リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Grain boundary diffusion creep of olivine and its role in upper mantle rheology」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Grain boundary diffusion creep of olivine and its role in upper mantle rheology

谷部, 功将 東京大学 DOI:10.15083/0002006452

2023.03.24

概要

論文審査の結果の要旨
氏名

谷部 功将

本論文は5章からなる。第1章はイントロダクションで、本研究の学術的背景が
述べられている。オリビン多結晶体の高温変形特性に基づくと、上部マントルの流動メ
カニズムは拡散クリープもしくは転位クリープと考えられる。上部マントルの地震波速
度異方性は良く知られており、弾性的異方性を持つオリビンが転位クリープによって結
晶軸選択配向するのがその理由とされてきた。しかし最近、拡散クリープ下でも結晶軸
選択配向が生じることが実験的に示された。本研究では、マントル流動が拡散クリープ
である可能性を粘性率の観点から検証する。オリビンの拡散クリープは、これまで二つ
の研究グループによって調べられ、同じ温度・圧力・粒径下にも関わらず粘性率にして
2 桁もの異なる実験結果が報告されている。それぞれの実験では天然オリビン結晶由来
の粉末もしくはゾル・ゲル法を用いた薬品由来の粉末の焼結体が用いられている。本研
究では、二つのグループにおける粘性率の大きな違いは、ある特定の元素が粒界に濃集
する「粒界偏析」の有無により生じたと予想した。粒界偏析の拡散クリープへの影響は
材料科学ではよく知られており、オリビン粒界では Ca や Al などの不適合元素が偏析
するとの報告がある。本研究ではまず、粒界偏析を生じない Mg, Fe, Si, O のみからな
る純粋なオリビン多結晶体試料の高温変形特性を実験的に明らかにする。この結果を基

準にして、Ca, Al を添加した試料の実験結果および先行研究の結果を解析することで、
拡散クリープに対する化学効果を明らかにし、実際の上部マントルに適用可能な拡散ク
リープ則を構築する。それに基づき海洋上部マントルの粘性率構造を推定する。
第2章では、高緻密細粒オリビン(Mg1.8Fe0.2SiO4 および Mg2SiO4)多結晶体の1気
圧・高温下での一軸圧縮実験について述べられている。化学組成を正確に制御したナノ

サイズ原料粉を用いることで、変形実験に適した高緻密細粒のオリビン試料(Ca 添加、
Ca+ Al 添加、および無添加(純粋)
)を真空焼結によって作成した。試料の粒径、実験温

度、および荷重を変えて変形実験を行い、歪速度の粒径、温度および応力依存性を調べ
た。その結果、試料の変形メカニズムは、細粒・低応力条件ではべき乗型界面反応クリ
ープ、粗粒・高応力条件では粒界拡散クリープが支配的になることが分かった。また、
添加試料は、ある温度以上で無添加試料と比べて軟化し、その程度は温度上昇とともに
増加することがわかった。軟化の開始温度は、Ca、Al の添加量や Fe の有無で大きく異
なるが、試料の融点の 0.92 倍程度という共通性があり、また軟化の温度依存性は共通
の活性化エネルギー230 kJ/mol で表せることが分かった。これらの結果に基づき、Ca,
Al 添加オリビン試料が軟化した原因は、粒界偏析と温度に駆動されるソリダス近傍で
の粒界の無秩序化によるものと結論づけた。0.92×融点以上での粒界無秩序化の効果を
取り入れたオリビンの粒界拡散クリープ則を確立した。
第3章では、2 章で確立したオリビン拡散クリープ則の先行研究結果への適用性

を調べた。ドライ試料のみならず、ウエット(水入り)試料の結果も検証した。まず、
先行研究で用いられた実験試料の融点を推定し、天然由来試料を用いた実験は全て
0.92×融点以上の温度条件、逆に、薬品由来の試料を用いた実験は 0.92×融点以下の実
験条件で行われていたことを示した。ウエット条件下にも関わらず水軟化を否定した Si
自己拡散結果も、その実験条件が 0.92×融点以下であったことを示した。また、0.92×
融点以下および 0.92×融点以上での先行研究の結果は全て、本研究で確立した粒界拡
散クリープ流動則に整合的であることを示した。オリビンの拡散クリープについて、こ
れまでの矛盾する実験結果が粒界無秩序化の効果を取り入れることで統一的かつ定量
的に説明できることを示した。オリビンの拡散クリープ下における水軟化は、水による
融点降下、具体的には粒界無秩序化開始温度の低下によって説明できることを示した。
第4章では、海洋上部マントルの粘性率構造を明らかにするために、本研究で確
立したオリビン粒界拡散クリープ則を海嶺直下および 50 Ma の海洋底下マントルに適
用した。半無限冷却モデルに基づく温度構造を深度に応じたマントル岩の融点で規格化
した。その際、マントル岩中の水の量を 0-300 g/g と仮定した。水の量にも依存する
が、海嶺直下では深さ約 200 km まで、50 Ma の海洋底下マントル内では深さ約 100 km
から 200 km までの範囲が粒界無秩序条件下にあることが推定された。海洋リソスフェ
ア由来のマントル捕獲岩中のオリビンと輝石の粒径比は輝石の体積分率で決定(ゼナー
則)され、上部マントルを代表するレールゾライトの輝石量においてはオリビンの粒径

が~1 mm であることを、先行研究の岩石微細構造の報告値から明らかにした。その粒
径を用いて、粒界無秩序化による低粘性領域が海嶺直下では粘性率 3–10×1018 Pas、50
Ma の海洋底下では 2–5×1019 Pas の最小値をとり、観測されるアセノスフェアの粘性
率に対応することが示された。リソスフェアは中央海嶺下で極めて薄く、海洋底年代(冷
却時間)の増加とともに厚化、その下に深さが年代に依存しない~200 km までのアセノ
スフェア構造が生じることを示した。
第5章には、2〜4章で得られた結論がまとめられている。
以上にまとめた通り、本博士論文はオリビンの粒界物性を考慮した拡散クリープ則を
構築し、それに基づき海洋上部マントルの粘性率構造を明らかにした研究である。高精
度の実験結果とそれを説明する粒界無秩序化、その効果を組み込んだ拡散クリープ則に
基づくマントル粘性率構造は、低粘性層としてのアセノスフェアの成因が「水」もしく
は「メルト」によるマントル岩の軟化という従来のモデルに対し、新規かつより実験的
な裏付けのあるモデルを提案し、固体地球科学の進歩に大きく寄与する成果であると高
く評価できる。本論文の第2章は末善健太および平賀岳彦、第3章および第4章は平賀
岳彦との共同研究であるが、Fe なしオリビンの高温変形実験を除いて、全てで論文提
出者が主体となって行ったもので、論文提出者の寄与が十分であると判断する。
従って、博士(理学)の学位を授与できると認める。

この論文で使われている画像

参考文献

Ambrose, T. K., Wallis, D., Hansen, L. N., Waters, D. J., & Searle, M. P. (2018).

Controls on the rheological properties of peridotite at a palaeosubduction

interface: A transect across the base of the Oman–UAE ophiolite. Earth and

Planetary Science Letters, 491, 193-206.

Arzt, E., Ashby, M. F., & Verrall, R. A. (1983). Interface controlled diffusional

creep. Acta metallurgica, 31(12), 1977-1989.

Ashby, M. F. (1969). On interface-reaction control of Nabarro-Herring creep and

sintering. Scripta Metallurgica, 3(11), 837-842.

Ashby, M. F., & Verrall, R. A. (1973). Diffusion-accommodated flow and

superplasticity. Acta metallurgica, 21(2), 149-163.

Ashby, M. F., Edward, G. H., Davenport, J., & Verrall, R. A. (1978). Application of

bound theorems for creeping solids and their application to large strain

diffusional flow. Acta Metallurgica, 26(9), 1379-1388.

Ave Lallemant, H. G., Mercier, J.-C. C., Carter, N. L., & Ross, J. V. (1980). Rheology of

the upper mantle: inferences from peridotite xenoliths. Tectonophysics, 70(1-2),

85-113.

Baba, K., Chave, A. D., Evans, R. L., Hirth, G., & Mackie, R. L. (2006). Mantle

dynamics beneath the East Pacific Rise at 17 S: Insights from the Mantle

Electromagnetic and Tomography (MELT) experiment. Journal of Geophysical

Research: Solid Earth, 111(B2).

Bai, Q., & Kohlstedt, D. L. (1993). Effects of chemical environment on the solubility

and incorporation mechanism for hydrogen in olivine. Physics and Chemistry of

Minerals, 19(7), 460-471.Bai, J., & Raj, R. (2005). Influence of grain size

variability on the strain rate dependence of the stress exponent in mixed-mode

power law and diffusional creep. Metallurgical and Materials Transactions

A, 36(11), 2913-2919.

Bai, J., & Raj, R. (2010). Inverse problems in stochastic modeling of mixed-mode

power-law and diffusional creep for distributed grain size. Metallurgical and

Materials Transactions A, 41(2), 308-317.

Bali, E., Bolfan-Casanova, N., & Koga, K. T. (2008). Pressure and temperature

dependence of H solubility in forsterite: an implication to water activity in the

Earth interior. Earth and Planetary Science Letters, 268(3-4), 354-363.

Beeman, M. L., & Kohlstedt, D. L. (1993). Deformation of fine-grained aggregates of

113

olivine plus melt at high temperatures and pressures. Journal of Geophysical

Research: Solid Earth, 98(B4), 6443-6452.

Beere, W. (1978). Stresses and deformation at grain boundaries. Philosophical

Transactions of the Royal Society of London. Series A, Mathematical and

Physical Sciences, 288(1350), 177-196.

Behn, M. D., Hirth, G., & Elsenbeck II, J. R. (2009). Implications of grain size

evolution on the seismic structure of the oceanic upper mantle. Earth and

Planetary Science Letters, 282(1-4), 178-189.

Berbon, M. Z., & Langdon, T. G. (1999). An examination of the flow process in

superplastic yttria-stabilized tetragonal zirconia. Acta materialia, 47(8), 24852495.

Bowen, N. L., & Schairer, J. F. (1935). The system MgO-FeO-SiO 2. American Journal

of Science, 29(170), 151-217.

Burton, B. (1972). Interface reaction controlled diffusional creep: a consideration of

grain boundary dislocation climb sources. Materials Science and

Engineering, 10, 9-14.

Burton, B. (1977). Diffusional creep of polycrystalline materials. Diffusion and Defect

Monograph Series. (Vol. 5). pp. 5. Bay Village, OH: Trans Tech Publications.

Cantwell, P. R., Tang, M., Dillon, S. J., Luo, J., Rohrer, G. S., & Harmer, M. P. (2014).

Grain boundary complexions. Acta Materialia, 62, 1-48.

Carter, C. B., & Norton, M. G. (2013). Ceramic materials: science and engineering, pp.

253-265. Springer, New York.

Chakraborty, S. (1997). Rates and mechanisms of Fe‐Mg interdiffusion in olivine at

980°–1300° C. Journal of Geophysical Research: Solid Earth, 102(B6), 1231712331.

Cline II, C. J., Faul, U. H., David, E. C., Berry, A. J., & Jackson, I. (2018). Redoxinfluenced seismic properties of upper-mantle olivine. Nature, 555(7696), 355358.

Coble, R. L. (1963). A model for boundary diffusion controlled creep in polycrystalline

materials. Journal of applied physics, 34(6), 1679-1682.

Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., & Hirschmann, M. M.

(2013). Carbon-dioxide-rich silicate melt in the Earth’s upper

mantle. Nature, 493(7431), 211-215.

Deines, P., Nafzinger, R. H., Ulmer, G. C., & Woermann, E. (1974). Temperatureoxygen fugacity tables for selected gas mixtures in the system C-H-O at one

atmosphere total pressure. Bulletin of the Earth and Mineral Sciences

114

Experiment Station, 88, pp. 17-27. Pennsylvania State University.

De Paola, N., Holdsworth, R. E., Viti, C., Collettini, C., & Bullock, R. (2015). Can grain

size sensitive flow lubricate faults during the initial stages of earthquake

propagation?. Earth and Planetary Science Letters, 431, 48-58.

Dohmen, R., Chakraborty, S., & Becker, H. W. (2002). Si and O diffusion in olivine and

implications for characterizing plastic flow in the mantle. Geophysical research

letters, 29(21), 2030.

Dunn, R. A., & Forsyth, D. W. (2003). Imaging the transition between the region of

mantle melt generation and the crustal magma chamber beneath the southern

East Pacific Rise with short‐period Love waves. Journal of Geophysical

Research: Solid Earth, 108(B7).

Dixon, J. E., Clague, D. A., Wallace, P., & Poreda, R. (1997). Volatiles in alkalic basalts

form the North Arch Volcanic Field, Hawaii: extensive degassing of deep

submarine-erupted alkalic series lavas. Journal of Petrology, 38(7), 911-939.

Farver, J. R., & Yund, R. A. (2000). Silicon diffusion in forsterite aggregates:

Implications for diffusion accommodated creep. Geophysical Research

Letters, 27(15), 2337-2340.

Faul, U. H., & Jackson, I. (2007). Diffusion creep of dry, melt‐free olivine. Journal of

Geophysical Research: Solid Earth, 112, B04204.

Fei, H., Hegoda, C., Yamazaki, D., Wiedenbeck, M., Yurimoto, H., Shcheka, S., &

Katsura, T. (2012). High silicon self-diffusion coefficient in dry forsterite. Earth

and Planetary Science Letters, 345, 95-103.

Fei, H., Koizumi, S., Sakamoto, N., Hashiguchi, M., Yurimoto, H., Marquardt, K., ... &

Katsura, T. (2016). New constraints on upper mantle creep mechanism inferred

from silicon grain-boundary diffusion rates. Earth and Planetary Science

Letters, 433, 350-359.

Gasparik, T. (2003). Phase diagrams for geoscientists, Springer, Berlin, Germany.

Gribb, T. T., & Cooper, R. F. (1998). Low-frequency shear attenuation in polycrystalline

olivine: Grain boundary diffusion and the physical significance of the Andrade

model for viscoelastic rheology. Journal of Geophysical Research: Solid

Earth, 103(B11), 27267-27279.

Hamilton, D. L., Burnham, C. W., & Osborn, E. F. (1964). The solubility of water and

effects of oxygen fugacity and water content on crystallization in mafic

magmas. Journal of Petrology, 5(1), 21-39.

Hammond, W. C., & Toomey, D. R. (2003). Seismic velocity anisotropy and

heterogeneity beneath the Mantle Electromagnetic and Tomography Experiment

115

(MELT) region of the East Pacific Rise from analysis of P and S body

waves. Journal of Geophysical Research: Solid Earth, 108(B4).

Hansen, L. N., & Warren, J. M. (2015). Quantifying the effect of pyroxene on

deformation of peridotite in a natural shear zone. Journal of Geophysical

Research: Solid Earth, 120(4), 2717-2738.

Hansen, L. N., Zimmerman, M. E., & Kohlstedt, D. L. (2011). Grain boundary sliding

in San Carlos olivine: Flow law parameters and crystallographic‐preferred

orientation. Journal of Geophysical Research: Solid Earth, 116, B08201.

Harigane, Y., Mizukami, T., Morishita, T., Michibayashi, K., Abe, N., & Hirano, N.

(2011). Direct evidence for upper mantle structure in the NW Pacific Plate:

Microstructural analysis of a petit-spot peridotite xenolith. Earth and Planetary

Science Letters, 302(1-2), 194-202.

Herring, C. (1950). Diffusional viscosity of a polycrystalline solid. Journal of applied

physics, 21(5), 437-445.

Hiraga, T., Nagase, T., & Akizuki, M. (1999). The structure of grain boundaries in

granite-origin ultramylonite studied by high-resolution electron

microscopy. Physics and chemistry of minerals, 26(8), 617-623.

Hiraga, T., Anderson, I., Zimmerman, M., Mei, S., & Kohlstedt, D.L. (2002). Structure

and chemistry of grain boundaries in deformed, olivine+ basalt and partially

molten lherzolite aggregates: evidence of melt-free grain

boundaries. Contributions to Mineralogy and Petrology, 144(2), 163-175.

Hiraga, T., Anderson, I. M., & Kohlstedt, D. L. (2003). Chemistry of grain boundaries in

mantle rocks. American Mineralogist, 88(7), 1015-1019.

Hiraga, T., Anderson, I. M., & Kohlstedt, D. L. (2004). Grain boundaries as reservoirs

of incompatible elements in the Earth's mantle. Nature, 427(6976), 699-703.

Hiraga, T., & Kohlstedt, D. L. (2007). Equilibrium interface segregation in the

diopside–forsterite system I: Analytical techniques, thermodynamics, and

segregation characteristics. Geochimica et Cosmochimica Acta, 71(5), 12661280.

Hiraga, T., & Kohlstedt, D. L. (2009). Systematic distribution of incompatible elements

in mantle peridotite: importance of intra-and inter-granular melt-like

components. Contributions to Mineralogy and Petrology, 158(2), 149-167.

Hiraga, T., Miyazaki, T., Tasaka, M., & Yoshida, H. (2010a). Mantle superplasticity and

its self-made demise. Nature, 468(7327), 1091-1094.

Hiraga, T., Tachibana, C., Ohashi, N., & Sano, S. (2010b). Grain growth systematics for

forsterite±enstatite aggregates: Effect of lithology on grain size in the upper

116

mantle. Earth and Planetary Science Letters, 291(1-4), 10-20.

Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of

peridotite composition. Geochemistry, Geophysics, Geosystems, 1(10),

2000GC000070.

Hirschmann, M. M., Tenner, T., Aubaud, C., & Withers, A. C. (2009). Dehydration

melting of nominally anhydrous mantle: The primacy of partitioning. Physics of

the Earth and Planetary Interiors, 176(1-2), 54-68.

Hirschmann, M. M. (2010). Partial melt in the oceanic low velocity zone. Physics of the

Earth and Planetary Interiors, 179(1-2), 60-71.

Hirth, G., & Kohlstedt, D. L. (1995a). Experimental constraints on the dynamics of the

partially molten upper mantle: Deformation in the diffusion creep

regime. Journal of Geophysical Research: Solid Earth, 100(B2), 1981-2001.

Hirth, G., & Kohlstedt, D. L. (1995b). Experimental constraints on the dynamics of the

partially molten upper mantle: 2. Deformation in the dislocation creep

regime. Journal of Geophysical Research: Solid Earth, 100(B8), 15441-15449.

Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications

for rheology, melt extraction and the evolution of the lithosphere. Earth and

Planetary Science Letters, 144(1-2), 93-108.

Hirth, G. & Kohlstedt, D. L. (2003). Rheology of the upper mantle and the mantle

wedge: A view from the experimentalists. In Inside the Subduction Factory (ed.

J. E. Eiler), pp. 83-105. American Geophysical Union.

Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent

thermodynamic dataset for phases of petrological interest, involving a new

equation of state for solids. Journal of Metamorphic Geology, 29(3), 333-383.

Holm, K., Embury, J. D., & Purdy, G. R. (1977). The structure and properties of

microduplex Zr-Nb alloys. Acta Metallurgica, 25(10), 1191-1200.

Jain, C., Korenaga, J., & Karato, S. I. (2018). On the grain size sensitivity of olivine

rheology. Journal of Geophysical Research: Solid Earth, 123(1), 674-688.

Jain, C., Korenaga, J., & Karato, S. I. (2019). Global Analysis of Experimental Data on

the Rheology of Olivine Aggregates. Journal of Geophysical Research: Solid

Earth, 124(1), 310-334.

Jamtveit, B., Brooker, R., Brooks, K., Larsen, L. M., & Pedersen, T. (2001). The water

content of olivines from the North Atlantic Volcanic Province. Earth and

Planetary Science Letters, 186(3-4), 401-415.

Karato, S. I. (1986). Does partial melting reduce the creep strength of the upper

mantle?. Nature, 319(6051), 309-310.Karato, S. I., Paterson, M. S., &

117

FitzGerald, J. D. (1986). Rheology of synthetic olivine aggregates: Influence of

grain size and water. Journal of Geophysical Research: Solid Earth, 91(B8),

8151-8176.

Karato, S. I., & Jung, H. (1998). Water, partial melting and the origin of the seismic low

velocity and high attenuation zone in the upper mantle. Earth and Planetary

Science Letters, 157(3-4), 193-207.

Karato, S. I., Paterson, M. S., & FitzGerald, J. D. (1986). Rheology of synthetic olivine

aggregates: Influence of grain size and water. Journal of Geophysical Research:

Solid Earth, 91(B8), 8151-8176.

Keefner, J. W., Mackwell, S. J., Kohlstedt, D. L., & Heidelbach, F. (2011). Dependence

of dislocation creep of dunite on oxygen fugacity: implications for viscosity

variations in Earth's mantle. Journal of Geophysical Research: Solid Earth, 116,

B05201.

Kohlstedt, D. L., Keppler, H., & Rubie, D. C. (1996). Solubility of water in the α, β and

γ phases of (Mg, Fe) 2 SiO 4. Contributions to Mineralogy and

Petrology, 123(4), 345-357.

Koizumi, S., Hiraga, T., Tachibana, C., Tasaka, M., Miyazaki, T., Kobayashi, T., ... &

Sano, S. (2010). Synthesis of highly dense and fine-grained aggregates of mantle

composites by vacuum sintering of nano-sized mineral powders. Physics and

Chemistry of Minerals, 37(8), 505-518.

Kojitani, H., & Akaogi, M. (1997). Melting enthalpies of mantle peridotite: calorimetric

determinations in the system CaO-MgO-Al2O3-SiO2 and application to magma

generation. Earth and Planetary Science Letters, 153(3-4), 209-222.

Korenaga, J., & Karato, S. I. (2008). A new analysis of experimental data on olivine

rheology. Journal of Geophysical Research: Solid Earth, 113, B02403.

Lee, D. (1970). Structural changes during the superplastic deformation. Metallurgical

and Materials Transactions B, 1(1), 309-311.

Lessing, P. A., & Gordon, R. S. (1977). Creep of polycrystalline alumina, pure and

doped with transition metal impurities. Journal of Materials Science, 12(11),

2291-2302.

Linckens, J., Herwegh, M., Müntener, O., & Mercolli, I. (2011). Evolution of a

polymineralic mantle shear zone and the role of second phases in the localization

of deformation. Journal of Geophysical Research: Solid Earth, 116, B06210.

Liu, S., Tommasi, A., Vauchez, A., & Mazzucchelli, M. (2019). Deformation,

Annealing, Melt‐Rock Interaction, and Seismic Properties of an Old Domain

of the Equatorial Atlantic Lithospheric Mantle. Tectonics, 38(4), 1164-1188.

118

Maruyama, G., & Hiraga, T. (2017a). Grain- to multiple-grain-scale deformation

processes during diffusion creep of forsterite + diopside aggregate: 1. Direct

observations. Journal of Geophysical Research: Solid Earth, 122(8), 5890-5915.

Maruyama, G., & Hiraga, T. (2017b). Grain- to multiple-grain-scale deformation

processes during diffusion creep of forsterite + diopside aggregate: 2. Grain

boundary sliding-induced grain rotation and its role in crystallographic preferred

orientation in rocks. Journal of Geophysical Research: Solid Earth, 122(8),

5916-5934.

McKenzie, D. A. N., & Bickle, M. J. (1988). The volume and composition of melt

generated by extension of the lithosphere. Journal of petrology, 29(3), 625-679.

McLean, D. (1957). Grain boundaries in metals. pp. 116-149. Clarendon Press, Oxford.

Mei, S., & Kohlstedt, D. L. (2000a). Influence of water on plastic deformation of

olivine aggregates: 1. Diffusion creep regime. Journal of Geophysical Research:

Solid Earth, 105(B9), 21457-21469.

Mei, S., & Kohlstedt, D. L. (2000b). Influence of water on plastic deformation of

olivine aggregates: 2. Dislocation creep regime. Journal of Geophysical

Research: Solid Earth, 105(B9), 21471-21481.

Mei, S., Bai, W., Hiraga, T., & Kohlstedt, D. L. (2002). Influence of melt on the creep

behavior of olivine–basalt aggregates under hydrous conditions. Earth and

Planetary Science Letters, 201(3-4), 491-507.

Miyazaki, T., Sueyoshi, K., & Hiraga, T. (2013). Olivine crystals align during diffusion

creep of Earth’s upper mantle. Nature, 502(7471), 321-326.

Nabarro, F. R. N. (1948). Deformation of crystals by the motion of single ions. Report

of a Conference on the Strength of Solids, 75-90.

Nakakoji, T., & Hiraga, T. (2018). Diffusion creep and grain growth in forsterite+ 20

vol% enstatite aggregates: 2. Their common diffusional mechanism and its

consequence for weak-temperature-dependent viscosity. Journal of Geophysical

Research: Solid Earth, 123(11), 9513-9527.

Nakakoji, T., Hiraga, T., Nagao, H., Ito, S., & Kano, M. (2018). Diffusion creep and

grain growth in forsterite+ 20 vol% enstatite aggregates: 1. High-resolution

experiments and their data analyses. Journal of Geophysical Research: Solid

Earth, 123(11), 9486-9512.

Nakamura, A., & Schmalzried, H. (1984). On the Fe2+- Mg2+-Interdiffusion in Olivine

(II). Berichte der Bunsengesellschaft für physikalische Chemie, 88(2), 140-145.

Nettles, M., & Dziewoński, A. M. (2008). Radially anisotropic shear velocity structure

of the upper mantle globally and beneath North America. Journal of

119

Geophysical Research: Solid Earth, 113, B02303.

Nichols, A. R. L., Carroll, M. R., & Höskuldsson, A. (2002). Is the Iceland hot spot also

wet? Evidence from the water contents of undegassed submarine and subglacial

pillow basalts. Earth and Planetary Science Letters, 202(1), 77-87.

Nicolas, A., & Christensen, N. I. (1987). Formation of anisotropy in upper mantle

peridotites: a review, in Composition, structure and dynamics of the lithosphereasthenosphere system, Geodynamics, vol. 16, edited by K. Fuchs and C.

Froidevaux, pp. 111-123, American Geophysical Union, Washington DC.

O'Leary, J. A., Gaetani, G. A., & Hauri, E. H. (2010). The effect of tetrahedral Al3+ on

the partitioning of water between clinopyroxene and silicate melt. Earth and

Planetary Science Letters, 297(1-2), 111-120.

Owen, D. M., & Chokshi, A. H. (1998). The high temperature mechanical

characteristics of superplastic 3 mol% yttria stabilized zirconia. Acta

Materialia, 46(2), 667-679.

Raj, R., & Ashby, M. F. (1971). On grain boundary sliding and diffusional

creep. Metallurgical transactions, 2(4), 1113-1127.

Rudge, J. F. (2018). The viscosities of partially molten materials undergoing diffusion

creep. Journal of Geophysical Research: Solid Earth, 123(12), 10534-10562.

Rust, M. A., & Todd, R. I. (2011). Surface studies of Region II superplasticity of

AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching

and absence of dislocation activity. Acta Materialia, 59(13), 5159-5170.

Saal, A. E., Hauri, E. H., Langmuir, C. H., & Perfit, M. R. (2002). Vapour

undersaturation in primitive mid-ocean-ridge basalt and the volatile content of

Earth's upper mantle. Nature, 419(6906), 451-455.

Salters, V. J., & Stracke, A. (2004). Composition of the depleted mantle. Geochemistry,

Geophysics, Geosystems, 5(5), Q05B07.

Simons, K., Dixon, J., Schilling, J. G., Kingsley, R., & Poreda, R. (2002). Volatiles in

basaltic glasses from the Easter‐Salas y Gomez Seamount Chain and Easter

Microplate: Implications for geochemical cycling of volatile

elements. Geochemistry, Geophysics, Geosystems, 3(7), 1-29.

Sleep, N. H. (1975). Formation of oceanic crust: some thermal constraints. Journal of

Geophysical Research, 80(29), 4037-4042.

Smith, C. S. (1948). Grains, phases, and interfaces: an interpretation of

microstructure. Transactions of the American Institute of Mining and

Metallurgical Engineers, 175, 15-51.

Spingarn, J. R., & Nix, W. D. (1978). Diffusional creep and diffusionally

120

accommodated grain rearrangement. Acta Metallurgica, 26(9), 1389-1398.

Stocker, R. L., & Ashby, M. F. (1973). On the rheology of the upper mantle. Reviews of

Geophysics, 11(2), 391-426.

Sundberg, M., & Cooper, R. F. (2008). Crystallographic preferred orientation produced

by diffusional creep of harzburgite: Effects of chemical interactions among

phases during plastic flow. Journal of Geophysical Research: Solid

Earth, 113(B12).

Takei, Y. (2000). Acoustic properties of partially molten media studied on a simple

binary system with a controllable dihedral angle. Journal of Geophysical

Research: Solid Earth, 105(B7), 16665-16682.

Takei, Y. (2017). Effects of partial melting on seismic velocity and attenuation: A new

insight from experiments. Annual Review of Earth and Planetary Sciences, 45,

447-470.

Takei, Y., & Holtzman, B. K. (2009). Viscous constitutive relations of solid‐liquid

composites in terms of grain boundary contiguity: 1. Grain boundary diffusion

control model. Journal of Geophysical Research: Solid Earth, 114, B06205.

Tasaka, M., & Hiraga, T. (2013). Influence of mineral fraction on the rheological

properties of forsterite+ enstatite during grain-size-sensitive creep: 1. Grain size

and grain growth laws. Journal of Geophysical Research: Solid Earth, 118(8),

3970-3990.

Tasaka, M., Hiraga, T., & Zimmerman, M. E. (2013). Influence of mineral fraction on

the rheological properties of forsterite + enstatite during grain-size-sensitive

creep: 2. Deformation experiments. Journal of Geophysical Research: Solid

Earth, 118(8), 3991-4012.

Turcotte, D. L, & Schubert, G. (2014). Geodynamics, 3rd ed. Cambridge University

Press, Cambridge, UK.

Turner, A. J., Katz, R. F., & Behn, M. D. (2015). Grain-size dynamics beneath mid-cean

ridges: Implications for permeability and melt extraction. Geochemistry,

Geophysics, Geosystems, 16(3), 925-946.

Wakai, F., & Nagono, T. (1988). The role of interface-controlled diffusion creep on

superplasticity of yttria-stabilized tetragonal ZrO 2 polycrystals. Journal of

materials science letters, 7(6), 607-609.

Wanamaker, B. J. (1994). Point defect diffusivites in San Carlos olivine derived from

reequilibration of electrical conductivity following changes in oxygen

fugacity. Geophysical research letters, 21(1), 21-24.

Wang, J. N. (2000). An investigation of the deformation mechanism in grain size121

sensitive Newtonian creep. Acta materialia, 48(7), 1517-1531.

Warren, J. M., & Hirth, G. (2006). Grain size sensitive deformation mechanisms in

naturally deformed peridotites. Earth and Planetary Science Letters, 248(1-2),

438-450.

Watts, A. B., & Zhong, S. (2000). Observations of flexure and the rheology of oceanic

lithosphere. Geophysical Journal International, 142(3), 855-875.

Withers, A. C., Bureau, H., Raepsaet, C., & Hirschmann, M. M. (2012). Calibration of

infrared spectroscopy by elastic recoil detection analysis of H in synthetic

olivine. Chemical Geology, 334, 92-98.

Yabe, K., & Hiraga, T. (2020). Grain-boundary diffusion creep of olivine: 2. Solidus

effects and consequences for the viscosity of the oceanic upper mantle. Journal

of Geophysical Research: Solid Earth.

Yabe, K., Sueyoshi, K., & Hiraga, T. (2020). Grain-boundary diffusion creep of olivine:

1. Experiments at 1 atm. Journal of Geophysical Research: Solid Earth.

Yamauchi, H., & Takei, Y. (2016). Polycrystal anelasticity at near-solidus

temperatures. Journal of Geophysical Research: Solid Earth, 121(11), 77907820.

Yasuda, A. (2014). A new technique using FT-IR micro-reflectance spectroscopy for

measurement of water concentrations in melt inclusions. Earth, Planets and

Space, 66(1), 34.

Yoshida, H., Okada, K., Ikuhara, Y., & Sakuma, T. (1997). Improvement of hightemperature creep resistance in fine-grained Al2O3 by Zr4+ segregation in grain

boundaries. Philosophical magazine letters, 76(1), 9-14.

Yoshida, H., Yamamoto, T., Ikuhara, Y., & Sakuma, T. (2002). A change in the chemical

bonding strength and high-temperature creep resistance in Al2O3 with

lanthanoid oxide doping. Philosophical Magazine A, 82(3), 511-525.

Zhao, Y. H., Ginsberg, S. B., & Kohlstedt, D. L. (2004). Solubility of hydrogen in

olivine: dependence on temperature and iron content. Contributions to

Mineralogy and Petrology, 147(2), 155-161.

Zhao, Y. H., Zimmerman, M. E., & Kohlstedt, D. L. (2009). Effect of iron content on

the creep behavior of olivine: 1. Anhydrous conditions. Earth and Planetary

Science Letters, 287(1-2), 229-240.

Zhao, N., Hirth, G., Cooper, R. F., Kruckenberg, S. C., & Cukjati, J. (2019). Low

viscosity of mantle rocks linked to phase boundary sliding. Earth and Planetary

Science Letters, 517, 83-94.

Zhong, S., & Watts, A. B. (2013). Lithospheric deformation induced by loading of the

122

Hawaiian Islands and its implications for mantle rheology. Journal of

Geophysical Research: Solid Earth, 118(11), 6025-6048.

Zimmerman, M. E., & Kohlstedt, D. L. (2004). Rheological properties of partially

molten lherzolite. Journal of Petrology, 45(2), 275-298.

123

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る