リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Optical Properties of Cosmic Amorphous Dust as Foreground of Cosmic Microwave Background」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Optical Properties of Cosmic Amorphous Dust as Foreground of Cosmic Microwave Background

Nashimoto Masashi 東北大学

2020.03.25

概要

The anisotropy of the cosmic microwave background (CMB) is an important key to unraveling the early universe. In particular, CMB B-mode polarization at a large angle scale is a trace of primordial gravitational waves predicted by the in- flation theory, and its first detection is aimed at proving the inflation theory. The primary factor that makes this initial detection difficult is foreground radiation from interstellar matter. In particular, the CMB B-mode polarization signal is embedded in interstellar dust radiation at the CMB peak frequency. The interstel- lar dust emission must be accurately separated from the observed data to obtain the primordial CMB B-mode polarization signal. To achieve this purpose, it is important to deepen the understanding of emission and absorption by interstellar dust.

In recent years, the presence of anomalous microwave emission (AME) has been confirmed as a new foreground radiation component. AME observed as a bumpy spectrum in the 10–30 GHz band can originate from dust because AME is spatially correlated with thermal dust emission. However, its radiation mechanism is still unclear. It is necessary to construct a model that can consistently explain thermal radiation and AME from the far infrared to the submillimeter wavebands.

From Kirchhoff’s law, the emission source is also an absorption source. Although CMB is absorbed by the interstellar matter universally, this effect named as CMB shadows has not been analyzed. The effect of the CMB shadows must be well evaluated to detect the CMB B-mode polarization originating from primordial gravitational waves.

It is known that most of the interstellar dust is composed of amorphous materials, and it is an urgent task to clarify the optical properties based on the physics of amorphous materials. In the current CMB analysis, the single power-law model is applied to the absorption coefficient or emissivity of amorphous dust. On the other hand, it is known that the absorption coefficient of amorphous materials cannot be expressed by such a simple model. A radiation model exceeding the power-law model should be applied to realize high-accuracy CMB observation experiments.

Based on these problems, this thesis studies the optical properties of amorphous dust. The dielectric constant of amorphous dust is derived based on a two-level systems (TLS) model describing the low-temperature properties of amorphous ma- terials, and the absorption coefficient and the emissivity of amorphous dust are estimated. According to the TLS model, it is considered that amorphous materials cause resonance transition at a frequency corresponding to the energy difference between the two levels and release energy. It is expected from laboratory measure- ments that the energy difference between the TLS is about 1 K times the Boltzmann constant, which is about 10 GHz times the Planck constant. This value matches the AME frequency band. Taking into account thermal emission and CMB shadow due to amorphous dust, spectral energy distribution (SED) fitting is performed on the total intensity and polarization data of the Perseus molecular cloud and W 43 in the microwave from the far-infrared. In general, dust radiation is polarized, but up to now, polarized AME has not been detected. This means that the degree of polarization differs between the submillimeter waveband and AME. It is impor- tant to verify whether the difference between the two can be reproduced. In our model, considering the two components of amorphous silicate dust and amorphous carbon dust, the former can emit submillimeter-wave polarization, and the latter can produce AME. From this result, it can be said that thermal amorphous dust emission is an alternative candidate for AME. In our model, the dielectric con-stant, heat capacity, and thermal conductivity of amorphous dust are expected to behave differently from terrestrial amorphous materials. Our model predicts the existence of cosmic amorphous dust (CAD) with amorphous properties different from terrestrial amorphous materials. In addition, our model predicts that AME is polarized with a polarization degree of the order of 1%–0.1%. Although the effect of the CMB shadow is negligible for parameter estimation of amorphous dust by SED fitting for the two molecular clouds, it may be affected for the future CMB B-mode polarization detection.

参考文献

Aannestad, P. A. 1995, ApJ, 443, 653

Adamson, A. J., Whittet, D. C. B., Chrysostomou, A., et al. 1999, ApJ, 512, 224

Ade, P., Aguirre, J., Ahmed, Z., et al. 2019, JCAP, 2019, 056

Ade, P. A. R., Akiba, Y., Anthony, A. E., et al. 2014, Phys. Rev. Lett., 113, 021301

Aitken, D. K., Roche, P. F., Smith, C. H., James, S. D., & Hough, J. H. 1988, MNRAS, 230, 629

Allamandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1985, ApJ, 290, L25

Alpher, R. A., Bethe, H., & Gamow, G. 1948, Physical Review, 73, 803

Alves, M. I. R., Davies, R. D., Dickinson, C., et al. 2012, MNRAS, 422, 2429

Amaro-Seoane, P., Audley, H., Babak, S., et al. 2017, arXiv e-prints, arXiv:1702.00786

Anderson, P. W., Halperin, B. I., & Varma, C. M. 1972, Philosophical Magazine, 25, 1

Arnold, K., Stebor, N., Ade, P. A. R., et al. 2014, in Proc. SPIE, Vol. 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, 91531F

Austermann, J. E., Aird, K. A., Beall, J. A., et al. 2012, in Proc. SPIE, Vol. 8452, Mil- limeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, 84521E

Battistelli, E. S., Fatigoni, S., Murgia, M., et al. 2019, ApJ, 877, L31

Bell, A. C., Onaka, T., Galliano, F., et al. 2019, PASJ, 71, 123

Bennett, C. L., Bay, M., Halpern, M., et al. 2003, ApJ, 583, 1

Bennett, C. L., Larson, D., Weiland, J. L., et al. 2013, ApJS, 208, 20

Berkhuijsen, E. M. 1972, A&AS, 5, 263

Bernstein, L. S., Shroll, R. M., Lynch, D. K., & Clark, F. O. 2017, ApJ, 836, 229

BICEP2 Collaboration, Ade, P. A. R., Aikin, R. W., et al. 2014, Phys. Rev. Lett., 112, 241101

BICEP2/Keck Collaboration, Planck Collaboration, Ade, P. A. R., et al. 2015, Phys. Rev. Lett., 114, 101301

Bohren, C. F. & Huffman, D. R. 1983, Absorption and scattering of light by small particles (New York: Wiley)

B¨osch, M. A. 1978, Phys. Rev. Lett., 40, 879

Bowey, J. E. & Adamson, A. J. 2002, MNRAS, 334, 94

Brouw, W. N. & Spoelstra, T. A. T. 1976, A&AS, 26, 129

Buchenau, U., Galperin, Y. M., Gurevich, V. L., et al. 1992, Phys. Rev. B, 46, 2798

Calvet, N., D’Alessio, P., Hartmann, L., et al. 2002, ApJ, 568, 1008

Casassus, S., Dickinson, C., Cleary, K., et al. 2008, MNRAS, 391, 1075

Chiar, J. E., Adamson, A. J., Whittet, D. C. B., et al. 2006, ApJ, 651, 268

Colangeli, L., Mennella, V., Palumbo, P., Rotundi, A., & Bussoletti, E. 1995, A&AS, 113, 561

Cruciani, A., Battistelli, E. S., Carretti, E., et al. 2016, MNRAS, 459, 4224

de Oliveira-Costa, A., Kogut, A., Devlin, M. J., et al. 1997, ApJ, 482, L17

D´esert, F. X., Boulanger, F., & Puget, J. L. 1990, A&A, 500, 313

D´esert, F. X., Mac´ıas-P´erez, J. F., Mayet, F., et al. 2008, A&A, 481, 411

Dickinson, C., Ali-Ha¨ımoud, Y., Barr, A., et al. 2018, New Astronomy Reviews, 80, 1

Draine, B. 1989, in IAU Symposium, Vol. 135, Interstellar Dust, ed. L. J. Allamandola & A. G. G. M. Tielens, 313

Draine, B. T. & Hensley, B. 2012, ApJ, 757, 103

Draine, B. T. & Hensley, B. 2013, ApJ, 765, 159

Draine, B. T. & Hensley, B. S. 2016, ApJ, 831, 59

Draine, B. T. & Hensley, B. S. 2017, arXiv:1710.08968

Draine, B. T. & Lazarian, A. 1998, ApJ, 508, 157

Draine, B. T. & Lazarian, A. 1999, ApJ, 512, 740

Draine, B. T. & Lee, H. M. 1984, ApJ, 285, 89

Draine, B. T. & Miralda-Escud´e, J. 2018, ApJ, 858, L10

Duley, W. W. & Williams, D. A. 1981, MNRAS, 196, 269

Duley, W. W. & Williams, D. A. 1983, MNRAS, 205, 67P

Dupac, X., Bernard, J. P., Boudet, N., et al. 2003, A&A, 404, L11

Einstein, A. 1917, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1917, 142

Erickson, W. C. 1957, ApJ, 126, 480

Essinger-Hileman, T., Ali, A., Amiri, M., et al. 2014, in Proc. SPIE, Vol. 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, 91531I

Foreman-Mackey, D. 2016, The Journal of Open Source Software, 1, 24

Foreman-Mackey, D. 2017, corner.py: Corner plots

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306

Gandilo, N. N., Ade, P. A. R., Benford, D., et al. 2016, in Proc. SPIE, Vol. 9914, Mil- limeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 99141J

G´enova-Santos, R., Rubin˜o-Mart´ın, J. A., Pela´ez-Santos, A., et al. 2017, MNRAS, 464, 4107

G´enova-Santos, R., Rubin˜o-Mart´ın, J. A., Rebolo, R., et al. 2015, MNRAS, 452, 4169

Gilroy, K. S. & Phillips, W. A. 1981, Philosophical Magazine, Part B, 43, 735

Grayson, J. A., Ade, P. A. R., Ahmed, Z., et al. 2016, in Proc. SPIE, Vol. 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 99140S

Greaves, J. S., Scaife, A. M. M., Frayer, D. T., et al. 2018, Nature Astronomy, 2, 662

Gualtieri, R., Filippini, J. P., Ade, P. A. R., et al. 2018, Journal of Low Temperature Physics, 193, 1112

Guth, A. H. 1981, Phys. Rev. D, 23, 347

Haslam, C. G. T., Klein, U., Salter, C. J., et al. 1981, A&A, 100, 209

Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. E. 1982, A&AS, 47, 1

Hauser, M. G., Arendt, R. G., Kelsall, T., et al. 1998a, ApJ, 508, 25

Hauser, M. G., Arendt, R. G., Kelsall, T., et al. 1998b, ApJ, 508, 25

Henrard, L., Lambin, P., & Lucas, A. A. 1997, ApJ, 487, 719

Hensley, B., Murphy, E., & Staguhn, J. 2015, MNRAS, 449, 809

Hensley, B. S. & Draine, B. T. 2017, ApJ, 836, 179

Hensley, B. S., Draine, B. T., & Meisner, A. M. 2016, ApJ, 827, 45

Hirashita, H. & Yan, H. 2009, MNRAS, 394, 1061

Hoang, T., Lan, N.-Q., Vinh, N.-A., & Kim, Y.-J. 2018, ApJ, 862, 116

Hoang, T. & Lazarian, A. 2016a, ApJ, 831, 159

Hoang, T. & Lazarian, A. 2016b, ApJ, 821, 91

Hoang, T., Vinh, N.-A., & Quynh Lan, N. 2016, ApJ, 824, 18

Hubbard, B. E., Tu, J. J., Agladze, N. I., & Sievers, A. J. 2003, Phys. Rev. B, 67, 144201

Hubble, E. 1929, Proceedings of the National Academy of Science, 15, 168

Iglesias-Groth, S. 2006, MNRAS, 368, 1925

J¨ager, C., Dorschner, J., Mutschke, H., Posch, T., & Henning, T. 2003, A&A, 408, 193

Jonas, J. L., Baart, E. E., & Nicolson, G. D. 1998, MNRAS, 297, 977

Jones, A. P. 2009, A&A, 506, 797

Jones, A. P., Williams, D. A., & Duley, W. W. 1987, MNRAS, 229, 213

Jones, M. E., Taylor, A. C., Aich, M., et al. 2018, MNRAS, 480, 3224

Karpov, V. G., Klinger, M. I., & Ignatiev, P. N. 1982, Solid State Communications, 44, 333

Kawamura, S., Nakamura, T., Ando, M., et al. 2006, Classical and Quantum Gravity, 23, S125

Kelsall, T., Weiland, J. L., Franz, B. A., et al. 1998, ApJ, 508, 44

Kittel, C. 2004, Introduction to solid state physics (New York: Wiley)

Kogut, A., Banday, A. J., Bennett, C. L., et al. 1996, ApJ, 464, L5

Kovac, J. M., Leitch, E. M., Pryke, C., et al. 2002, Nature, 420, 772

Krachmalnicoff, N., Carretti, E., Baccigalupi, C., et al. 2018, A&A, 618, A166

Leger, A. & Puget, J. L. 1984, A&A, 500, 279

Leitch, E. M., Readhead, A. C. S., Pearson, T. J., & Myers, S. T. 1997, ApJ, 486, L23

Lemaˆıtre, G. 1927, Annales de la Soci`et`e Scientifique de Bruxelles, 47, 49

Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473

Li, A. & Draine, B. T. 2001, ApJ, 554, 778

Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C., & Wilkinson, D. T. 1999, ApJ, 512, 511

Mathis, J. S., Mezger, P. G., & Panagia, N. 1983, A&A, 500, 259

Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425

Matsumura, T., Akiba, Y., Borrill, J., et al. 2014, Journal of Low Temperature Physics, 176, 733

Meny, C., Gromov, V., Boudet, N., et al. 2007, A&A, 468, 171

Murphy, E. J., Helou, G., Condon, J. J., et al. 2010, ApJ, 709, L108

Naess, S., Hasselfield, M., McMahon, J., et al. 2014, Journal of Cosmology and Astropar- ticle Physics, 10, 007

Nashimoto, M., Hattori, M., G´enova-santos, R., & Poidevin, F. 2020, PASJ, 72, 6

Natta, A., Testi, L., Neri, R., Shepherd, D. S., & Wilner, D. J. 2004, A&A, 416, 179

Nguyen Luong, Q., Motte, F., Schuller, F., et al. 2011, A&A, 529, A41

Oguri, S., Choi, J., Damayanthi, T., et al. 2016, in Proc. SPIE, Vol. 9906, Ground-based and Airborne Telescopes VI, 99063L

Paradis, D., Bernard, J. P., & M´eny, C. 2009, A&A, 506, 745

Penzias, A. A. & Wilson, R. W. 1965, ApJ, 142, 419

Phillips, W. A. 1972, Journal of Low Temperature Physics, 7, 351

Phillips, W. A. 1981, Amorphous solids : low-temperature properties (Berlin: Springer- Verlag)

Phillips, W. A. 1987, Reports on Progress in Physics, 50, 1657

Planck Collaboration, Abergel, A., Ade, P. A. R., et al. 2014a, A&A, 571, A11

Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016a, A&A, 594, A1

Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016b, A&A, 594, A10

Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016c, A&A, 586, A133

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2015, A&A, 576, A104

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014b, A&A, 571, A1

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016d, A&A, 594, A25

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014c, A&A, 565, A103

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011a, A&A, 536, A17

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2011b, A&A, 536, A20

Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2018a, arXiv e-prints, arXiv:1807.06209

Planck Collaboration, Akrami, Y., Ashdown, M., et al. 2018b, arXiv e-prints, arXiv:1801.04945

Poidevin, F., Rubino-Martin, J. A., Genova-Santos, R., et al. 2018, arXiv e-prints, arXiv:1802.04594

Ramos, M. A., Gil, L., Bringer, A., & Buchenau, U. 1993, Physica Status Solidi Applied Research, 135, 477

Reich, P. & Reich, W. 1986, A&AS, 63, 205

Reich, P., Testori, J. C., & Reich, W. 2001, A&A, 376, 861 Reich, W. 1982, A&AS, 48, 219

Remazeilles, M., Dickinson, C., Banday, A. J., Bigot-Sazy, M. A., & Ghosh, T. 2015, MNRAS, 451, 4311

Roche, P. F. 1996, Astronomical Society of the Pacific Conference Series, Vol. 97, Near- and mid-infrared polarimetry of the Galactic centre., ed. W. G. Roberge & D. C. B. Whittet, 551–568

Rubin˜o-Mart´ın, J. A., G´enova-Santos, R., Rebolo, R., et al. 2017, in Highlights on Spanish Astrophysics IX, 99–107

Rubin˜o-Mart´ın, J. A., Rebolo, R., Aguiar, M., et al. 2012, in Proc. SPIE, Vol. 8444, Ground-based and Airborne Telescopes IV, 84442Y

Rybicki, G. B. & Lightman, A. P. 1979, Radiative processes in astrophysics Sato, K. 1981, MNRAS, 195, 467

Scaife, A., Green, D. A., Battye, R. A., et al. 2007, MNRAS, 377, L69

Schl¨omann, E. 1964, Physical Review, 135, 413

Smith, C. H., Wright, C. M., Aitken, D. K., Roche, P. F., & Hough, J. H. 2000, MNRAS, 312, 327

Smoot, G. F., Bennett, C. L., Kogut, A., et al. 1992, ApJ, 396, L1

Stecher, T. P. 1965, ApJ, 142, 1683

Stecher, T. P. & Donn, B. 1965, ApJ, 142, 1681

Stephens, J. R. 1980, ApJ, 237, 450

Tomita, S., Fujii, M., & Hayashi, S. 2002, Phys. Rev. B, 66, 245424

Tomita, S., Fujii, M., & Hayashi, S. 2004, ApJ, 609, 220

Ubach, C., Maddison, S. T., Wright, C. M., et al. 2017, MNRAS, 466, 4083

Watson, R. A., Rebolo, R., Rubin˜o-Mart´ın, J. A., et al. 2005a, ApJ, 624, L89

Watson, R. A., Rebolo, R., Rubin˜o-Mart´ın, J. A., et al. 2005b, ApJ, 624, L89

Wei, Y. X., Wang, R. J., & Wang, W. H. 2005, Phys. Rev. B, 72, 012203

Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 296

Wilner, D. J., D’Alessio, P., Calvet, N., Claussen, M. J., & Hartmann, L. 2005, ApJ, 626, L109

Wolleben, M., Landecker, T. L., Reich, W., & Wielebinski, R. 2006, A&A, 448, 411

Zeller, R. C. & Pohl, R. O. 1971, Physical Review B, 4, 2029

Zubko, V. G., Mennella, V., Colangeli, L., & Bussoletti, E. 1996, MNRAS, 282, 1321

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る