リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Crustal evolution of asteroid Vesta as inferred from silica polymorphs in eucrites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Crustal evolution of asteroid Vesta as inferred from silica polymorphs in eucrites

大野, 遼 東京大学 DOI:10.15083/0002004727

2022.06.22

概要

Eucrites are a basaltic achondrite group and belongs to a HED (Howardite-Eucrite-Diogenite) clan. The HED clan is believed to come from asteroid 4 Vesta (McCord et al., 1970; Consolmagno and Drake, 1977; Binzel and Xu, 1993) and eucrites are considered to have formed in the Vesta’s crust. Most eucrites are brecciated and roughly divided into two subgroups, cumulate and non-cumulate eucrites. Cumulate eucrites are inferred to have formed by crystal fractionation from magma ocean and experienced a slow cooling process. Non-cumulate eucrites have experienced various degrees of thermal metamorphism and their thermal metamorphic levels are classified into 6 types based on their textures and mineralogy (Takeda and Graham, 1991). Various reports proposed the causes of thermal metamorphism, for example, burial by lava flow, intrusion, impact or their mixing (Takeda and Graham, 1991; Yamaguchi et al., 2009). However, most mineralogical studies on eucrites have employed only pyroxene and plagioclase, and so their information are limited to high temperatures over 500 °C. Here, I newly focused on silica minerals in eucrites to understand thermal history including a low temperature condition and evolution processes of the eucritic crust.

Silica minerals have many polymorphs (quartz, cristobalite, tridymite, coesite, etc.) including metastable phases under a vast range of temperature and pressure. In particular, tridymite has ~10 polymorphs and its transformation processes are highly complex (Kihara, 2001). In general, two types of tridymite polymorphs are found at room temperature: monoclinic and pseudo-orthorhombic crystal structure. Upon cooling both monoclinic and pseudo-orthorhombic tridymites are reported to transform from hexagonal tridymite via orthorhombic tridymite below 400 °C (Graetsch and Flörke, 1991; Nukui et al., 1978). Thus, silica minerals are considered as good indicators to estimate thermal histories from high temperature to low temperature.

In this study, I have studied silica minerals in 3 cumulate and 9 non-cumulate eucrites. All cumulate eucrites contained monoclinic tridymite, which indicates that monoclinic tridymite formed by a slow cooling process. On the other hand, pseudo-orthorhombic tridymite lamellae were found within monoclinic tridymite in Moama. The finding of the lamellar texture of tridymite is the first report in nature. Furthermore, I showed that the presence of pseudo-orthorhombic tridymite probably required faster cooling than the occurrence of monoclinic tridymite. Therefore, this study concluded that co-existence of monoclinic and pseudo-orthorhombic tridymite was formed by an intermediate cooling rate to allow incomplete transformation of tridymite. However, this result is different from the slower cooling rates of Moama (≳0.0004 °C/yr) than that of Moore County (>0.3 °C/yr, after the shock event) at high temperatures (>500 °C) estimated from compositional profiles of pyroxene exsolution lamellae. The difference of the cooling rates may reflect their geological settings such as formation places with different depths. Y 980433, which contains monoclinic tridymite as silica minerals, cooled slowly at low temperature, as did Moore County. Moore County was finally present at the deep area to obtain a slow cooling rate which allowed crystallization of monoclinic tridymite without excavation to the surface or burial due to debris from other places after excavation. On the other hand, quartz in Y 980433 could be a local product transformed from monoclinic tridymite by a shock event. Therefore, this study proposes that silica minerals in meteorites record thermal histories at low temperatures and shock events.

Monoclinic tridymite is also found in basaltic clasts that are classified into the high metamorphic type (types 5 and 6). On the other hand, cristobalite exists in the low metamorphic type (below type 4) eucrites. The basaltic clast in Camel Donga, which is classified into type 4, does not contain cristobalite but pseudo-orthorhombic tridymite with quartz unlike the other basaltic clasts of type 4. These observations indicate that there is an obvious relationship between thermal metamorphic degrees and assemblage of silica minerals in basaltic clasts of non-cumulate eucrites.

In this study, I performed isothermal heating of eucrite and cooling experiments of eucritic melt to clarify the transformation process of monoclinic tridymite and behavior of silica minerals in eucritic magma, respectively. According to the results of the cooling experiments, cristobalite is an initial silica phase crystallized from eucritic magma and transforms to quartz at the cooling rate between 0.1 and 1 °C/hr. Based on the cooling experiments and observations of non-cumulate eucrites, I suggest that combination of silica minerals varies depending on cooling rates. For example, if the samples are cooled more slowly, the more cristobalite transforms to quartz or tridymite. In other words, the presence of cristobalite and quartz indicates rapider cooling compared with pseudo-orthorhombic and/or monoclinic tridymite. Therefore, I propose that combination of silica minerals is helpful to constrain the cooling rate of basaltic clasts in non-cumulate eucrites in addition to pyroxene thermometer.

Isothermal heating experiments were performed using Yamato (Y) 980433 cumulate eucrite containing monoclinic tridymite as a starting material. The experiments were performed at 500 °C for 168 hrs and 800 °C for 96 hrs. The experiment at 500 °C for 168 hrs indicated that monoclinic tridymite hardly transformed to other phases at low temperature by short time phenomena such as brecciation. Therefore, I suggest that we can use silica minerals to distinguish whether brecciated eucrites are monomict or polymict by combining with pyroxene chemical compositions in basaltic clasts. The experiment at 800 °C for 96 hrs infers that monoclinic tridymite can partly transform to quartz with characteristic cracks. This result indicates that aggregates of monoclinic tridymite and quartz with characteristic cracks in non-cumulate eucrites are formed by partial transformation of monoclinic tridymite to quartz by reheating after the formation of monoclinic tridymite

From the above results and discussion, it is suggested that basaltic clasts in non-cumulate eucrites have experienced two-stage thermal metamorphism in the eucritic crust. The first metamorphic event was resulted from burial under lava produced by successive eruption, which formed Agoult at the deep crust (Iizuka et al., 2019). This is consistent with my observation in which Agoult contains only monoclinic tridymite indicating a slow cooling process equivalent to cumulate eucrites. The second metamorphic event was caused by igneous intrusions. The intrusions heated the deep eucritic crust and induced transformation from monoclinic tridymite to quartz.

参考文献

Barrat J. A., Blichert-Toft J., Gillet P., and Keller F. 2000. The differentiation of eucrites: The role of in situ crystallization. Meteoritics & Planetary Science 35:1087–1100.

Barrat J. A., Marty B., Grimbertg A., Wieler R., and Heber V. S. 2010. Noble gases in the Martian meteorite Northwest Africa 2737: A new chassignite signature. Meteoritics & Planetary Science 41:739–748.

Barrat J. A., Yamaguchi A., Bunch T. E., Bohn M., Bollinger C., and Ceuleneer G. 2011. Possible fluidrock interactions on differentiated asteroids recorded in eucritic meteorites. Geochimica et Cosmochimica Acta 75:3839–3852.

Bettermann P., and Liebau F. 1975. The transformation of amorphous silica to crystalline silica under hydrothermal conditions. Contributions to Mineralogy and Petrology 53:25–36.

Binzel R. P., and Xu S. 1993. Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites. Science 260:186–191.

Blichert-Toft J., Boyet M., Télouk P., and Albarède F. 2002. 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body. Earth and Planetary Science Letters 204:167–181.

Bogard D. D. 1995. Impact ages of meteorites : A synthesis. Meteoritics 244–268.

Bogard D. D., and Garrison D. H. 2003. 39Ar-40Ar ages of eucrites and thermal history of asteroid 4 Vesta. Meteoritics and Planetary Science 38:669–710.

Boyet M., Carlson R. W., and Horan M. 2010. Old Sm-Nd ages for cumulate eucrites and redetermination of the solar system initial 146Sm/144Sm ratio. Earth and Planetary Science Letters 291:172–181. http://dx.doi.org/10.1016/j.epsl.2010.01.010.

Bruhns P., and Fischer R. X. 2000. Crystallization of cristobalite and tridymite in the presence of vanadium. European Journal of Mineralogy 12:615–624.

Bukovanská M., Ireland T. R., and Janicke J. 1997. Zircons and baddeleyites from differentiated meteorites — basaltic achondrites: ion probe dating and REE systematics. Journal of Geosciences (Prague) 42:207.

Cassata W. S. and Renne P. R. 2013. Systematic variations of argon diffusion in feldspars and implications for ther- mochronometry. Geochimica et Cosmochimica Acta 112, 251–287.

Clenet H., Jutzi M., Barrat J. A., Asphaug E. I., Benz W., and Gillet P. 2014. A deep crust-mantle boundary in the asteroid 4 Vesta. Nature 511:303–306. http://dx.doi.org/10.1038/nature13499.

Consolmagno G. J., and Drake M. J. 1977. Composition and evolution of the eucrite parent body: evidence from rare earth elements. Geochimica et Cosmochimica Acta 41:1271–1282.

Damby D. E., Llewellin E. W., Horwell C. J., Williamson B. J., Najorka J., Cressey G., and Carpenter M. 2014. The α-β Phase transition in volcanic cristobalite. Journal of Applied Crystallography 47:1205–1215.

Delaney J. S., and Prinz M. 1984. The polymict eucrites. Proceedings of the fifteenth Lunar and Planetary Science conference 89:C251–C288.

Dollase, W.A. and Buerger, M.J. 1966. Crystal structure of some meteoritic tridymites. Abstracts with Programs of Geological Society of America Annual Meeting, the Geological Society of America, Boulder, CO, 54-55.

Duke M. B., and Silver L. T. 1967. Petrology of eucrites, howardites and mesosiderites. Geochimica et Cosmochimica Acta 31:1637–1665.

Flörke O. W. 1956. Über das Einstoffsystem SiO2. Die Naturwissenschaften 43:419–420. http://link.springer.com/10.1007/BF00626540.

Flörke, O. W. 1967. Die Modifikationen des SiO2. Fortschritte der Mineralogie 44:181-230.

Fritz J., Greshake A., and Fernandes V. A. 2017. Revising the shock classification of meteorites. Meteoritics and Planetary Science 52:1216–1232.

Fujino K., Naohara H. and Momoi H. 1990. Direct determina- tion of cation diffusion coefficientsin pyroxenes, EOS 71, 943

Ghiorso M. S. and Sack R. O. 1995. Chemical Mass Transfer in Magmatic Processes. IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of LiquidSolid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology 119:197-212

Graetsch H. and Flörke O. W. 1991. X-ray powder diffraction patterns and phase relationship of tridymite modification. Zeitschrift für Kristallographie 195:31-48.

Goltrant O., Cordier P., and Doukhan J. C. 1991. Planar deformation features in shocked quartz; a transmission electron microscopy investigation. Earth and Planetary Science Letters 106:103–115. El Goresy A., Dera P., Sharp T. G., Prewitt C. T., Chen M., Dubrovinsky L., Wopenka B., Boctor N. Z., and Hemley R. J. 2008. Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy 20:523–528.

Graetsch H. 2000. Two forms of aluminium phosphate tridymite from X-ray powder data. Acta Crystallographica Section C: Crystal Structure Communications 56:401–403.

Greenwood R. C., Franchi I. A., Jambon A., and Buchanan P. C. 2005. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435:916–918.

Haba M. K., Wotzlaw J. F., Lai Y. J., Yamaguchi A., and Schönbächler M. 2019. Mesosiderite formation on asteroid 4 Vesta by a hit-and-run collision. Nature Geoscience 12:510–515.

Hamet J., Nakamura N., Unruh D. M., and Tatsumoto M. 1978. Origin and history of the adcumulate eucrite, Moama as inferred from REE abundances, Sm-Nd and U-Pb systematics. Lunar and Planetary Science Conference, Proceedings. Volume 1

Heaney P. J. 1994. Structure and chemistry of the low pressure silica polymorphs. Silica: Physical behavior, geochemistry and materials applications, edited by Prewitt C. T., Prewitt C. T., and Gibbs G. V. Washington D.C.: Mineralogical Society of America. pp. 1–40.

Hirose T., Kihara K., Okuno M., Fujinami S., and Shinoda K. 2005. X-ray, DTA and Raman studies of monoclinic tridymite and its higher temperature orthorhombic modification with varying temperature. Journal of Mineralogical and Petrological Sciences 100:55–69.

Hoffmann W., and Laves F. 1964. Zur Polytypie und Polytropie von Tridymit. Die Naturwissenschaften 51:335–335. http://link.springer.com/10.1007/BF00625079.

Hoffmann W. 1967. Gitterkonstanten und Raumgruppe von Tridymit bei 20°C. Die Naturwissenschaften 54:114–114. http://link.springer.com/10.1007/BF00640573.

Hoffmann, W., Kockmeyer, M., Löns, J., Vach, Chr. 1983. The transformation of monoclinic lowtridymite MC to a phase with an incommensurate superstructure. Fortschritte der Mineralogie 61:96-98 (abstract).

Iizuka T., Yamaguchi A., Haba M. K., Amelin Y., Holden P., Zink S., Huyskens M. H., and Ireland T. R. 2015. Timing of global crustal metamorphism on Vesta as revealed by high-precision U-Pb dating and trace element chemistry of eucrite zircon. Earth and Planetary Science Letters 409:182–192. http://dx.doi.org/10.1016/j.epsl.2014.10.055.

Iizuka T., Jourdan F., Yamaguchi A., Koefoed P., Hibiya Y., Ito K. T. M., and Amelin Y. 2019. The geologic history of Vesta inferred from combined 207Pb/206Pb and 40Ar/39Ar chronology of basaltic eucrites. Geochimica et Cosmochimica Acta 267:275–299. https://doi.org/10.1016/j.gca.2019.09.034.

Ikeda Y., and Takeda H. 1985. A model for the origin of basaltic achondrites based on the Yamato 7308 Howardite. Journal of Geophysical Research 90:C649.

Imamura M., and Matsumoto T. 1980. Change of X-ray diffraction pattern of tridymite by heating and cooling (in Japanese). Kobutsu-gaku-zasshi 14:387–396.

Ireland T. R., and Bukovanská M. 1992. Zircons from the Stannern eucrite. Meteoritics 27:237.

Kagami S., Haba M. K., Yokoyama T., Usui T., and Greenwood R. C. 2019. Geochemistry and Sm-Nd chronology of a Stannern-group eucrite, Northwest Africa 7188. Meteoritics and Planetary Science 54:2710–2728.

Kawai K., Matsumoto T., Kihara K., and Sakurai K. 1978. The first finding of monoclinic tridymite in terrestrial volcanic rocks. Mineralogical Journal 9:231–235.

Kihara K. 2001. Crystal structures of silica polymorphs and their phase transitions (Japanese). Journal of the crystallographic society of Japan. 43:218-226.

Kimura M., Weisberg M. K., Lin Y., Suzuki A., Ohtani E., and Okazaki R. 2005. Thermal history of the enstatite chondrites from silica polymorphs. Meteoritics and Planetary Science 40:855–868.

Kitts K., and Lodders K. 1998. Survey and evaluation of eucrite bulk compositions. Meteoritics & Planetary Science 33:A197–A213.

Klein C., and Hurlbut C. S., Jr. 1993. Manual of Mineralogy, 21st ed. (Wiley, New York), 681pp.

Konnert J. H., and Appleman D. E. 1978. The crystal structure of low tridymite. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 34:391–403. http://scripts.iucr.org/cgibin/paper?S0567740878003210.

Kubo T., Kimura M., Kato T., Nishi M., Tominaga A., Kikegawa T., and Funakoshi K. I. 2010. Plagioclase breakdown as an indicator for shock conditions of meteorites. Nature Geoscience 3:41–45. http://dx.doi.org/10.1038/ngeo704.

Lafuente B., Downs R. T., Yang H., and Stone N. 2015. The power of databases: the RRUFF project. In: Highlights in Mineralogical Crystallography, T. Armbruster and R. M. Danisi, eds., pp 1-30.

Lakshtanov D. L., Sinogeikin S.V., Litasov K.D., Prakapenka V.B., Hellwig H., Wang J., Sanches-Valle C., Perrillat J.P.,Chen B., Somayazulu M., Li J., Ohtani E., Bass J.D. 2007. The post-stishovite phase transition in hydrous alumina-bearing SiO 2 in the lower mantle of the earth. Proceedings of the National Academy of Sciences of the United States of America 104:13588–13590.

Leroux H., and Cordier P. 2006. Magmatic cristobalite and quartz in the NWA 856 Martian meteorite. Meteoritics and Planetary Science 41:913–923.

Linsaley D. H. 1983. Pyroxene thermometryl. American Mineralogist 68:477–493.

Lorenz C., Brandstäetter F., Starkey N. A., and Franchi I. A. 2016. Secondary alteration of a pyroxenite from the Dhofar 1302 Howardite: A possible record of water metasomatism. Lunar and Planetary Science Conference XLVII #1827.

Lovering J. F. 1975. The Moama eucrite - A pyroxene-plagioclase adcumulate. Meteoritics 10:101–114.

Madden G. I., and Van Vlack L. H. 1967. Transformation of Quartz to Tridymite in the Presence of Binary Silicate Liquids. Journal of the American Ceramic Society 50:414–418.

Mandler B. E., and Elkins-Tanton L. T. 2013. The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics and Planetary Science 48:2333–2349.

Matsuhisa Y., Goldsmith J. R., and Clayton R. N. 1978. Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar. Geochimica et Cosmochimica Acta 42:173–182.

Mayne R. G., McSween H. Y., McCoy T. J., and Gale A. 2009. Petrology of the unbrecciated eucrites. Geochimica et Cosmochimica Acta 73:794–819. http://dx.doi.org/10.1016/j.gca.2008.10.035.

Mccord T. B., Adams J. B., and Jonhson T. V. 1970. Asteroid Vesta: Spectral Reflectivity and Compositional Implications. Science 168:1445–1447.

McCoy T. J., Dickinson T. L., and Lofgren G. E. 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics and Planetary Science 34:735–746.

McSween H. Y., Mittlefehldt D. W., Beck A. W., Mayne R. G., and McCoy T. J. 2011. HED meteorites and their relationship to the geology of Vesta and the Dawn mission. Space Science Reviews 163:141–174.

McSween H. Y., Binzel R. P., De Sanctis M. C., Ammannito E., Prettyman T. H., Beck A. W., Reddy V., Le Corre L., Gaffey M. J., Raymond C. A., and Russell C. T., and the Dawn Science Team. 2013. Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics and Planetary Science 48:2090–2104. Mittlefehldt D. W. 1994. The genesis of diogenites and HED parent body petrogenesis. Geochimica et Cosmochimica Acta 58:1537–1552.

Mittlefehldt D. W., and Lindstrom M. M. 1997. Magnesian basalt clasts from the EET 92014 and Kapoeta howardites and a discussion of alleged primary magnesian HED basalts. Geochimica et Cosmochimica Acta 61:453–462.

Mittlefehldt D. W., McCoy T. J., Goodrich C. A., and Kracher A. 1998. Chapter 4. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials, edited by Papike J. J. Reviews in Mineralogy, Mineralogical Society of America, Wash-ington, D.C. pp. 4.1-4.196 http://www.degruyter.com/view/books/9781501508806/9781501508806-019/9781501508806-019.xml.

Mittlefehldt D. W. 2015. Asteroid (4) Vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chemie der Erde - Geochemistry 75:155–183. http://dx.doi.org/10.1016/j.chemer.2014.08.002.

Miura Y. N., Nagao K., Sugiura N., Fujitani T. and Warren P. H. 1998. Noble gases, 81Kr-Kr exposure ages and 244Pu-Xe ages of sic eucrites, Béréba, Binda, Camel Donga, Juvinas, Millbillillie, and Stannern. Geochimica et Cosmochimica Acta 62:2369-2387.

Miyahara M., Ohtani E., Yamaguchi A., Ozawa S., Sakai T., and Hirao N. 2014. Discovery of coesite and stishovite in eucrite. Proceedings of the National Academy of Sciences of the United States of America 111:10939–10942.

Miyamoto M., and Mikouchi T. 1996. Platinum catalytic effect on oxygen fugacity of CO2-H2 gas mixtures measured with ZrO2 oxygen sensor at 105 Pa from 1300 to 700 °C. Geochimica et Cosmochimica Acta, 60, 2917-2920.

Miyamoto M., and Takeda H. 1977. Evaluation of a crust model of eucrites from the width of exsolved pyroxene. Geochemical Journal 11:161–169.

Miyamoto M., and Takeda H. 1994. Evidence for excavation of deep crustal material of a Vesta-like body from Ca compositional gradients in pyroxene. Earth and Planetary Science Letters 122:343–349.

Nakamura N., Tatsumoto M., and Unruh D. M. 1976. Rb-Sr, Sm-Nd, and U-Th-Pb systematics of the Pasamonte meteorite. Meteoritics 11:339–340.

Newsom H. E. 1985. Molybdenum in eucrites: Evidence for a metal core in the eucrite parent body. Journal of Geophysical Research 90:C613.

Nukui A., Nakazawa H., and Akao M. 1978. Thermal changes in monoclinic tridymite. American Mineralogist 63:1252–1259.

Nukui A., and Nakazawa H. 1980. Polymorphism in tridymite. Kobutsu-gaku-zasshi (in Japanese) 14:364–386.

Nyquist L. E., Takeda H., Bansal B. M., Shih C. Y., Wiesmann H., and Wooden J. L. 1986. Rb-Sr and Sm-Nd internal isochron ages of a subophitic basalt clast and a matrix sample from the Y75011 eucrite. Journal of Geophysical Research 91:8137–8150.

Nyquist L. E., Takeda H., Bogard D. D., Shih C. Y., and Wiesmann H. 1996. Crystallization, recrystallization, and impact metamorphic ages of monomict eucrite Y792510. Lunar and Planetary Science XXVII 969–970.

Nyquist L. E., Shih C.-Y., and Young Y. D. 2011. Sm-Nd and Initial 87Sr/86Sr Isotopic Systematics of Asuka 881394 and Cumulate eucrites Yamato 980318/433 Compared. The 34th Symposium on Antarctic meteorites.

Palme H., and Rammensee W. 1982. The significance of W in planetary differentiation processesEvidence from new data on eucrites. Lunar and Planetary Science Conference Proceedings 12:949–964.

Papike J. J. 1998. Chapter 7. Comparative planetary mineralogy: chemistry of melt-derived py-roxene, feldspar, and olivine. In Planetary Materials, edited by Papike J. J. Reviews in Mineralogy, Mineralogical Society of America, Wash-ington, D.C. pp. 7.1-7.12.

Podosek F. A., and Huneke J. C. 1973. Argon 4o-argon 39 chronology of four calcium-rich achondrites. Geochimica et Cosmochimica Acta 37:667–684.

Righter K., and Drake M. J. 1996. Core formation in Earth’s moon, Mars, and Vesta. Icarus 124:513–529.

Righter K., and Drake M. J. 1997. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteoritics and Planetary Science 32:929–944.

Roszjar J., Moser D. E., Hyde B. C., Chanmuang C. and Tait K. 2017. Microstructural Geochronology: Planetary Records Down to Atom Scale, pp. 113-135.

Sarafian A. R., Roden M. F., and Patiño-Douce A. E. 2013. The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics and Planetary Science 48:2135–2154.

Schenk P., O'Brien D. P., Marchi S., Gaskell R., Preusker F., Roatsch T., Jaumann R., Buczkowski D., McCord T., McSween H. Y., Williams D., Yingst A., Raymond C., and Russell C. T. 2012. The geologically recent giant impact basins at Vesta’s south pole. Science 336:694–697.

Schnurre S. M., Gröbner J., and Schmid-Fetzer R. 2004. Thermodynamics and phase stability in the Si-O system. Journal of Non-Crystalline Solids 336:1–25.

Schwartz J. M., and McCallum I. S. 2005. Comparative study of equilibrated and unequilibrated eucrites: Subsolidus thermal histories of Haraiya and Pasamonte. American Mineralogist 90:1871–1886.

Scott E. R. D., Greenwood R. C., Franchi I. A., and Sanders I. S. 2009. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta 73:5835–5853.

Seddio S. M., Korotev R. L., Jolliff B. L., and Wang A. 2015. Silica polymorphs in lunar granite: Implications for granite petrogenesis on the Moon. American Mineralogist 100:1533–1543.

Shankar N., Swisher III C. C., Turrin B., and Herzog G. F. 2008. 40Ar/39Ar-CO2 laser incremental heating release spectra for the Pasamonte eucrite and martian meteorites ALHA 77005, shergotty and Y000749. Lunar and Planetary Science XXXIX #1924.

Shearer C. K., Fowler G. W., and Papike J. J. 1997. Petrogenetic models for magmatism on the eucrite parent body: Evidence from orthopyroxene in diogenites. Meteoritics & Planetary Science 32:877–889.

Stolper E. 1977. Experimental petrology of eucritic meteorites. Geochimica et Cosmochimica Acta 41:587–611.

Suzuki T., and Arahori T. 1981. Effects of Al2O3 on transformation of tridymite to cristobalite in silica refractories (in Japanese). Yogyo-Kyokai-Shi 89:637–642.

Takahashi K., and Masuda A. 1990. Young ages of two diogenites and their genetic implications. Nature 343:540–542.

Takeda H., and Mori H. 1985. The diogenite-eucrite links and the crystallization history of a crust of their parent body. Journal of Geophysical Research 90:C636.

Takeda H., and Graham A. L. 1991. Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust. Meteoritics 26:129–134.

Takeda H., Mori H., and Bogard D. D. 1994. Mineralogy and 39Ar-40Ar age of an old pristine basalt: Thermal history of the HED parent body. Earth and planetary science letters 122:183–194.

Takeda H. 1997. Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta. 1Meteoritics & Planetary Science 32:841–853.

Takedai H., Mori H., Delaney J. S., Prinz M., Harlow E., and Ishii T. 1983. Comparison of Antarctic and non-Antarctic HED (Howardites-Eucrites-Diogenites) achondrites. Memories of National Institute of Polar Research. Special Issue 30:181–205.

Takeda H., Yamaguchi A., Hiroi T., Nyquist L. E., Shih C. Y., Ohtake M., Karouji Y., and Kobayashi S. 2011. Comparisons of mineralogy between cumulate eucrites and lunar meteorites possibly from the farside anorthitic crust. 42nd Lunar and Planetary Science Conference #1632.

Tera F., Carlson R. W., and Boctor N. Z. 1997. Radiometric ages of basaltic achondrites and their relation to the early history of the Solar System. Geochimica et Cosmochimica Acta 61:1713–1731.

Treiman A. H., Lanzirotti A., and Xirouchakis D. 2004. Ancient water on asteroid 4 Vesta: Evidence from a quartz veinlet in the Serra de Magé eucrite meteorite. Earth and Planetary Science Letters 219:189–199.

Unruh D. M., Nakamura N., and Tatsumoto M. 1977. History of the pasamonte achondrite: relative susceptibility of the Sm-Nd, Rb-Sr, and U-Pb systems to metamorphic events. Earth and Planetary Science Letters 37:1–12.

Warren P. H. 1997. Magnesium oxide-iron oxide mass balance constraints and a more detailed model for the relationship between eucrites and diogenites. Meteoritics and Planetary Science 32:945–963.

Warren P. H., Isa J., Ebihara M., Yamaguchi A., and Baecker B. 2017. Secondary-volatiles linked metallic iron in eucrites: The dual-origin metals of Camel Donga. Meteoritics and Planetary Science 52:737–761.

Warren P. H., Rubin A. E., Isa J., Gessler N., Ahn I., and Choi B. G. 2014. Northwest Africa 5738: Multistage fluid-driven secondary alteration in an extraordinarily evolved eucrite. Geochimica et Cosmochimica Acta 141:199–227. http://dx.doi.org/10.1016/j.gca.2014.06.008.

Wiechert U. H., Halliday A. N., Palme H., and Rumble D. 2004. Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth and Planetary Science Letters 221:373–382.

Yamaguchi A., Takeda H., Bogard D. D., and Garrison D. 1994. Textural variations and impact history of the Millbillillie eucrite. Meteoritics 29:237–245.

Yamaguchi A., Taylor G. J., and Keil K. 1996. Global crustal metamorphism of the eucrite parent body. Icarus 124:97–112.

Yamaguchi A., Taylor J. G., and Keil K. 1997. Metamorphic history of the eucritic crust of 4 Vesta. Journal of Geophysical Research 102:13381–13386.

Yamaguchi A., Taylor G.J., Keil K. Floss C., Crozaz G., Nyquist L.E., Bogard D.D., Garrison D.H., Reese Y.D., Weismann H., Shih C.-Y. 2001. Post-crystallization reheating and partial melting of eucrite EET90020 by impact into the hot crust of asteroid 4Vesta ∼4.50 Ga ago. Geochimica et Cosmochimica Acta 65:3577–3599.

Yamaguchi A., Barrat J. A., Greenwood R. C., Shirai N., Okamoto C., Setoyanagi T., Ebihara M., Franchi I. A., and Bohn M. 2009a. Crustal partial melting on Vesta: Evidence from highly metamorphosed eucrites. Geochimica et Cosmochimica Acta 73:7162–7182.

Yamaguchi A., Barrat J. A., Ebihara M., and Shirai N. 2009b. Y980433 cumulate eucrite: Evidence for high temperature metamorphism. Antarctic meteorites 32:77–78.

Yamaguchi A., Barrat J. A., Ito M., and Bohn M. 2011. Posteucritic magmatism on Vesta: Evidence from the petrology and thermal history of diogenites. Journal of Geophysical Research E: Planets 116.

Zolensky M. E., Weisberg M. K., Buchanan P. C., and Mittlefehldt D. W. 1996. Mineralogy of carbonaceous chondrite clasts in HED achondrites and the Moon. Meteoritics and Planetary Science 31:518–537.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る