リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A four-dimensional organoid system to visualize cancer cell vascular invasion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A four-dimensional organoid system to visualize cancer cell vascular invasion

Yanagisawa, Kiminori 大阪大学

2020.11

概要

Vascular invasion of cancer is a critical step in cancer progression, but no drug has been developed to inhibit vascular invasion. To achieve the eradication of cancer metastasis, elucidation of the mechanism for vascular invasion and the development of innovative treatment methods are required. Here, a simple and reproducible vascular invasion model is established using a vascular organoid culture in a fibrin gel with collagen microfibers. Using this model, it was possible to observe and evaluate the cell dynamics and histological positional relationship of invasive cancer cells in four dimensions. Cancer-derived exosomes promoted the vascular invasion of cancer cells and loosened tight junctions in the vascular endothelium. As a new evaluation method, research using this vascular invasion mimic model will be advanced, and applications to the evaluation of the vascular invasion suppression e_ect of a drug are expected.

この論文で使われている画像

参考文献

1. Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 2019, 19, 65–81, doi: 10.1038/s41568-018-0104-6.

2. Luai, R.Z.; Anand, S.; Billingsley, K.G.; Bisson, W.H.; Cercek, A.; Clarke, M.F.; Coussens, L.M.; Gast, C.E.; Geltzeiler, C.B.; Hansen, L.; et al. Colorectal cancer liver metastasis: evolving paradigms and future directions. Cell Mol. Gastroenterol. Hepatol. 2017, 3, 163–173, doi: 10.1016/j.jcmgh.2017.01.006.

3. Ferrara, N.; Hillan, K.J.; Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 2005, 333, 328–335, doi: 10.1016/j.bbrc.2005.05.132

4. Pavlidis, E.T.; Pavlidis, T.E. Role of bevacizumab in colorectal cancer growth and its adverse effects: a review. World J. Gastroenterol. 2013, 19, 5051–5060, doi: 10.3748/wjg.v19.i31.5051

5. Deok-Hoon, K.; Kim, M.R.; Jang, J.H.; Na, H.J.; Lee, S. A Review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int. J. Mol. Sci. 2017, 18, 1786, doi: 10.3390/ijms18081786.

6. Reymond, N.; d'Água, B.B.; Ridley, A.J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 2013, 13, 858–870, doi: 10.1038/nrc3628.

7. Shenoy, A.K.; Lu, J. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Lett. 2016, 380, 534–544, doi: 10.1016/j.canlet.2014.10.031

8. Kikuchi, S.; Yoshioka, Y.; Prieto-Vila, M.; Ochiya, T. Involvement of extracellular vesicles in vascular-related functions in cancer progression and metastasis. Int. J. Mol. Sci. 2019, 20, 2584, doi: 10.3390/ijms20102584.

9. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598, doi: 10.1038/nrc.2016.73.

10. Di Modugno, F.; Colosi, C.; Trono, P.; Antonacci, G.; Ruocco, G.; Nisticò, P. 3D models in the new era of immune oncology: focus on T cells, CAF and ECM. J. Exp. Clin. Cancer Res. 2019, 38, 117, doi: 10.1186/s13046- 019-1086-2.

11. Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 2019, 20, 840, doi: 10.3390/ijms20040840.

12. Kahlert, C.; Kalluri, R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J. Mol. Med. 2013, 91, 431–437, doi: 10.1007/s00109-013-1020-6.

13. Naito, Y.; Yoshioka, Y.; Yamamoto, Y.; Ochiya, T. How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cell Mol. Life Sci. 2017, 74, 697–713, doi: 10.1007/s00018-016-2346-3.

14. Hoarau-Véchot, J.; Rafii, A.; Touboul, C.; Pasquier, J. Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int. J. Mol. Sci. 2018, 19, 181, doi: 10.3390/ijms19010181.

15. Yamada, K.M.; Cukierman, E. Modeling tissue morphogenesis and cancer in 3D. Cell 2007, 130, 601–610, doi: 10.1016/j.cell.2007.08.006

16. Blaha, L.; Zhang, C.; Cabodi, M.; Wong, J.Y. A microfluidic platform for modeling metastatic cancer cell matrix invasion. Biofabrication 2017, 9, 045001, doi: 10.1088/1758-5090/aa869d.

17. Cheluvappa, R.; Scowen, P.; Eri, R. Ethics of animal research in human disease remediation, its institutional teaching; and alternatives to animal experimentation. Pharmacol. Res. Perspect. 2017, 5, e00332, doi: 10.1002/prp2.332.

18. Ravi, M.; Ramesh, A.; Pattabhi, A. Contributions of 3D cell cultures for cancer research. J. Cell Physiol. 2017, 232, 2679–2697, doi: 10.1002/jcp.25664.

19. Weeber, F.; Ooft, S.N.; Dijkstra, K.K.; Voest, E.E. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem. Biol. 2017, 24, 1092–1100, doi: 10.1016/j.chembiol.2017.06.012.

20. Jeon, J.S.; Bersini, S.; Gilardi, M.; Dubini, G.; Charest, J.L.; Moretti, M.; Kamm, R.D. Human 3d vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. USA 2015, 112, 214–219, doi: 10.1073/pnas.1417115112.

21. Chen, M.B.; Whisler, J.A.; Fröse, J.; Yu, C.; Shin, Y.; Kamm, R.D. On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat. Protoc. 2017, 12, 865–880, doi: 10.1038/nprot.2017.018.

22. Xu, Z.; Li, E.; Guo, Z.; Yu, R.; Hao, H.; Xu, Y.; Sun, Z.; Li, X.; Lyu, J.; Wang, Q. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl. Mater Interfaces. 2016, 8, 25840–25847, doi: 10.1021/acsami.6b08746.

23. Nishiguchi, A.; Matsusaki, M.; Kano, M.R.; Nishihara, H.; Okano, D.; Asano, Y.; Shimoda, H.; Kishimoto, S.; Iwai, S.; Akashi, M. In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials 2018, 179, 144–155, doi: 10.1016/j.biomaterials.2018.06.019.

24. Bersini, S.; Moretti, M. 3D functional and perfusable microvascular networks for organotypic microfluidic models. J. Mater. Sci. Mater. Med. 2015, 26, 180, doi: 10.1007/s10856-015-5520-5.

25. Mathivanan, S.; Ji, H.; Simpson, R.J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics. 2010, 73, 1907–1920, doi: 10.1016/j.jprot.2010.06.006.

26. Ludwig, A.K.; Giebel, B. Exosomes: small vesicles participating in intercellular communication. Int. J. Biochem. Cell Biol. 2012, 44, 11–15, doi: 10.1016/j.biocel.2011.10.005.

27. Meldolesi, J. Exosomes and ectosomes in intercellular communication. Curr. Biol. 2018, 28, R435–R444, doi: 10.1016/j.cub.2018.01.059.

28. Carolina, F.R.; Adem, B.; Silva, M.; Melo, S.A. The biology of cancer exosomes: insights and new perspectives. Cancer Res. 2017, 77, 6480–6488, doi: 10.1158/0008-5472.CAN-17-0994.

29. Morikawa, K.; Walker, S.M.; Nakajimam. M.; Pathak, S.; Jessup, J.M.; Fidler, I.J. Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res. 1988, 48, 6863–6871.

30. Nanes, B.A.; Grimsley-Myers, C.M.; Cadwell, C.M.; Robinson, B.S.; Lowery, A.M.; Vincent, P.A.; Mosunjac, M.; Früh, K.; Kowalczyk, A.P. p120-catenin regulates VE-cadherin endocytosis and degradation induced by the Kaposi sarcoma-associated ubiquitin ligase K5. Mol. Biol. Cell 2017, 28, 30–40, doi: 10.1091/mbc.E16- 06-0459.

31. Garrett, J.P.; Lowery, A.M.; Adam, A.P.; Kowalczyk, A.P.; Vincent, P.A. Regulation of endothelial barrier function by p120-catenin·VE-cadherin interaction. Mol. Biol. Cell 2017, 28, 85–97, doi: 10.1091/mbc.E16-08- 0616.

32. Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691, doi: 10.1136/gutjnl-2015-310912.

33. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424, doi: 10.3322/caac.21492.

34. Colvin, H.; Mizushima, T.; Eguchi, H.; Takiguchi, S.; Doki, Y.; Mori, M. Gastroenterological surgery in Japan: The past, the present and the future. Ann. Gastroenterol. Surg. 2017, 1, 5–10, doi: 10.1002/ags3.12008.

35. Yang, N.; Li, S.; Li, G.; Zhang, S.; Tang, X.; Ni, S.; Jian, X.; Xu, C.; Zhu, J.; Lu, M. The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma. Oncotarget 2017, 8, 3683–3695, doi: 10.18632/oncotarget.12465.

36. Fang, J.H.; Zhang, Z.J.; Shang, L.R.; Luo, Y.W.; Lin, Y.F.; Yuan, Y.; Zhuang, S.M. Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology 2018, 68, 1459–1475, doi: 10.1002/hep.29920.

37. Flores, P.A.; Rincón, D.G.; Ruiz-García, E.; Echavarria, R.; Marchat, L.A.; Álvarez-Sánchez, E.; López- Camarillo, C. Angiogenesis analysis by in vitro coculture assays in transwell chambers in ovarian cancer. Methods Mol. Biol. 2018, 1699, 179–186, doi: 10.1007/978-1-4939-7435-1_13.

38. Gorham, S.D.; Light, N.D.; Diamond, A.M.; Willins, M.J.; Bailey, A.J.; Wess, T.J.; Leslie, N.J. Effect of chemical modifications on the susceptibility of collagen to proteolysis. II. Dehydrothermal crosslinking. Int. J. Biol. Macromol. 1992, 14, 129–138, doi: 10.1016/s0141-8130(05)80002-9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る