リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gm14230 controls Tbc1d24 cytoophidia and neuronal cellular juvenescence.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gm14230 controls Tbc1d24 cytoophidia and neuronal cellular juvenescence.

MORIMUNE Takao TANO Ayami TANAKA Yuya YUKIUE Haruka YAMAMOTO Takefumi TOOYAMA Ikuo 20207533 0000-0001-8054-9666 MARUO Yoshihiro 80314160 NISHIMURA Masaki 40322739 MORI Masaki 10602625 0000-0001-7632-3875 滋賀医科大学

2021.04.22

概要

It is not fully understood how enzymes are regulated in the tiny reaction field of a cell. Several enzymatic proteins form cytoophidia, a cellular macrostructure to titrate enzymatic activities. Here, we show that the epileptic encephalopathy-associated protein Tbc1d24 forms cytoophidia in neuronal cells both in vitro and in vivo. The Tbc1d24 cytoophidia are distinct from previously reported cytoophidia consisting of inosine monophosphate dehydrogenase (Impdh) or cytidine-5'-triphosphate synthase (Ctps). Tbc1d24 cytoophidia is induced by loss of cellular juvenescence caused by depletion of Gm14230, a juvenility-associated lncRNA (JALNC) and zeocin treatment. Cytoophidia formation is associated with impaired enzymatic activity of Tbc1d24. Thus, our findings reveal the property of Tbc1d24 to form cytoophidia to maintain neuronal cellular juvenescence.

この論文で使われている画像

参考文献

1.

Jam FA, Kadota Y, Mendsaikhan A, Tooyama I, Mori M. Identification of juvenility-associated genes in

the mouse hepatocytes and cardiomyocytes. Sci Rep. 2018; 8: 3132. https://doi.org/10.1038/s41598018-21445-3 PMID: 29449671

2.

Tano A, Kadota Y, Morimune T, Jam FA, Yukiue H, Bellier J-P, et al. The juvenility-associated long noncoding RNA Gm14230 maintains cellular juvenescence. J Cell Sci. 2019; 132: jcs227801. https://doi.

org/10.1242/jcs.227801 PMID: 30872457

3.

Falace A, Buhler E, Fadda M, Watrin F, Lippiello P, Pallesi-Pocachard E, et al. TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proc Natl Acad

Sci. 2014; 111: 2337–2342. https://doi.org/10.1073/pnas.1316294111 PMID: 24469796

4.

Fischer B, Lu¨thy K, Paesmans J, De Koninck C, Maes I, Swerts J, et al. Skywalker-TBC1D24 has a

lipid-binding pocket mutated in epilepsy and required for synaptic function. Nat Struct Mol Biol. 2016;23.

https://doi.org/10.1038/nsmb.3337 PMID: 27918543

5.

Pan X, Eathiraj S, Munson M, Lambright DG. TBC-domain GAPs for Rab GTPases accelerate GTP

hydrolysis by a dual-finger mechanism. Nature. 2006; 442: 303–306. https://doi.org/10.1038/

nature04847 PMID: 16855591

6.

Finelli MJ, Sanchez-Pulido L, Liu KX, Davies KE, Oliver PL. The evolutionarily conserved Tre2/Bub2/

Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) domain is neuroprotective against oxidative

stress. J Biol Chem. 2016; 291: 2751–2763. https://doi.org/10.1074/jbc.M115.685222 PMID: 26668325

7.

Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome. 2017; 28: 395–406. https://doi.org/10.1007/s00335-017-9706-7 PMID:

28707022

8.

Yoon J, Hwang YS, Lee M, Sun J, Cho HJ, Knapik L, et al. TBC1d24-ephrinB2 interaction regulates

contact inhibition of locomotion in neural crest cell migration. Nat Commun. 2018;9. https://doi.org/10.

1038/s41467-017-01881-x PMID: 29339724

9.

Herna´ndez-Deviez DJ, Casanova JE, Wilson JM. Regulation of dendritic development by the ARF

exchange factor ARNO. Nat Neurosci. 2002; 5: 623–624. https://doi.org/10.1038/nn865 PMID:

12032543

10.

D’Souza-Schorey C, Chavrier P. ARF proteins: Roles in membrane traffic and beyond. Nat Rev Mol

Cell Biol. 2006; 7: 347–358. https://doi.org/10.1038/nrm1910 PMID: 16633337

11.

Sheehan P, Waites CL. Coordination of synaptic vesicle trafficking and turnover by the Rab35 signaling

network. Small GTPases. 2019; 10: 54–63. https://doi.org/10.1080/21541248.2016.1270392 PMID:

28129039

12.

Acker T Van, Tavernier J, Peelman F. The small GTPase Arf6: An overview of its mechanisms of action

and of its role in host- pathogen interactions and innate immunityAcker, T. Van, Tavernier, J., & Peelman, F. (2019). The small GTPase Arf6: An overview of its mechanisms of action and of its. Int J Mol

Sci. 2019; 20. https://doi.org/10.3390/ijms20092209 PMID: 31060328

PLOS ONE | https://doi.org/10.1371/journal.pone.0248517 April 22, 2021

17 / 19

PLOS ONE

Gm14230 regulates Tbc1d24 cytoophidia

13.

Campeau PM, Kasperaviciute D, Lu JT, Burrage LC, Kim C, Hori M, et al. The genetic basis of DOORS

syndrome: An exome-sequencing study. Lancet Neurol. 2014; 13: 44–58. https://doi.org/10.1016/

S1474-4422(13)70265-5 PMID: 24291220

14.

Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, et al. Europe PMC Funders

Group Europe PMC Funders Author Manuscripts A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet. 2015; 47: 39–46. https://doi.org/10.1038/ng.3144 PMID:

25401298

15.

Strazˇisˇar BG, Neubauer D, Paro Panjan D, Writzl K. Early-onset epileptic encephalopathy with hearing

loss in two siblings with TBC1D24 recessive mutations. Eur J Paediatr Neurol. 2015; 19: 251–256.

https://doi.org/10.1016/j.ejpn.2014.12.011 PMID: 25557349

16.

Milh M, Falace A, Villeneuve N, Vanni N, Cacciagli P, Assereto S, et al. Novel Compound Heterozygous

Mutations in TBC1D24 Cause Familial Malignant Migrating Partial Seizures of Infancy. Hum Mutat.

2013; 34: 869–872. https://doi.org/10.1002/humu.22318 PMID: 23526554

17.

Guven A, Tolun A. TBC1D24 truncating mutation resulting in severe neurodegeneration. J Med Genet.

2013; 50: 199–202. https://doi.org/10.1136/jmedgenet-2012-101313 PMID: 23343562

18.

Aprile D, Fruscione F, Baldassari S, Fadda M, Ferrante D, Falace A, et al. TBC1D24 regulates axonal

outgrowth and membrane trafficking at the growth cone in rodent and human neurons. Cell Death Differ.

2019; 26: 2464–2478. https://doi.org/10.1038/s41418-019-0313-x PMID: 30858606

19.

Finelli MJ, Aprile D, Castroflorio E, Jeans A, Moschetta M, Chessum L, et al. The epilepsy-associated

protein TBC1D24 is required for normal development, survival and vesicle trafficking in mammalian

neurons. Hum Mol Genet. 2019;28. https://doi.org/10.1093/hmg/ddy370 PMID: 30335140

20.

Tona R, Chen W, Nakano Y, Reyes LD, Petralia RS, Wang YX, et al. The phenotypic landscape of a

Tbc1d24 mutant mouse includes convulsive seizures resembling human early infantile epileptic

encephalopathy. Hum Mol Genet. 2019; 28: 1530–1547. https://doi.org/10.1093/hmg/ddy445 PMID:

30602030

21.

Lin L, Lyu Q, Kwan PY, Zhao J, Fan R, Chai A, et al. The epilepsy and intellectual disability-associated

protein TBC1D24 regulates the maintenance of excitatory synapses and animal behaviors. PLoS

Genetics. 2020. https://doi.org/10.1371/journal.pgen.1008587 PMID: 32004315

22.

Carcamo WC, Satoh M, Kasahara H, Terada N, Hamazaki T, Chan JYF, et al. Induction of cytoplasmic

rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS

One. 2011; 6. https://doi.org/10.1371/journal.pone.0029690 PMID: 22220215

23.

Keppeke GD, Calise SJ, Chan EKL, Andrade LEC. Assembly of IMPDH2-Based, CTPS-Based, and

Mixed Rod/Ring Structures Is Dependent on Cell Type and Conditions of Induction. J Genet Genomics.

2015; 42. https://doi.org/10.1016/j.jgg.2015.04.002 PMID: 26165495

24.

Calise SJ, Purich DL, Nguyen T, Saleem DA, Krueger C, Yin JD, et al. “Rod and ring” formation from

imp dehydrogenase is regulated through the one-carbon metabolic pathway. J Cell Sci. 2016; 129:

3042–3052. https://doi.org/10.1242/jcs.183400 PMID: 27343244

25.

Insights Liu J. & Perspectives The enigmatic cytoophidium: Compartmentation of CTP synthase via filament formation. Bioessays. 2011; 159–164. https://doi.org/10.1002/bies.201000129 PMID: 21254152

26.

Strochlic TI, Stavrides KP, Thomas S V, Nicolas E, O’Reilly AM, Peterson JR. Ack kinase regulates

CTP synthase filaments during Drosophila oogenesis. EMBO Rep. 2014; 15: 1184–1191. https://doi.

org/10.15252/embr.201438688 PMID: 25223282

27.

Aughey GN, Grice SJ, Shen QJ, Xu Y, Chang CC, Azzam G, et al. Nucleotide synthesis is regulated by

cytoophidium formation during neurodevelopment and adaptive metabolism. Biol Open. 2014; 3: 1045–

1056. https://doi.org/10.1242/bio.201410165 PMID: 25326513

28.

Huang Y, Wang JJ, Ghosh S, Liu JL. Critical roles of CTP synthase N-terminal in cytoophidium assembly. Exp Cell Res. 2017;354. https://doi.org/10.1016/j.yexcr.2017.03.042 PMID: 28342900

29.

Wu Z, Liu JL. Cytoophidia respond to nutrient stress in Drosophila. Exp Cell Res. 2019; 376: 159–167.

https://doi.org/10.1016/j.yexcr.2019.02.003 PMID: 30768932

30.

Aughey GN, Grice SJ, Liu JL. The Interplay between Myc and CTP Synthase in Drosophila. PLoS

Genet. 2016; 12: 1–17. https://doi.org/10.1371/journal.pgen.1005867 PMID: 26889675

31.

Aughey GN, Liu JL. Metabolic regulation via enzyme filamentation. Crit Rev Biochem Mol Biol. 2016;

51: 282–293. https://doi.org/10.3109/10409238.2016.1172555 PMID: 27098510

32.

Lynch EM, Hicks DR, Shepherd M, Endrizzi JA, Maker A, Hansen JM, et al. Human CTP synthase filament structure reveals the active enzyme conformation. Nat Struct Mol Biol. 2017;24. https://doi.org/10.

1038/nsmb.3407 PMID: 28459447

33.

Anthony SA, Burrell AL, Johnson MC, Duong-Ly KC, Kuo YM, Simonet JC, et al. Reconstituted IMPDH

polymers accommodate both catalytically active and inactive conformations. Mol Biol Cell. 2017; 28.

https://doi.org/10.1091/mbc.E17-04-0263 PMID: 28794265

PLOS ONE | https://doi.org/10.1371/journal.pone.0248517 April 22, 2021

18 / 19

PLOS ONE

Gm14230 regulates Tbc1d24 cytoophidia

34.

Keppeke GD, Chang CC, Peng M, Chen LY, Lin WC, Pai LM, et al. IMP/GTP balance modulates cytoophidium assembly and IMPDH activity. Cell Div. 2018; 13: 1–18. https://doi.org/10.1186/s13008-0180034-4 PMID: 29416553

35.

Chang CC, Keppeke GD, Sung LY, Liu JL. Interfilament interaction between IMPDH and CTPS cytoophidia. FEBS J. 2018; 285: 3753–3768. https://doi.org/10.1111/febs.14624 PMID: 30085408

36.

Calise SJ, Abboud G, Kasahara H, Morel L, Chan EKL. Immune response-dependent assembly of IMP

dehydrogenase filaments. Front Immunol. 2018; 9: 1–15. https://doi.org/10.3389/fimmu.2018.00001

PMID: 29403488

37.

Zhang S, Ding K, Shen QJ, Zhao S, Liu JL. Filamentation of asparagine synthetase in Saccharomyces

cerevisiae. PLoS Genet. 2018; 14: 1–19. https://doi.org/10.1371/journal.pgen.1007737 PMID:

30365499

38.

Webb BA, Dosey AM, Wittmann T, Kollman JM, Barber DL. The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J Cell Biol. 2017; 216: 2305–2313. https://doi.org/10.1083/jcb.

201701084 PMID: 28646105

39.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source

platform for biological-image analysis. Nat Methods. 2012; 9: 676–682. https://doi.org/10.1038/nmeth.

2019 PMID: 22743772

40.

Field D, Tiwari B, Booth T, Houten S, Swan D, Bertrand N, et al. Open software for biologists: From famine to feast. Nat Biotechnol. 2006; 24: 801–803. https://doi.org/10.1038/nbt0706-801 PMID: 16841067

41.

Chang C, Lin W, Pai L, Lee H, Wu S, Ding S. Cytoophidium assembly reflects upregulation of IMPDH

activity. J Cell Sci. 2015; 3550–3555. https://doi.org/10.1242/jcs.175265 PMID: 26303200

42.

Hofer A, Steverding D, Chabes A, Brun R, Thelander L. Trypanosoma brucei CTP synthetase: A target

for the treatment of African sleeping sickness. Proc Natl Acad Sci U S A. 2001; 98: 6412–6416. https://

doi.org/10.1073/pnas.111139498 PMID: 11353848

43.

Gunter JH, Thomas EC, Lengefeld N, Kruger SJ, Worton L, Gardiner EM, et al. Characterisation of inosine monophosphate dehydrogenase expression during retinal development: Differences between variants and isoforms. Int J Biochem Cell Biol. 2008; 40: 1716–1728. https://doi.org/10.1016/j.biocel.2007.

12.018 PMID: 18295529

44.

Ji YS, Gu JJ, Makhov AM, Griffith JD, Mitchell BS. Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic acid by GTP. J Biol Chem. 2006; 281: 206–212. https://doi.

org/10.1074/jbc.M507056200 PMID: 16243838

45.

Kadota Y, Jam FA, Yukiue H, Terakado I, Morimune T, Tano A, et al. Srsf7 Establishes the Juvenile

Transcriptome through Age-Dependent Alternative Splicing in Mice. iScience. 2020; 23: 100929.

https://doi.org/10.1016/j.isci.2020.100929 PMID: 32146325

46.

Barry RM, Bitbol AF, Lorestani A, Charles EJ, Habrian CH, Hansen JM, et al. Large-scale filament formation inhibits the activity of CTP synthetase. Elife. 2014; 3: 1–19. https://doi.org/10.7554/eLife.03638

PMID: 25030911

47.

Lynch EM, Hicks DR, Shepherd M, Endrizzi JA, Hansen JM, Barry RM, et al. Enzyme Conformation.

2017; 24: 507–514. https://doi.org/10.1038/nsmb.3407.Human

48.

Gnidovec B, Repetto GM, Doummar D, Lees MM, Rosenfeld JA, Striano P. TBC1D24 genotype–phenotype correlation Epilepsies and other neurologic features. Neurology. 2016; 87: 77–87. https://doi.

org/10.1212/WNL.0000000000002807 PMID: 27281533

PLOS ONE | https://doi.org/10.1371/journal.pone.0248517 April 22, 2021

19 / 19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る