 2014: A theory of the MJO horizontal scale. Geophys. Res. Lett., 41 (3), 1059–1064, doi:10.1002/2013GL058542.

Yasunaga, K., 2011: Seasonality and Regionality of the Madden-Julian Oscillation and Convectively Coupled EquatorialWaves. SOLA, 7, 153–156, doi:10.2151/sola.2011-039.

Yasunaga, K., K. Yoneyama, Q. Moteki, M. Fujita, Y. N. Takayabu, J. Suzuki, T. Ushiyama, and B. Mapes, 2010: Characteristics of 3–4- and 6–8-Day Period Disturbances Observed over the Tropical Indian Ocean. Mon. Wea. Rev., 138 (11), 4158–4174, doi:10.1175/ 2010MWR3469.1.

Yasunari, T., 1979: Cloudiness Fluctuations Associated with the Northern Hemisphere Summer Monsoon. J. Meteor. Soc. Japan. Ser. II, 57 (3), 227–242, doi:10.2151/jmsj1965.57.3_227.

Yokoi, S., and A. H. Sobel, 2015: Intraseasonal Variability and Seasonal March of the Moist Static Energy Budget over the Eastern Maritime Continent during CINDY2011 / DYNAMO. J. Meteor. Soc. Japan, 93A, 81–100, doi:10.2151/jmsj.2015-041.

Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden-Julian oscillation. Bull. Amer. Meteor. Soc., 94 (12), 1871–1891, doi:10.1175/BAMS-D-12-00157.1.

Yoneyama, K., and Coauthors, 2008: MISMO Field Experiment in the Equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89 (12), 1889–1904, doi:10.1175/2008BAMS2519.1.

Zhang, B., R. J. Kramer, and B. J. Soden, 2019: Radiative Feedbacks Associated with the Madden–Julian Oscillation. J. Climate, 32 (20), 7055–7065, doi:10.1175/ JCLI-D-19-0144.1.

Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43 (2), RG2003, doi:10.1029/ 2004RG000158.

Zhang, C., 2013: Madden-Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94 (12), 1849–1870, doi:10.1175/BAMS-D-12-00026.1.

Zhang, F., S. Taraphdar, and S. Wang, 2017: The role of global circumnavigating mode in the MJO initiation and propagation. J. Geophys. Res. Atmos., 122 (20), 5837–5856, doi:10.1002/2016JD025665.

Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical indian ocean. J. Climate, 26 (1), 291–307, doi:10.1175/ JCLI-D-12-00113.1.

Zhou, X., and B. Wang, 2007: Transition from an eastern Pacific upper-level mixed Rossbygravity wave to a western Pacific tropical cyclone. Geophys. Res. Lett., 34 (24), 2–6, doi:10.1029/2007GL031831.

Zhu, J., W. Wang, and A. Kumar, 2017: Simulations of MJO Propagation across the Maritime Continent: Impacts of SST Feedback. J. Climate, 30 (5), 1689–1704, doi:10.1175/ JCLI-D-16-0367.1.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る