リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Theoretical analysis of synaptic plasticity by various factors in vivo」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Theoretical analysis of synaptic plasticity by various factors in vivo

羽田 克彦 Katsuhiko Hata 東京理科大学 DOI:info:doi/10.20604/00003669

2022.06.16

概要

神経情報処理の要素として、主にニューロンの発火頻度とスパイクタイミングの2つが提案されている。シナプス可塑性では、シナプス前部とシナプス後部でのスパイクの時間差に依存するスパイクタイミング依存性可塑性( STDP) が最も一般的なルールと考えられていたが、近年の研究では STDPの鍵となる正確なスパイクタイミングが生体内の脳ではあまりみられないことが明らかになった。このように、生体内のシナプス可塑性における発火周波数の重要性は再認識されつつある。しかし、この周波数依存性シナプス可塑性( FDP) が生体内でどのように制御されているかについては殆ど分かっていない。本学位論文ではニューロンの種類や, シナプス前入カパターン、細胞内カルシウム減衰時定数および背景シナプス活動といった脳内の解剖学的かつ生理学的環境によって異なる因子に注目した。そしてcalcium-based modelを数理的に解析することで、ニュ^ーロンが同じ入力周波数を受けたとしても、生体内に特徴的なこれらの因子によってシナプス荷重が異なることを発見した。さらに背景シナプス活動の振幅が統計的に揺らぐことが示唆されているが、そのシナプス可塑性への寄与については不明なままである。この点を明らかにするため数値シミュレーションを行ったところ、背景シナプス活動の揺らぎが大きくなることでLTD (シナプスの伝達効率が低下する現象)になる傾向が弱まり、シナプス荷重が増大することが分かった。これらの結果は、生体内の脳におけるシナプス可塑性、さらには神経コーディングに多面的な要因が関与していることを示唆している。

参考文献

[1] Gulyas, A. I., Megias, M., Emri, Z., and Freund, T. F. J Neurosci 19(22), 10082–97 (1999).

[2] Lynch, G. S., Dunwiddie, T., and Gribkoff, V. Nature 266(5604), 737–9 (1977).

[3] Ito, M. and Kano, M. Neurosci Lett 33(3), 253–8 (1982).

[4] Lomo, T. Philos Trans R Soc Lond B Biol Sci 358(1432), 617–20 (2003).

[5] Hata, K., Araki, O., Yokoi, O., Kusakabe, T., Yamamoto, Y., Ito, S., and Nikuni, T. Sci Rep 10(1), 13974 (2020).

[6] Takeda, Y., Hata, K., Yamazaki, T., Kaneko, M., Yokoi, O., Tsai, C., Umemura, K., and Nikuni, T. Front Syst Neurosci 15, 771661 (2021).

[7] Martin, S. J., Grimwood, P. D., and Morris, R. G. Annu Rev Neurosci 23, 649–711 (2000).

[8] Sjostrom, P. J., Turrigiano, G. G., and Nelson, S. B. Neuron 32(6), 1149–64 (2001).

[9] Weissenberger, F., Gauy, M. M., Lengler, J., Meier, F., and Steger, A. Sci Rep 8(1), 4609 (2018).

[10] Bienenstock, E. L., Cooper, L. N., and Munro, P. W. J Neurosci 2(1), 32–48 (1982).

[11] Bliss, T. V. and Lomo, T. J Physiol 232(2), 331–56 (1973).

[12] Bliss, T. V. and Gardner-Medwin, A. R. J Physiol 232(2), 357–74 (1973).

[13] Bliss, T. V. and Collingridge, G. L. Nature 361(6407), 31–9 (1993).

[14] Kirkwood, A., Dudek, S. M., Gold, J. T., Aizenman, C. D., and Bear, M. F. Science 260(5113), 1518–21 (1993).

[15] Dudek, S. M. and Bear, M. F. Proc Natl Acad Sci U S A 89(10), 4363–7 (1992).

[16] Mulkey, R. M. and Malenka, R. C. Neuron 9(5), 967–75 (1992).

[17] Artola, A. and Singer, W. Trends Neurosci 16(11), 480–7 (1993).

[18] Gerstner, W. and Kistler, W. M. Spiking neuron models : single neurons, populations, plasticity. Cambridge University Press, Cambridge, U.K. ; New York, (2002).

[19] Song, S., Miller, K. D., and Abbott, L. F. Nat Neurosci 3(9), 919–26 (2000).

[20] Bi, G. Q. and Poo, M. M. J Neurosci 18(24), 10464–72 (1998).

[21] Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. Nature 383(6595), 76–81 (1996).

[22] Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. Science 275(5297), 213–5 (1997).

[23] Debanne, D., Gahwiler, B. H., and Thompson, S. M. J Physiol 507 ( Pt 1), 237–47 (1998).

[24] Feldman, D. E. Neuron 27(1), 45–56 (2000).

[25] Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., and Poo, M. Nature 395(6697), 37–44 (1998).

[26] Cai, W., Ellinger, F., and Tetzlaff, R. IEEE Trans Biomed Circuits Syst 9(1), 87–95 (2015).

[27] Graupner, M., Wallisch, P., and Ostojic, S. J Neurosci 36(44), 11238–11258 (2016).

[28] Softky, W. R. and Koch, C. J Neurosci 13(1), 334–50 (1993).

[29] Knierim, J. J. and van Essen, D. C. J Neurophysiol 67(4), 961–80 (1992).

[30] Chance, F. and Abbott, L. F. Simulating in vivo background activity in a slice with the dynamic clamp, 73–87. Springer (2009).

[31] Jacobson, G. A., Diba, K., Yaron-Jakoubovitch, A., Oz, Y., Koch, C., Segev, I., and Yarom, Y. J Physiol 564(Pt 1), 145–60 (2005).

[32] London, M., Roth, A., Beeren, L., Hausser, M., and Latham, P. E. Nature 466(7302), 123–7 (2010).

[33] Madadi Asl, M., Valizadeh, A., and Tass, P. A. Sci Rep 7, 39682 (2017).

[34] Madadi Asl, M., Valizadeh, A., and Tass, P. A. Sci Rep 8(1), 12068 (2018).

[35] Li, M. and Tsien, J. Z. Front Cell Neurosci 11, 236 (2017).

[36] Graupner, M. and Brunel, N. Proc Natl Acad Sci U S A 109(10), 3991–6 (2012).

[37] Sjostrom, P. J. and Hausser, M. Neuron 51(2), 227–38 (2006).

[38] Nobukawa, S. and Nishimura, H. Int J Neural Syst 26(5), 1550040 (2016).

[39] Yasuda, H., Miyaoka, T., Horiguchi, J., Yasuda, A., Hanggi, P., and Yamamoto, Y. Phys Rev Lett 100(11), 118103 (2008).

[40] Shouval, H. Z., Bear, M. F., and Cooper, L. N. Proc Natl Acad Sci U S A 99(16), 10831–6 (2002).

[41] Cummings, J. A., Mulkey, R. M., Nicoll, R. A., and Malenka, R. C. Neuron 16(4), 825–33 (1996).

[42] Cormier, R. J., Greenwood, A. C., and Connor, J. A. J Neurophysiol 85(1), 399–406 (2001).

[43] Cho, K., Aggleton, J. P., Brown, M. W., and Bashir, Z. I. J Physiol 532(Pt 2), 459–66 (2001).

[44] Yang, S. N., Tang, Y. G., and Zucker, R. S. J Neurophysiol 81(2), 781–7 (1999).

[45] Jones, R. S. and Woodhall, G. L. J Physiol 562(Pt 1), 107–20 (2005).

[46] Rapp, M., Yarom, Y., and Segev, I. Proc Natl Acad Sci U S A 93(21), 11985–90 (1996).

[47] Bereshpolova, Y., Amitai, Y., Gusev, A. G., Stoelzel, C. R., and Swadlow, H. A. J Neurosci 27(35), 9392–9 (2007).

[48] Faisal, A. A., Selen, L. P., and Wolpert, D. M. Nat Rev Neurosci 9(4), 292–303 (2008).

[49] Ahmed, B., Anderson, J. C., Douglas, R. J., Martin, K. A., and Whitteridge, D. Cereb Cortex 8(5), 462–76 (1998).

[50] Liu, Y. H. and Wang, X. J. J Comput Neurosci 10(1), 25–45 (2001).

[51] Shouval, H. Z. and Kalantzis, G. J Neurophysiol 93(2), 1069–73 (2005).

[52] Stuart, G. J. and Hausser, M. Nat Neurosci 4(1), 63–71 (2001).

[53] Zheng, Y. and Schwabe, L. PLoS One 9(2), e88592 (2014).

[54] Yaron-Jakoubovitch, A., Jacobson, G. A., Koch, C., Segev, I., and Yarom, Y. Front Cell Neurosci 2, 3 (2008).

[55] Yeung, L. C., Castellani, G. C., and Shouval, H. Z. Phys Rev E Stat Nonlin Soft Matter Phys 69(1 Pt 1), 011907 (2004).

[56] Izhikevich, E. M. and Desai, N. S. Neural Comput 15(7), 1511–23 (2003).

[57] Bush, D. and Jin, Y. J Comput Neurosci 33(3), 495–514 (2012).

[58] Speed, H. E. and Dobrunz, L. E. J Neurophysiol 99(2), 799–813 (2008).

[59] Brunel, N. J Comput Neurosci 8(3), 183–208 (2000).

[60] Deger, M., Helias, M., Boucsein, C., and Rotter, S. J Comput Neurosci 32(3), 443–63 (2012).

[61] Maimon, G. and Assad, J. A. Neuron 62(3), 426–40 (2009).

[62] Baker, S. N. and Lemon, R. N. J Neurophysiol 84(4), 1770–80 (2000).

[63] Burton, S. D. and Urban, N. N. J Neurosci 35(42), 14103–22 (2015).

[64] Li, M., Xie, K., Kuang, H., Liu, J., Wang, D., Fox, G. E., Wei, W., Li, X., Li, Y., and Zhao, F. Biorxiv , 145813 (2018).

[65] Moore, J. J., Ravassard, P. M., Ho, D., Acharya, L., Kees, A. L., Vuong, C., and Mehta, M. R. Science 355(6331) (2017).

[66] Gjorgjieva, J., Clopath, C., Audet, J., and Pfister, J. P. Proc Natl Acad Sci U S A 108(48), 19383–8 (2011).

[67] Pfister, J. P. and Gerstner, W. J Neurosci 26(38), 9673–82 (2006).

[68] Carrillo-Medina, J. L. and Latorre, R. Front Comput Neurosci 10, 132 (2016).

[69] Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., and Warland, D. Science 252(5014), 1854–7 (1991).

[70] Eric R. Kandel, Edited, J. H. S. E. T. M. J. E. S. A. S. E. A. J. H. E. S. M. Principles of Neural Science, 5th Edn. Elsevier Science Publishing Co. Inc., New York, (2013).

[71] Rao, R. P. N., Olshausen, B. A., and Lewicki, M. S. Probabilistic models of the brain : perception and neural function / edited by Rajesh P.N. Rao, Bruno A. Olshausen, Michael S. Lewicki. Neural information processing series. MIT Press, Cambridge, Mass., (2002).

[72] Zhao, C., Wysocki, B. T., Liu, Y., Thiem, C. D., McDonald, N. R., and Yi, Y. J. Emerg. Technol. Comput. Syst. 12(3), 1–21 (2015).

[73] Panzeri, S., Brunel, N., Logothetis, N. K., and Kayser, C. Trends Neurosci 33(3), 111–20 (2010).

[74] Latorre, R., Rodriguez, F. B., and Varona, P. Biol Cybern 95(2), 169–83 (2006).

[75] Kayser, C., Montemurro, M. A., Logothetis, N. K., and Panzeri, S. Neuron 61(4), 597–608 (2009).

[76] Hu, E., Mergenthal, A., Bingham, C. S., Song, D., Bouteiller, J. M., and Berger, T. W. Front Comput Neurosci 12, 58 (2018).

[77] Minelli, A., Castaldo, P., Gobbi, P., Salucci, S., Magi, S., and Amoroso, S. Cell Calcium 41(3), 221–34 (2007).

[78] Jeon, D., Yang, Y. M., Jeong, M. J., Philipson, K. D., Rhim, H., and Shin, H. S. Neuron 38(6), 965–76 (2003).

[79] Secondo, A., Esposito, A., Sirabella, R., Boscia, F., Pannaccione, A., Molinaro, P., Cantile, M., Ciccone, R., Sisalli, M. J., Scorziello, A., Di Renzo, G., and Annunziato, L. J Biol Chem 290(3), 1319–31 (2015).

[80] Moriguchi, S., Kita, S., Fukaya, M., Osanai, M., Inagaki, R., Sasaki, Y., Izumi, H., Horie, K., Takeda, J., Saito, T., Sakagami, H., Saido, T. C., Iwamoto, T., and Fukunaga, K. Neuropharma- cology 131, 291–303 (2018).

[81] Asano, S., Matsuda, T., Takuma, K., Kim, H. S., Sato, T., Nishikawa, T., and Baba, A. J Neurochem 64(6), 2437–41 (1995).

[82] Destexhe, A., Rudolph, M., and Pare, D. Nat Rev Neurosci 4(9), 739–51 (2003).

[83] Stacey, W. C. and Durand, D. M. J Neurophysiol 86(3), 1104–12 (2001).

[84] Remy, S. and Spruston, N. Proc Natl Acad Sci U S A 104(43), 17192–7 (2007).

[85] Costa, R. P., Froemke, R. C., Sjostrom, P. J., and van Rossum, M. C. Elife 4 (2015).

[86] Stein, R. B., Gossen, E. R., and Jones, K. E. Nat Rev Neurosci 6(5), 389–97 (2005).

[87] Lucken, L., Popovych, O. V., Tass, P. A., and Yanchuk, S. Phys Rev E 93(3), 032210 (2016).

[88] Uddin, L. Q. Trends Cogn Sci 24(9), 734–746 (2020).

[89] Ramaswamy, S. and Markram, H. Front Cell Neurosci 9, 233 (2015).

[90] Graupner, M. and Brunel, N. Modeling Synaptic Plasticity in Hippocampus: A Calcium-Based Approach, 615–644. Springer (2018).

[91] Piochon, C., Titley, H. K., Simmons, D. H., Grasselli, G., Elgersma, Y., and Hansel, C. Proc Natl Acad Sci U S A 113(46), 13221–13226 (2016).

[92] Graupner, M. and Brunel, N. PLoS Comput Biol 3(11), e221 (2007).

[93] Aizawa, Y., Shimatani, Y., and Kobatake, Y. Progress of Theoretical Physics 53(2), 305–314 (1975).

[94] White, J. A., Rubinstein, J. T., and Kay, A. R. Trends Neurosci 23(3), 131–7 (2000).

[95] Kavalali, E. T., Chung, C., Khvotchev, M., Leitz, J., Nosyreva, E., Raingo, J., and Ramirez, D. M. Physiology (Bethesda) 26(1), 45–53 (2011).

[96] Poznanski, R. R. and Cacha, L. A. J Integr Neurosci 11(4), 417–37 (2012).

[97] Fatt, P. and Katz, B. Nature 166(4223), 597–598 (1950).

[98] Heimburg, T. and Jackson, A. D. Proc Natl Acad Sci U S A 102(28), 9790–5 (2005).

[99] Andersen, S. S., Jackson, A. D., and Heimburg, T. Prog Neurobiol 88(2), 104–13 (2009).

[100] Fillafer, C., Paeger, A., and Schneider, M. F. Prog Biophys Mol Biol 162, 57–68 (2021).

[101] Lu, L., Jia, Y., Kirunda, J. B., Xu, Y., Ge, M., Pei, Q., and Yang, L. Nonlinear Dynamics 95(2), 1673–1686 (2019).

[102] Sutton, M. A., Ito, H. T., Cressy, P., Kempf, C., Woo, J. C., and Schuman, E. M. Cell 125(4), 785–99 (2006).

[103] Lee, M. C., Yasuda, R., and Ehlers, M. D. Neuron 66(6), 859–70 (2010).

[104] Davis, G. and Plaisted-Grant, K. Autism 19(3), 351–62 (2015).

[105] Hancock, R., Pugh, K. R., and Hoeft, F. Trends Cogn Sci 21(6), 434–448 (2017).

[106] Malagon, G., Miki, T., Llano, I., Neher, E., and Marty, A. J Neurosci 36(14), 4010–25 (2016).

[107] Pulido, C., Trigo, F. F., Llano, I., and Marty, A. Neuron 85(1), 159–172 (2015).

[108] Miki, T., Kaufmann, W. A., Malagon, G., Gomez, L., Tabuchi, K., Watanabe, M., Shigemoto, R., and Marty, A. Proc Natl Acad Sci U S A 114(26), E5246–E5255 (2017).

[109] Nakamura, Y., Harada, H., Kamasawa, N., Matsui, K., Rothman, J. S., Shigemoto, R., Silver, R. A., DiGregorio, D. A., and Takahashi, T. Neuron 85(1), 145–158 (2015).

[110] Ordemann, G. J., Apgar, C. J., Chitwood, R. A., and Brager, D. H. J Neurosci (2021).

[111] Holderith, N., Lorincz, A., Katona, G., Rozsa, B., Kulik, A., Watanabe, M., and Nusser, Z. Nat Neurosci 15(7), 988–97 (2012).

[112] Alkadhi, K. A. Prog Neurobiol 200, 101986 (2021).

[113] Liu, S. J. and Zukin, R. S. Trends Neurosci 30(3), 126–34 (2007).

[114] Whitehead, G., Jo, J., Hogg, E. L., Piers, T., Kim, D. H., Seaton, G., Seok, H., Bru-Mercier, G., Son, G. H., Regan, P., Hildebrandt, L., Waite, E., Kim, B. C., Kerrigan, T. L., Kim, K., Whitcomb, D. J., Collingridge, G. L., Lightman, S. L., and Cho, K. Brain 136(Pt 12), 3753–65 (2013).

[115] Purkey, A. M. and Dell’Acqua, M. L. Front Synaptic Neurosci 12, 8 (2020).

[116] Lamsa, K. P., Heeroma, J. H., Somogyi, P., Rusakov, D. A., and Kullmann, D. M. Science 315(5816), 1262–6 (2007).

[117] Bauer, E. P., Schafe, G. E., and LeDoux, J. E. J Neurosci 22(12), 5239–49 (2002).

[118] Spruston, N., Jonas, P., and Sakmann, B. J Physiol 482 ( Pt 2), 325–52 (1995).

[119] Thibault, O. and Landfield, P. W. Science 272(5264), 1017–20 (1996).

[120] Baker, K. D., Edwards, T. M., and Rickard, N. S. Neurosci Biobehav Rev 37(7), 1211–39 (2013).

[121] Tononi, G. and Cirelli, C. Brain Res Bull 62(2), 143–50 (2003).

[122] Tononi, G. and Cirelli, C. Neuron 81(1), 12–34 (2014).

[123] Greenaway, R., Davis, G., and Plaisted-Grant, K. Neuropsychologia 51(4), 592–600 (2013).

[124] Kitano, H., Hata, K., Kakimoto, Y., Urakawa, T., and Araki, O. IEICE Proceedings Series 47(B2L- C-5) (2015).

[125] Guerriero, R. M., Giza, C. C., and Rotenberg, A. Curr Neurol Neurosci Rep 15(5), 27 (2015).

[126] Hata, K., Fujitani, M., Yasuda, Y., Doya, H., Saito, T., Yamagishi, S., Mueller, B. K., and Ya- mashita, T. J Cell Biol 173(1), 47–58 (2006).

[127] Hata, K., Kubo, T., Yamaguchi, A., and Yamashita, T. Drug News Perspect 19(9), 541–7 (2006).

[128] Ropert, N., Miles, R., and Korn, H. J Physiol 428, 707–22 (1990).

[129] Gao, M., Whitt, J. L., Huang, S., Lee, A., Mihalas, S., Kirkwood, A., and Lee, H. K. Philos Trans R Soc Lond B Biol Sci 372(1715) (2017).

[130] Markram, H. and Tsodyks, M. Nature 382(6594), 807–10 (1996).

[131] Abbott, L. F., Varela, J. A., Sen, K., and Nelson, S. B. Science 275(5297), 220–4 (1997).

[132] Motanis, H., Seay, M. J., and Buonomano, D. V. Trends Neurosci 41(10), 701–711 (2018).

[133] Zucker, R. S. and Regehr, W. G. Annu Rev Physiol 64, 355–405 (2002).

[134] Jackman, S. L., Turecek, J., Belinsky, J. E., and Regehr, W. G. Nature 529(7584), 88–91 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る