リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on Functions of Histone Variant H2A.Z for the Maintenance of Heterochromatin Integrity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on Functions of Histone Variant H2A.Z for the Maintenance of Heterochromatin Integrity

Tsukii, Kazuki 北海道大学

2022.03.24

概要

サイレントクロマチンであるヘテロクロマチンは、遺伝子サイレンシング、発生、染色体分離、ゲノムの完全性など、多くの生物学的プロセスに関与しています。ヒストン尾部の翻訳後修飾は、ヘテロクロマチン形成に不可欠です。Ly9 (H3K9me) でのヒストン H3 のメチル化は、よく保存されたヘテロクロマチン修飾です。ヘテロクロマチンの形成と維持のために、RNAi依存および非依存経路が重複して機能し、H3K9メチルトランスフェラーゼClr4をヘテロクロマチン領域に動員します。HP1 は H3K9me を認識し、高度に凝縮されたクロマチン構造を形成します。HP1 は、サイレンシング因子だけでなく、H3K9me デメチラーゼである抗サイレンシング因子 Epe1 もヘテロクロマチン領域に動員します。サイレンシング因子と抗サイレンシング因子の間の競合が、ヘテロクロマチンの適切な維持にとって重要であることを示唆しています。ヒストン修飾と同様に、ヒストン変異体も重要な役割を果たします。特に、H2A.Z は最も進化的に保存されたヒストン H2A バリアントの 1 つです。H2A.Z は、遺伝子調節、哺乳類の発生、DNA 複製、ストレス応答など、多くの生物学的プロセスに関与しています。特に、ユークロマチン遺伝子調節におけるH2A.Zの機能はよく研究されています。H2A.Z は遺伝子プロモーターが高度に濃縮されており、適切な転写に必要です。ただし、ヘテロクロマチンにおけるその機能と沈着メカニズムはまだ不明です。ここでは、H2A.Z が分裂酵母ヘテロクロマチンで複数の役割を果たしていることを示します。分裂酵母では、H2A. Z は、H2A.Z ローダー、SWR 複合体によってユークロマチン遺伝子の TSS でヌクレオソームにロードされます。ユークロマチン遺伝子プロモーターと比較して、少量の H2A.Z が動原体周辺ヘテロクロマチンに局在する一方で、H3K9me の損失は、SWR 複合体に依存する H2A.Z の蓄積を誘導します。蓄積された H2A.Z は、ヘテロクロマチンの非コード RNA 転写を抑制します。この転写抑制活性には、ユークロマチン遺伝子転写の調節に関与する H2A.Z の N 末端テールが必要です。さらに、実質的な量の H3K9me が RNAi 非依存性ヘテロクロマチン アセンブリによって保持されている RNAi 欠損細胞も、セントロメア ヘテロクロマチンに H2A.Z を蓄積します。これらの細胞における H2A.Z の追加の損失は、H3K9me を無効にします。さらに、H2Aの損失。RNAi欠損細胞のZは、RNAiが不要なマット遺伝子座ヘテロクロマチンおよびサブテロメアヘテロクロマチンでH3K9meを減少させました。ただし、H2A.Z は、Epe1 の非存在下で RNAi に依存しないメカニズムによって維持される人工的に形成された異所性ヘテロクロマチンの維持には必要なく、RNAi に依存しないヘテロクロマチン アセンブリに対する H2A.Z の間接的な影響を示唆しています。H3K9meのイレーザーであるEpe1がRNAi変異体におけるH3K9meの減少の原因であるため、Epe1の喪失はRNAiおよびH2A.Z二重欠失変異体におけるH3K9meを回復させた。これらの結果は、H2A.ZがEpe1の脱メチル化活性に拮抗することにより、RNAiに依存しないヘテロクロマチンのアセンブリを促進することを示唆しています。さらに、H2A.Z の損失は、H3K9me に影響を与えることなく、サブテロメア ヘテロクロマチンでサイレンシングの欠陥を引き起こしました。Epe1 は N 末端にも転写活性化ドメインを持っているため、Epe1 を過剰発現させると、H3K9me に影響を与えることなく、セントロメア周辺で転写が活性化されます。Epe1過剰発現細胞におけるH2A.Zの喪失は相乗的に転写を増加させ、H2A.Z欠失変異体におけるサブテロメアサイレンシング欠陥はEpe1の喪失によって抑制される。これらの結果は、H2A.Zがサブテロメア遺伝子抑制に必要なEpe1を介した転写活性化を抑制することを示唆しています。まとめると、この研究は、H2A.Z がクロマチンサイレンシングにおいて多様な役割を果たすという新しい証拠を提供します。H2A.Z欠失変異体におけるサブテロメアサイレンシング欠陥は、Epe1の喪失によって抑制されます。これらの結果は、H2A.Zがサブテロメア遺伝子抑制に必要なEpe1を介した転写活性化を抑制することを示唆しています。まとめると、この研究は、H2A.Z がクロマチンサイレンシングにおいて多様な役割を果たすという新しい証拠を提供します。H2A.Z欠失変異体におけるサブテロメアサイレンシング欠陥は、Epe1の喪失によって抑制されます。これらの結果は、H2A.Zがサブテロメア遺伝子抑制に必要なEpe1を介した転写活性化を抑制することを示唆しています。まとめると、この研究は、H2A.Z がクロマチンサイレンシングにおいて多様な役割を果たすという新しい証拠を提供します。

この論文で使われている画像

参考文献

Al-Sady, B., Madhani, Hiten D., and Narlikar, Geeta J. (2013). Division of Labor between the Chromodomains of HP1 and Suv39 Methylase Enables Coordination of Heterochromatin Spread. Molecular Cell 51, 80-91.

Alatwi, H.E., and Downs, J.A. (2015). Removal of H2A.Z by INO80 promotes homologous recombination. EMBO reports 16, 986-994.

Allshire, R.C., and Madhani, H.D. (2018). Ten principles of heterochromatin formation and function. Nat Rev Mol Cell Biol 19, 229-244.

Altaf, M., Auger, A., Monnet-Saksouk, J., Brodeur, J., Piquet, S., Cramet, M., Bouchard, N., Lacoste, N., Utley, R.T., Gaudreau, L., et al. (2010). NuA4-dependent Acetylation of Nucleosomal Histones H4 and H2A Directly Stimulates Incorporation of H2A.Z by the SWR1 Complex*. Journal of Biological Chemistry 285, 15966-15977.

Anver, S., Roguev, A., Zofall, M., Krogan, N.J., Grewal, S.I.S., and Harmer, S.L. (2014). Yeast X-chromosome-associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO reports 15, 894-902.

Audergon, P.N., Catania, S., Kagansky, A., Tong, P., Shukla, M., Pidoux, A.L., and Allshire, R.C. (2015). Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132-135.

Aygun, O., Mehta, S., and Grewal, S.I. (2013). HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin. Nat Struct Mol Biol 20, 547-554.

Ayoub, N., Noma, K., Isaac, S., Kahan, T., Grewal, S.I., and Cohen, A. (2003). A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol Cell Biol 23, 4356-4370.

Bayne, E.H., White, S.A., Kagansky, A., Bijos, D.A., Sanchez-Pulido, L., Hoe, K.L., Kim, D.U., Park, H.O., Ponting, C.P., Rappsilber, J., et al. (2010). Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140, 666- 677.

Berta, D.G., Kuisma, H., Välimäki, N., Räisänen, M., Jäntti, M., Pasanen, A., Karhu, A., Kaukomaa, J., Taira, A., Cajuso, T., et al. (2021). Deficient H2A.Z deposition is associated with genesis of uterine leiomyoma. Nature 596, 398-403.

Binda, O., Sevilla, A., LeRoy, G., Lemischka, I.R., Garcia, B.A., and Richard, S. (2013). SETD6 monomethylates H2AZ on lysine 7 and is required for the maintenance of embryonic stem cell self-renewal. Epigenetics 8, 177-183.

Bönisch, C., and Hake, S.B. (2012). Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 40, 10719-10741.

Boyarchuk, E., Filipescu, D., Vassias, I., Cantaloube, S., and Almouzni, G. (2014). The histone variant composition of centromeres is controlled by the pericentric heterochromatin state during the cell cycle. Journal of Cell Science 127, 3347-3359.

Buchanan, L., Durand-Dubief, M., Roguev, A., Sakalar, C., Wilhelm, B., Strålfors, A., Shevchenko, A., Aasland, R., Shevchenko, A., Ekwall, K., et al. (2009). The Schizosaccharomyces pombe JmjC-Protein, Msc1, Prevents H2A.Z Localization in Centromeric and Subtelomeric Chromatin Domains. PLOS Genetics 5, e1000726.

Buscaino, A., Lejeune, E., Audergon, P., Hamilton, G., Pidoux, A., and Allshire, R.C. (2013). Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance. EMBO J 32, 1250-1264.

Chalamcharla, V.R., Folco, H.D., Dhakshnamoorthy, J., and Grewal, S.I. (2015). Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing. Proc Natl Acad Sci U S A 112, 15548-15555.

Chen, Z., Gabizon, R., Brown, A.I., Lee, A., Song, A., Díaz-Celis, C., Kaplan, C.D., Koslover, E.F., Yao, T., and Bustamante, C. (2019). High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier. eLife 8, e48281.

Clayton, A.L., Hazzalin, C.A., and Mahadevan, L.C. (2006). Enhanced Histone Acetylation and Transcription: A Dynamic Perspective. Molecular Cell 23, 289-296.

Creyghton, M.P., Markoulaki, S., Levine, S.S., Hanna, J., Lodato, M.A., Sha, K., Young, R.A., Jaenisch, R., and Boyer, L.A. (2008). H2AZ Is Enriched at Polycomb Complex Target Genes in ES Cells and Is Necessary for Lineage Commitment. Cell 135, 649-661.

Daal, A.v., and Elgin, S.C. (1992). A histone variant, H2AvD, is essential in Drosophila melanogaster. Molecular Biology of the Cell 3, 593-602.

Dai, X., Bai, Y., Zhao, L., Dou, X., Liu, Y., Wang, L., Li, Y., Li, W., Hui, Y., Huang, X., et al. (2017). H2A.Z Represses Gene Expression by Modulating Promoter Nucleosome Structure and Enhancer Histone Modifications in Arabidopsis. Molecular Plant 10, 1274- 1292.

De Rop, V., Padeganeh, A., and Maddox, P.S. (2012). CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 121, 527-538.

Faast, R., Thonglairoam, V., Schulz, T.C., Beall, J., Wells, J.R., Taylor, H., Matthaei, K., Rathjen, P.D., Tremethick, D.J., and Lyons, I. (2001). Histone variant H2A.Z is required for early mammalian development. Curr Biol 11, 1183-1187.

Fan, J.Y., Rangasamy, D., Luger, K., and Tremethick, D.J. (2004). H2A.Z Alters the Nucleosome Surface to Promote HP1α-Mediated Chromatin Fiber Folding. Molecular Cell 16, 655-661.

Fischer, T., Cui, B., Dhakshnamoorthy, J., Zhou, M., Rubin, C., Zofall, M., Veenstra, T.D., and Grewal, S.I. (2009). Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc Natl Acad Sci U S A 106, 8998-9003.

Gerace, E.L., Halic, M., and Moazed, D. (2010). The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation. Molecular cell 39, 360-372.

Giaimo, B.D., Ferrante, F., Herchenröther, A., Hake, S.B., and Borggrefe, T. (2019). The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12, 37.

Grewal, S.I., and Jia, S. (2007). Heterochromatin revisited. Nat Rev Genet 8, 35-46.

Guillemette, B., Bataille, A.R., Gévry, N., Adam, M., Blanchette, M., Robert, F., and Gaudreau, L. (2005). Variant Histone H2A.Z Is Globally Localized to the Promoters of Inactive Yeast Genes and Regulates Nucleosome Positioning. PLOS Biology 3, e384.

Hall, I.M., Shankaranarayana, G.D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S.I. (2002). Establishment and maintenance of a heterochromatin domain. Science 297, 2232- 2237.

Hardy, S., Jacques, P.-É., Gévry, N., Forest, A., Fortin, M.-È., Laflamme, L., Gaudreau, L., and Robert, F. (2009). The Euchromatic and Heterochromatic Landscapes Are Shaped by Antagonizing Effects of Transcription on H2A.Z Deposition. PLOS Genetics 5, e1000687.

Hong, J., Feng, H., Wang, F., Ranjan, A., Chen, J., Jiang, J., Ghirlando, R., Xiao, T.S., Wu, C., and Bai, Y. (2014). The Catalytic Subunit of the SWR1 Remodeler Is a Histone Chaperone for the H2A.Z-H2B Dimer. Molecular Cell 53, 498-505.

Horikoshi, N., Arimura, Y., Taguchi, H., and Kurumizaka, H. (2016). Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A. Open Biology 6, 160127.

Hou, H., Wang, Y., Kallgren, S.P., Thompson, J., Yates, J.R., 3rd, and Jia, S. (2010). Histone variant H2A.Z regulates centromere silencing and chromosome segregation in fission yeast. J Biol Chem 285, 1909-1918.

Iouzalen, N., Moreau, J., and Méchali, M. (1996). H2A.Zl, a New Variant Histone Expressed during Xenopus Early Development Exhibits Several Distinct Features from the Core Histone H2A. Nucleic Acids Research 24, 3947-3952.

Jia, S., Noma, K., and Grewal, S.I. (2004). RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971-1976.

Jih, G., Iglesias, N., Currie, M.A., Bhanu, N.V., Paulo, J.A., Gygi, S.P., Garcia, B.A., and Moazed, D. (2017). Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Nature 547, 463-467.

Kanoh, J., Sadaie, M., Urano, T., and Ishikawa, F. (2005). Telomere Binding Protein Taz1 Establishes Swi6 Heterochromatin Independently of RNAi at Telomeres. Current Biology 15, 1808-1819.

Kato, H., Goto, D.B., Martienssen, R.A., Urano, T., Furukawa, K., and Murakami, Y. (2005). RNA Polymerase II Is Required for RNAi-Dependent Heterochromatin Assembly. Science 309, 467-469.

Kim, H.-S., Vanoosthuyse, V., Fillingham, J., Roguev, A., Watt, S., Kislinger, T., Treyer, A., Carpenter, L.R., Bennett, C.S., Emili, A., et al. (2009). An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nature structural & molecular biology 16, 1286-1293.

Ladurner, A.G., Inouye, C., Jain, R., and Tjian, R. (2003). Bromodomains Mediate an Acetyl-Histone Encoded Antisilencing Function at Heterochromatin Boundaries. Molecular Cell 11, 365-376.

Larson, A.G., Elnatan, D., Keenen, M.M., Trnka, M.J., Johnston, J.B., Burlingame, A.L., Agard, D.A., Redding, S., and Narlikar, G.J. (2017). Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236-240.

Liu, X., Li, B., and GorovskyMa (1996). Essential and nonessential histone H2A variants in Tetrahymena thermophila. Molecular and cellular biology 16, 4305-4311.

Long, H., Zhang, L., Lv, M., Wen, Z., Zhang, W., Chen, X., Zhang, P., Li, T., Chang, L., Jin, C., et al. (2020). H2A.Z facilitates licensing and activation of early replication origins. Nature 577, 576-581.

Mahapatra, S., Dewari, P.S., Bhardwaj, A., and Bhargava, P. (2011). Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes. Nucleic Acids Research 39, 4023-4034.

Martire, S., and Banaszynski, L.A. (2020). The roles of histone variants in fine-tuning chromatin organization and function. Nature Reviews Molecular Cell Biology 21, 522-541.

Millar, C.B., Xu, F., Zhang, K., and Grunstein, M. (2006). Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20, 711-722.

Mizuguchi, G., Shen, X., Landry, J., Wu, W.H., Sen, S., and Wu, C. (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343-348.

Motamedi, M.R., Hong, E.J., Li, X., Gerber, S., Denison, C., Gygi, S., and Moazed, D. (2008). HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol Cell 32, 778-790.

Motamedi, M.R., Verdel, A., Colmenares, S.U., Gerber, S.A., Gygi, S.P., and Moazed, D. (2004). Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789-802.

Mylonas, C., Lee, C., Auld, A.L., Cisse, I.I., and Boyer, L.A. (2021). A dual role for H2A.Z.1 in modulating the dynamics of RNA polymerase II initiation and elongation. Nature Structural & Molecular Biology.

Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110-113.

Nekrasov, M., Amrichova, J., Parker, B.J., Soboleva, T.A., Jack, C., Williams, R., Huttley, G.A., and Tremethick, D.J. (2012). Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat Struct Mol Biol 19, 1076-1083.

Newhart, A., Rafalska-Metcalf, I.U., Yang, T., Joo, L.M., Powers, S.L., Kossenkov, A.V., Lopez-Jones, M., Singer, R.H., Showe, L.C., Skordalakes, E., et al. (2013). Single cell analysis of RNA-mediated histone H3.3 recruitment to a cytomegalovirus promoter- regulated transcription site. J Biol Chem 288, 19882-19899.

Noma, K., Allis, C.D., and Grewal, S.I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150-1155.

Okita, A.K., Zafar, F., Su, J., Weerasekara, D., Kajitani, T., Takahashi, T.S., Kimura, H., Murakami, Y., Masukata, H., and Nakagawa, T. (2019). Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Communications Biology 2, 17.

Olson, N.M., Kroc, S., Johnson, J.A., Zahid, H., Ycas, P.D., Chan, A., Kimbrough, J.R., Kalra, P., Schönbrunn, E., and Pomerantz, W.C.K. (2020). NMR Analyses of Acetylated H2A.Z Isoforms Identify Differential Binding Interactions with the Bromodomain of the NURF Nucleosome Remodeling Complex. Biochemistry 59, 1871-1880.

Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E., et al. (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517-527.

Provost, P., Silverstein, R.A., Dishart, D., Walfridsson, J., Djupedal, I., Kniola, B., Wright, A., Samuelsson, B., Rådmark, O., and Ekwall, K. (2002). Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proceedings of the National Academy of Sciences 99, 16648-16653.

Puschendorf, M., Terranova, R., Boutsma, E., Mao, X., Isono, K.-i., Brykczynska, U., Kolb, C., Otte, A.P., Koseki, H., Orkin, S.H., et al. (2008). PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nature Genetics 40, 411-420.

Ragunathan, K., Jih, G., and Moazed, D. (2015). Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699.

Raisner, R.M., Hartley, P.D., Meneghini, M.D., Bao, M.Z., Liu, C.L., Schreiber, S.L., Rando, O.J., and Madhani, H.D. (2005). Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Cell 123, 233-248.

Raiymbek, G., An, S., Khurana, N., Gopinath, S., Larkin, A., Biswas, S., Trievel, R.C., Cho, U.-s., and Ragunathan, K. (2020). An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife 9, e53155.

Rangasamy, D., Berven, L., Ridgway, P., and Tremethick, D.J. (2003). Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. Embo j 22, 1599-1607.

Ranjan, A., Mizuguchi, G., FitzGerald, Peter C., Wei, D., Wang, F., Huang, Y., Luk, E., Woodcock, Christopher L., and Wu, C. (2013). Nucleosome-free Region Dominates Histone Acetylation in Targeting SWR1 to Promoters for H2A.Z Replacement. Cell 154, 1232-1245.

Ranjan, A., Nguyen, V.Q., Liu, S., Wisniewski, J., Kim, J.M., Tang, X., Mizuguchi, G., Elalaoui, E., Nickels, T.J., Jou, V., et al. (2020). Live-cell single particle imaging reveals the role of RNA polymerase II in histone H2A.Z eviction. eLife 9, e55667.

Reyes-Turcu, F.E., Zhang, K., Zofall, M., Chen, E., and Grewal, S.I. (2011). Defects in RNA quality control factors reveal RNAi-independent nucleation of heterochromatin. Nat Struct Mol Biol 18, 1132-1138.

Ridgway, P., Brown, K.D., Rangasamy, D., Svensson, U., and Tremethick, D.J. (2004). Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development. J Biol Chem 279, 43815-43820.

Rose, N.R., and Klose, R.J. (2014). Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1839, 1362-1372.

Sabatinos, S.A., and Forsburg, S.L. (2010). Chapter 32 - Molecular Genetics of Schizosaccharomyces pombe. In Methods in Enzymology (Academic Press), pp. 759-795.

Sadaie, M., Iida, T., Urano, T., and Nakayama, J.-i. (2004). A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. The EMBO Journal 23, 3825-3835.

Saksouk, N., Barth, T.K., Ziegler-Birling, C., Olova, N., Nowak, A., Rey, E., Mateos- Langerak, J., Urbach, S., Reik, W., Torres-Padilla, M.E., et al. (2014). Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56, 580-594.

Shipkovenska, G., Durango, A., Kalocsay, M., Gygi, S.P., and Moazed, D. (2020). A conserved RNA degradation complex required for spreading and epigenetic inheritance of heterochromatin. Elife 9.

Sorida, M., Hirauchi, T., Ishizaki, H., Kaito, W., Shimada, A., Mori, C., Chikashige, Y., Hiraoka, Y., Suzuki, Y., Ohkawa, Y., et al. (2019). Regulation of ectopic heterochromatin- mediated epigenetic diversification by the JmjC family protein Epe1. PLOS Genetics 15, e1008129.

Suto, R.K., Clarkson, M.J., Tremethick, D.J., and Luger, K. (2000). Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 7, 1121- 1124.

Takahata, S., Chida, S., Ohnuma, A., Ando, M., Asanuma, T., and Murakami, Y. (2021). Two secured FACT recruitment mechanisms are essential for heterochromatin maintenance. Cell Reports 36.

Talbert, P.B., and Henikoff, S. (2014). Environmental responses mediated by histone variants. Trends in Cell Biology 24, 642-650.

Touat-Todeschini, L., Shichino, Y., Dangin, M., Thierry-Mieg, N., Gilquin, B., Hiriart, E., Sachidanandam, R., Lambert, E., Brettschneider, J., Reuter, M., et al. (2017). Selective termination of lncRNA transcription promotes heterochromatin silencing and cell differentiation. The EMBO Journal 36, 2626-2641.

Tramantano, M., Sun, L., Au, C., Labuz, D., Liu, Z., Chou, M., Shen, C., and Luk, E. (2016). Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex. eLife 5, e14243.

Trewick, S.C., Minc, E., Antonelli, R., Urano, T., and Allshire, R.C. (2007). The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J 26, 4670-4682.

Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816.

Tucker, J.F., Ohle, C., Schermann, G., Bendrin, K., Zhang, W., Fischer, T., and Zhang, K. (2016). A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5’-3’ Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe. PLOS Genetics 12, e1005873.

Valdés-Mora, F., Song, J.Z., Statham, A.L., Strbenac, D., Robinson, M.D., Nair, S.S., Patterson, K.I., Tremethick, D.J., Stirzaker, C., and Clark, S.J. (2012). Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res 22, 307-321.

Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I., and Moazed, D. (2004). RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672-676.

Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I., and Martienssen, R.A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833-1837.

Wang, J., Cohen, A.L., Letian, A., Tadeo, X., Moresco, J.J., Liu, J., Yates, J.R., 3rd, Qiao, F., and Jia, S. (2016). The proper connection between shelterin components is required for telomeric heterochromatin assembly. Genes Dev 30, 827-839.

Watson, A.T., Werler, P., and Carr, A.M. (2011). Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus. Gene 484, 75-85.

Wiles, E.T., and Selker, E.U. (2017). H3K27 methylation: a promiscuous repressive chromatin mark. Current Opinion in Genetics & Development 43, 31-37.

Yamada, T., Fischle, W., Sugiyama, T., Allis, C.D., and Grewal, S.I. (2005). The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol Cell 20, 173-185.

Yen, K., Vinayachandran, V., and Pugh, B.F. (2013). SWR-C and INO80 Chromatin Remodelers Recognize Nucleosome-free Regions Near +1 Nucleosomes. Cell 154, 1246-1256.

Zeng, L., and Zhou, M.M. (2002). Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513, 124-128.

Zhang, H., Roberts, D.N., and Cairns, B.R. (2005). Genome-Wide Dynamics of Htz1, a Histone H2A Variant that Poises Repressed/Basal Promoters for Activation through Histone Loss. Cell 123, 219-231.

Zilberman, D., Coleman-Derr, D., Ballinger, T., and Henikoff, S. (2008). Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125-129.

Zlatanova, J., and Thakar, A. (2008). H2A.Z: view from the top. Structure 16, 166-179.

Zofall, M., Fischer, T., Zhang, K., Zhou, M., Cui, B., Veenstra, T.D., and Grewal, S.I. (2009). Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 461, 419-422.

Zofall, M., and Grewal, S.I. (2006). Swi6/HP1 recruits a JmjC domain protein to facilitate transcription of heterochromatic repeats. Mol Cell 22, 681-692.

Zofall, M., Smith, D.R., Mizuguchi, T., Dhakshnamoorthy, J., and Grewal, S.I.S. (2016). Taz1-Shelterin Promotes Facultative Heterochromatin Assembly at Chromosome-Internal Sites Containing Late Replication Origins. Mol Cell 62, 862-874.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る