リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Absorbents for Removal of Pollutants from Hydrosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Absorbents for Removal of Pollutants from Hydrosphere

李, 爽 北海道大学

2022.03.24

概要

Alginate, starch, and graphite porous carbon are well-known as an absorbent for removing toxic substances in the hydrosphere. In this study, a porous carbon electrode composited with bio-absorbents was investigated with the electrochemical method. The doping capacity of bio-absorbent doped porous carbon electrodes was evaluated by SEM, XRD, Raman Spectroscopy, and 3D laser microscopy. Doping capacity of the alginate/porous carbon electrode was e determined by the concentration of alginate solution whether gel or sol formation. It was found that the sorption efficiencies of sol and gel- alginate doped porous carbon were almost comparable (approximately 15% to 20%) in case of the absence of electrochemical potential. On the other hand, the sorption efficiency of 1 cm2 sol- alginate doped porous carbon behaved approximately 100% in 60 min at -0.5 V of potential.

Doping capacity of the amylose/porous carbon electrode in 120 min was evaluated and figured out an optimistic amylose concentration. To evaluate absorption ability concentration dependence of heavy metals from 10 mg/L to 250 mg/L at a negative charge was examined. It was found that the heavy metals could be completely absorbed in a low initial concentration. For a practical application, this system was applied to absorb mixed heavy metal ions and arsenic compounds in the water. As a result, the concentration of heavy metal ions was decreased and the iron ions expressed the most absorbed in the 120 min absorption process. The new absorption isotherm was discussed for the new absorbent to figure out the absorption rate. The results of this research show high potential for toxic substances removal from discharged water. It was inferred that the electrochemical driving force could be too strong to show the ion size effect in the solution. But this hypothesis does not have evidence so far. However, this study succeeded to show that the electrochemical driving force can be improved the ability of absorbent.

この論文で使われている画像

参考文献

[1] X. Meng, G. P. Korfiatis, C. Christodoulatos, and S. Bang, “Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system,” Water Res., vol. 35, no. 12, pp. 2805–2810, 2001, doi: 10.1016/S0043-1354(01)00007-0.

[2] I. D. Urango-Cárdenas, S. Burgos-Núñez, L. Á. Ospina Herrera, G. Enamorado-Montes, and J. L. Marrugo-Negrete, “Determination of arsenic chemical species in rice grains using high-performance liquid chromatography coupled to hydride generator with atomic fluorescence detector (HPLC-HG- AFS),” MethodsX, vol. 8, 2021, doi: 10.1016/j.mex.2021.101281.

[3] M. E. Huq et al., “Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization,” J. Environ. Manage., vol. 262, no. January 2019, p. 110318, 2020, doi: 10.1016/j.jenvman.2020.110318.

[4] N. Sohel et al., “Arsenic in drinking water and adult mortality: A population- based cohort study in rural Bangladesh,” Epidemiology, vol. 20, no. 6, pp. 824– 830, 2009, doi: 10.1097/EDE.0b013e3181bb56ec.

[5] M. Argos et al., “Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study,” Lancet, vol. 376, no. 9737, pp. 252–258, 2010, doi: 10.1016/S0140-6736(10)60481-3.

[6] A. A. Meharg and M. Rahman, “Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption,” Environ. Sci. Technol., vol. 37, no. 2, pp. 229–234, 2003, doi: 10.1021/es0259842.

[7] P. L. Smedley and D. G. Kinniburgh, “A review of the source, behaviour and distribution of arsenic in natural waters,” Appl. Geochemistry, vol. 17, no. 5, pp. 517–568, 2002, doi: 10.1016/S0883-2927(02)00018-5.

[8] M. Banerjee et al., “High arsenic in rice is associated with elevated genotoxic effects in humans,” Sci. Rep., vol. 3, pp. 1–8, 2013, doi: 10.1038/srep02195.

[9] M. O. Arnous and M. A. A. Hassan, “Heavy metals risk assessment in water and bottom sediments of the eastern part of Lake Manzala, Egypt, based on remote sensing and GIS,” Arab. J. Geosci., vol. 8, no. 10, pp. 7899–7918, 2015, doi: 10.1007/s12517-014-1763-6.

[10] E. Byeon, H.-M. Kang, C. Yoon, and J.-S. Lee, “Toxicity mechanisms of arsenic compounds in aquatic organisms,” Aquat. Toxicol., vol. 237, no. May, p. 105901, 2021, doi: 10.1016/j.aquatox.2021.105901.

[11] M. Azizur Rahman and H. Hasegawa, “Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation,” Appl. Geochemistry, vol. 27, no. 1, pp. 304–314, 2012, doi: 10.1016/j.apgeochem.2011.09.020.

[12] Y. M. Zheng, S. W. Zou, K. G. N. Nanayakkara, T. Matsuura, and J. P. Chen, “Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane,” J. Memb. Sci., vol. 374, no. 1–2, pp. 1–11, 2011, doi: 10.1016/j.memsci.2011.02.034.

[13] A. Abejón, A. Garea, and A. Irabien, “Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption,” Sep. Purif. Technol., vol. 144, pp. 46–53, 2015, doi: 10.1016/j.seppur.2015.02.017.

[14] F. Battaglia-Brunet, C. Crouzet, A. Burnol, S. Coulon, D. Morin, and C. Joulian, “Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor,” Water Res., vol. 46, no. 12, pp. 3923–3933, 2012, doi: 10.1016/j.watres.2012.04.035.

[15] A. B. M. R. Islam, J. P. Maity, J. Bundschuh, C. Y. Chen, B. K. Bhowmik, and K. Tazaki, “Arsenic mineral dissolution and possible mobilization in mineral- microbe-groundwater environment,” J. Hazard. Mater., vol. 262, pp. 989–996, 2013, doi: 10.1016/j.jhazmat.2012.07.022.

[16] M. Bissen, M. M. Vieillard-Baron, A. J. Schindelin, and F. H. Frimmel, “TiO2- catalyzed photooxidation of arsenite to arsenate in aqueous samples,” Chemosphere, vol. 44, no. 4, pp. 751–757, 2001, doi: 10.1016/S0045-6535(00)00489-6.

[17] C. M. Babu et al., “Characterization of reduced graphene oxide supported mesoporous Fe2O3/TiO2 nanoparticles and adsorption of As(III) and As(V) from potable water,” J. Taiwan Inst. Chem. Eng., vol. 62, pp. 199–208, 2016, doi: 10.1016/j.jtice.2016.02.005.

[18] I. Ali and V. K. Gupta, “Advances in water treatment by adsorption technology,” Nat. Protoc., vol. 1, no. 6, pp. 2661–2667, 2007, doi: 10.1038/nprot.2006.370.

[19] L. Beesley and M. Marmiroli, “The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar,” Environ. Pollut., vol. 159, no. 2, pp. 474–480, 2011, doi: 10.1016/j.envpol.2010.10.016.

[20] R. Amen et al., “A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions,” Chem. Eng. J., vol. 396, no. April, 2020, doi: 10.1016/j.cej.2020.125195.

[21] H. Li, X. Dong, E. B. da Silva, L. M. de Oliveira, Y. Chen, and L. Q. Ma, “Mechanisms of metal sorption by biochars: Biochar characteristics and modifications,” Chemosphere, vol. 178, pp. 466–478, 2017, doi: 10.1016/j.chemosphere.2017.03.072.

[22] B. Zhi et al., “Ordered mesoporous MnO2 as a synergetic adsorbent for effective arsenic(iii) removal,” J. Mater. Chem. A, vol. 2, no. 7, pp. 2374–2382, 2014, doi: 10.1039/c3ta13790b.

[23] N. Aramesh, A. R. Bagheri, and M. Bilal, “Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms,” Int. J. Biol. Macromol., vol. 183, pp. 399–422, 2021, doi: 10.1016/j.ijbiomac.2021.04.158.

[24] Q. Xue, Y. Ran, Y. Tan, C. L. Peacock, and H. Du, “Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments,” Chemosphere, vol. 224, pp. 103–110, 2019, doi: 10.1016/j.chemosphere.2019.02.118.

[25] A. Choodari Gharehpapagh, M. R. Farahpour, and S. Jafarirad, “The biological synthesis of gold/perlite nanocomposite using Urtica dioica extract and its chitosan-capped derivative for healing wounds infected with methicillin- resistant Staphylococcus aureus,” Int. J. Biol. Macromol., vol. 183, pp. 447– 456, 2021, doi: 10.1016/j.ijbiomac.2021.04.150.

[26] S. Ansari, N. Sami, D. Yasin, N. Ahmad, and T. Fatma, “Biomedical applications of environmental friendly poly-hydroxyalkanoates,” Int. J. Biol. Macromol., vol. 183, pp. 549–563, 2021, doi: 10.1016/j.ijbiomac.2021.04.171.

[27] Y. M. Li, R. fang Zhong, J. Chen, and Z. G. Luo, “Structural characterization, anticancer, hypoglycemia and immune activities of polysaccharides from Russula virescens,” Int. J. Biol. Macromol., vol. 184, no. June, pp. 380–392, 2021, doi: 10.1016/j.ijbiomac.2021.06.026.

[28] M. Nasrollahzadeh, M. Sajjadi, S. Iravani, and R. S. Varma, “Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano)materials for sustainable water treatment: A review,” Carbohydr. Polym., vol. 251, no. August 2020, p. 116986, 2021, doi: 10.1016/j.carbpol.2020.116986.

[29] L. Wang et al., “Effects of anode/cathode electroactive microorganisms on arsenic removal with organic/inorganic carbon supplied,” Sci. Total Environ., vol. 798, p. 149356, 2021, doi: 10.1016/j.scitotenv.2021.149356.

[30] A. Islam et al., “Novel micro-structured carbon-based adsorbents for notorious arsenic removal from wastewater,” Chemosphere, vol. 272, p. 129653, 2021, doi: 10.1016/j.chemosphere.2021.129653.

[31] J. Światowska, V. Lair, C. Pereira-Nabais, G. Cote, P. Marcus, and A. Chagnes, “XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries,” Appl. Surf. Sci., vol. 257, no. 21, pp. 9110–9119, 2011, doi: 10.1016/j.apsusc.2011.05.108.

[32] G. qing Liu, X. jun Pan, J. Li, C. Li, and C. lu Ji, “Facile preparation and characterization of anatase TiO2/nanocellulose composite for photocatalytic degradation of methyl orange,” J. Saudi Chem. Soc., vol. 25, no. 12, p. 101383, 2021, doi: 10.1016/j.jscs.2021.101383.

[33] K. Li, Q. Liu, H. Cheng, M. Hu, and S. Zhang, “Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 249, p. 119286, 2021, doi: 10.1016/j.saa.2020.119286.

[34] D. Kot et al., “Porous graphite as stationary phase for the chromatographic separation of polymer additives - determination of adsorption capability by Raman spectroscopy and physisorption,” J. Chromatogr. A, vol. 1625, p. 461302, 2020, doi: 10.1016/j.chroma.2020.461302.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る