リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inhibition of GPR120 signaling in intestine ameliorates insulin resistance and fatty liver under high-fat diet feeding」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inhibition of GPR120 signaling in intestine ameliorates insulin resistance and fatty liver under high-fat diet feeding

Yasuda, Takuma 京都大学 DOI:10.14989/doctor.k24880

2023.09.25

概要

The number of obese individuals is rapidly increasing
around the world (1). Obesity results from energy balance
dysregulation derived partly from excessive fat intake (2).
Ingestible fats consist mainly of long-chain triglycerides
(LCTs); overaccumulation of LCTs leads to hepatic steatosis
and insulin resistance, both of which are closely linked to
cardiovascular disease, cancer, and death (3–5). To prevent
the onset and exacerbation of such lifestyle-related diseases,
receptors and hormones involved in digestion, absorption,
and accumulation of LCTs have drawn much attention
recently (6, 7). ...

この論文で使われている画像

参考文献

1.

2.

3.

Morgen CS, Sørensen T. Obesity: global trends in the prevalence of

overweight and obesity. Nat Rev Endocrinol 10: 513–514, 2014.

doi:10.1038/nrendo.2014.124.

Bray GA, Paeratakul S, Popkin BM. Dietary fat and obesity: a review

of animal, clinical and epidemiological studies. Physiol Behav 83:

549–555, 2004. doi:10.1016/j.physbeh.2004.08.039.

Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 106:

473–481, 2000. doi:10.1172/JCI10842.

AJP-Endocrinol Metab  doi:10.1152/ajpendo.00329.2022  www.ajpendo.org

Downloaded from journals.physiology.org/journal/ajpendo at Kyoto Univ (054.066.017.246) on May 17, 2023.

INHIBITION OF GPR120 SIGNALING IN INTESTINE

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Lemieux I, Pascot A, Couillard C, Lamarche B, Tchernof A,

ras N, Bergeron J, Gaudet D, Tremblay G, Prud’homme D,

Alme

s JP. Hypertriglyceridemic waist: a marker of the

Nadeau A, Despre

atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein

B;small, dense LDL) in men? Circulation 102: 179–184, 2000.

doi:10.1161/01.cir.102.2.179.

Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J

Cardiol 34: 575–584, 2018. doi:10.1016/j.cjca.2017.12.005.

Zhao YF. Free fatty acid receptors in the endocrine regulation of glucose metabolism: insight from gastrointestinal-pancreatic-adipose

interactions. Front Endocrinol (Lausanne) 13: 956277, 2022. doi:10.

3389/fendo.2022.956277.

Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid

receptors in health and disease. Physiol Rev 100: 171–210, 2020.

doi:10.1152/physrev.00041.2018.

€ glund PJ, Gloriam DE, Lagerstro

€ m MC, Schio

€ th

Fredriksson R, Ho

HB. Seven evolutionarily conserved human rhodopsin G proteincouple receptors lacking close relatives. FEBS Lett 20: 381–388,

2003. doi:10.1016/s0014-5793(03)01196-7.

Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M,

Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut

incretin glucagon-like peptide-1 secretion through GPR120. Nat Med

11: 90–94, 2005. doi:10.1038/nm1168.

Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ, Li P,

Lu WJ, Watkins SM, Olefsky JM. GPR120 is an omega-3 fatty acid

receptor mediating potent anti-inflammatory and insulin-sensitizing

effects. Cell 142: 687–698, 2010. doi:10.1016/j.cell.2010.07.041.

Ichimura A, Hirasawa A, Poulain OG, Bonnefond A, Hara T,

Yengo L et al. Dysfunction of lipid sensor GPR120 leads to obesity

in both mouse and human. Nature 483: 350–354, 2012. doi:10.

1038/nature10798.

Talukdar S, Olefsky JM, Osborn O. Targeting GPR120 and other

fatty acid-sensing GPCRs ameliorates insulin resistance and

inflammatory diseases. Trends Pharmacol Sci 32: 543–550, 2011.

doi:10.1016/j.tips.2011.04.004.

Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D,

Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, Powels MA,

Salvo JD, Sinz C, Watkins SM, Armando AM, Chung H, Evans

RM, Quehenberger O, McNelis J, Bogner-Strauss JG, Olefsky

JM. A Gpr120-selective agonist improves insulin resistance and

chronic inflammation in obese mice. Nat Med 20: 942–947, 2014.

doi:10.1038/nm.3614.

Paschoal VA, Walenta E, Talukdar S, Pessentheiner AR, Osborn O,

Hah N, Chi TJ, Tye GL, Armando AM, Evans RM, Chi NW,

Quehenberger O, Olefsky JM, Oh DY. Positive reinforcing mechanisms between GPR120 and PPARc modulate insulin sensitivity. Cell

Metab 31: 1173–1188.e5, 2020. doi:10.1016/j.cmet.2020.04.020.

Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble

FM. Glucose sensing in L cells: a primary cell study. Cell Metab 8:

532–539, 2008. doi:10.1016/j.cmet.2008.11.002.

Iwasaki K, Harada N, Sasaki K, Yamane S, Iida K, Suzuki K,

Hamasaki A, Nasteska D, Shibue K, Joo E, Harada T, Hashimoto T,

Asakawa Y, Hirasawa A, Inagaki N. Free fatty acid receptor GPR120

is highly expressed in enteroendocrine K cells of the upper small

intestine and has a critical role in GIP secretion after fat ingestion.

Endocrinology 156: 837–846, 2015. doi:10.1210/en.2014-1653.

Kato T, Harada N, Ikeguchi-Ogura E, Sankoda A, Hatoko T, Lu X,

Yasuda T, Yamane S, Inagaki N. Gene expression of nutrient-sensing molecules in I cells of CCK reporter male mice. J Mol Endocrinol

66: 11–22, 2021. doi:10.1530/JME-20-0134.

Suzuki K, Iwasaki K, Murata Y, Harada N, Yamane S, Hamasaki A,

Shibue K, Joo E, Sankoda A, Fujiwara Y, Hayashi Y, Inagaki N.

Distribution and hormonal characterization of primary murine L cells

throughout the gastrointestinal tract. J Diabetes Investig 9: 25–32,

2018. doi:10.1111/jdi.12681.

Conwell DL, Zuccaro G, Morrow JB, Van Lente F, Obuchowski N,

Vargo JJ, Dumot JA, Trolli P, Shay SS. Cholecystokinin-stimulated peak lipase concentration in duodenal drainage fluid: a new

pancreatic function test. Am J Gastroenterol 97: 1392–1397,

2002. doi:10.1111/j.1572-0241.2002.05675.x.

Liddle RA, Goldfine ID, Rosen MS, Taplitz RA, Williams JA.

Cholecystokinin bioactivity in human plasma. Molecular forms,

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

responses to feeding, and relationship to gallbladder contraction. J

Clin Invest 75: 1144–1152, 1985. doi:10.1172/JCI111809.

Yamane S, Harada N, Inagaki N. Mechanisms of fat-induced gastric

inhibitory polypeptide/glucose-dependent insulinotropic polypeptide secretion from K cells. J Diabetes Investig 7: 20–26, 2016.

doi:10.1111/jdi.12467.

Nasteska D, Harada N, Suzuki K, Yamane S, Hamasaki A, Joo E,

Iwasaki K, Shibue K, Harada T, Inagaki N. Chronic reduction of GIP

secretion alleviates obesity and insulin resistance under high-fat diet

conditions. Diabetes 63: 2332–2343, 2014. doi:10.2337/db13-1563.

Lo CM, King A, Samuelson LC, Kindel TL, Rider T, Jandacek RJ,

Raybould HE, Woods SC, Tso P. Cholecystokinin knockout mice

are resistant to high-fat diet-induced obesity. Gastroenterology 138:

1997–2005, 2010. doi:10.1053/j.gastro.2010.01.044.

Kishikawa A, Kitaura H, Kimura K, Ogawa S, Qi J, Shen WR, Ohori

F, Noguchi T, Marahleh A, Nara Y, Ichimura A, Mizoguchi I.

Docosahexaenoic acid inhibits inflammation-induced osteoclast formation and bone resorption in vivo through GPR120 by inhibiting

TNF-a production in macrophages and directly inhibiting osteoclast

formation. Front Endocrinol (Lausanne) 10: 157, 2019. doi:10.3389/

fendo.2019.00157.

Ikeguchi E, Harada N, Kanemaru Y, Sankoda A, Yamane S, Iwasaki

K, Imajo M, Murata Y, Suzuki K, Joo E, Inagaki N. Transcriptional

factor Pdx1 is involved in age-related GIP hypersecretion in mice.

Am J Physiol Gastrointest Liver Physiol 315: G272–G282, 2018.

doi:10.1152/ajpgi.00054.2018.

Ogawa E, Hosokawa M, Harada N, Yamane S, Hamasaki A,

Toyoda K, Fujimoto S, Fujita Y, Fukuda K, Tsukiyama K, Yamada

Y, Seino Y, Inagaki N. The effect of gastric inhibitory polypeptide on

intestinal glucose absorption and intestinal motility in mice. Biochem

Biophys Res Commun 404: 115–120, 2011. doi:10.1016/j.bbrc.2010.

11.077.

Maekawa R, Seino Y, Ogata H, Murase M, Iida A, Hosokawa K, Joo

E, Harada N, Tsunekawa S, Hamada Y, Oiso Y, Inagaki N, Hayashi

Y, Arima H. Chronic high-sucrose diet increases fibroblast growth

factor 21 production and energy expenditure in mice. J Nutr

Biochem 49: 71–79, 2017. doi:10.1016/j.jnutbio.2017.07.010.

Furukawa I, Kurooka S, Arisue K, Kohda K, Hayashi C. Assays of

serum lipase by the “BALB-DTNB method” mechanized for use with

discrete and continuous-flow analyzers. Clin Chem 28: 110–113,

1982. doi:10.1093/clinchem/28.1.110.

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem

226: 497–509, 1957. doi:10.1016/S0021-9258(18)64849-5.

Kawasaki Y, Harashima S, Sasaki M, Mukai E, Nakamura Y,

Harada N, Toyoda K, Hamasaki A, Yamane S, Yamada C, Yamada

Y, Seino Y, Inagaki N. Exendin-4 protects pancreatic beta cells from

the cytotoxic effect of rapamycin by inhibiting JNK and p38 phosphorylation. Horm Metab Res 42: 311–317, 2010. doi:10.1055/s-00301249035.

Galic S, Sachithanandan N, Kay TW, Steinberg GR. Suppressor of

cytokine signalling (SOCS) proteins as guardians of inflammatory

responses critical for regulating insulin sensitivity. Biochem J 461:

177–188, 2014. doi:10.1042/BJ20140143.

Trengove MC, Ward AC. SOCS proteins in development and disease. Am J Clin Exp Immunol 2: 1–29, 2013.

Ueki K, Kondo T, Tseng YH, Kahn CR. Central role of suppressors

of cytokine signaling proteins in hepatic steatosis, insulin resistance,

and the metabolic syndrome in the mouse. Proc Natl Acad Sci U S A

101: 10422–10427, 2004 [Erratum in Proc Natl Acad Sci USA 102:

13710, 2005]. doi:10.1073/pnas.0402511101.

Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F. Nutrientdependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52: 289–298, 2009.

doi:10.1007/s00125-008-1202-x.

Sankoda A, Harada N, Kato T, Ikeguchi E, Iwasaki K, Yamane S,

Murata Y, Hirasawa A, Inagaki N. Free fatty acid receptors, G protein-coupled receptor 120 and G protein-coupled receptor 40, are

essential for oil-induced gastric inhibitory polypeptide secretion. J

Diabetes Investig 10: 1430–1437, 2019. doi:10.1111/jdi.13059.

Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz

M, Rayner CK. Effects of rectal administration of taurocholic acid

on glucagon-like peptide-1 and peptide YY secretion in healthy

AJP-Endocrinol Metab  doi:10.1152/ajpendo.00329.2022  www.ajpendo.org

Downloaded from journals.physiology.org/journal/ajpendo at Kyoto Univ (054.066.017.246) on May 17, 2023.

E459

INHIBITION OF GPR120 SIGNALING IN INTESTINE

37.

38.

39.

40.

41.

42.

E460

humans. Diabetes Obes Metab 15: 474–477, 2013. doi:10.1111/

dom.12043.

Wu T, Bound MJ, Standfield SD, Jones KL, Horowitz M, Rayner CK.

Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and

insulin responses to small intestinal glucose infusion in healthy

humans. J Clin Endocrinol Metab 98: E718–E722, 2013. doi:10.1210/

jc.2012-3961.

Joo E, Harada N, Yamane S, Fukushima F, Taura D, Iwasaki K,

Sankoda A, Shibue K, Harada T, Suzuki K, Hamasaki A, Inagaki N.

Inhibition of gastric inhibitory polypeptide receptor signaling in adipose tissue reduces insulin resistance and hepatic steatosis in highfat diet-fed mice. Diabetes 66: 868–879, 2017. doi:10.2337/db160758.

Shimazu-Kuwahara S, Harada N, Yamane S, Joo E, Sankoda A,

Kieffer TJ, Inagaki N. Attenuated secretion of glucose-dependent

insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice. Mol Metab 6: 288–294,

2017. doi:10.1016/j.molmet.2017.01.006.

Yamane S, Harada N, Hamasaki A, Muraoka A, Joo E, Suzuki K,

Nasteska D, Tanaka D, Ogura M, Harashima S, Inagaki N. Effects

of glucose and meal ingestion on incretin secretion in Japanese subjects with normal glucose tolerance. J Diabetes Investig 3: 80–85,

2012. doi:10.1111/j.2040-1124.2011.00143.x.

Suzuki K, Harada N, Yamane S, Nakamura Y, Sasaki K, Nasteska

D, Joo E, Shibue K, Harada T, Hamasaki A, Toyoda K, Nagashima

K, Inagaki N. Transcriptional regulatory factor X6 (Rfx6) increases

gastric inhibitory polypeptide (GIP) expression in enteroendocrine

K-cells and is involved in GIP hypersecretion in high-fat dietinduced obesity. J Biol Chem 288: 1929–1938, 2013. doi:10.1074/

jbc.M112.423137.

Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H,

Fujimoto S, Oku A, Tsuda K, Toyokuni S, Hiai H, Mizunoya W,

43.

44.

45.

46.

47.

48.

Fushiki T, Holst JJ, Makino M, Tashita A, Kobara Y, Tsubamoto Y,

Jinnouchi T, Jomori T, Seino Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8: 738–742, 2002.

doi:10.1038/nm727.

Ibrahim MM. Subcutaneous and visceral adipose tissue: structural

and functional differences. Obes Rev 11: 11–18, 2010. doi:10.1111/

j.1467-789X.2009.00623.x.

Moschen AR, Molnar C, Geiger S, Graziadei I, Ebenbichler CF,

Weiss H, Kaser S, Kaser A, Tilg H. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and

tumour necrosis factor alpha expression. Gut 59: 1259–1264, 2010.

doi:10.1136/gut.2010.214577.

Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, Barrett T, Kim JK,

Davis RJ. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322: 1539–1543, 2008. doi:10.1126/

science.1160794.

Johnston JA, O’Shea JJ. Matching SOCS with function. Nat

Immunol 4: 507–509, 2003. doi:10.1038/ni0603-507.

Murata Y, Harada N, Kishino S, Iwasaki K, Ikeguchi-Ogura E,

Yamane S, Kato T, Kanemaru Y, Sankoda A, Hatoko T, Kiyobayashi

S, Ogawa J, Hirasawa A, Inagaki N. Medium-chain triglycerides inhibit long-chain triglyceride-induced GIP secretion through GPR120dependent inhibition of CCK. iScience 24: 102963, 2021. doi:10.1016/j.

isci.2021.102963.

Murata Y, Harada N, Yamane S, Iwasaki K, Ikeguchi E, Kanemaru

Y, Harada T, Sankoda A, Shimazu-Kuwahara S, Joo E, Poudyal H,

Inagaki N. Medium-chain triglyceride diet stimulates less GIP secretion and suppresses body weight and fat mass gain compared with

long-chain triglyceride diet. Am J Physiol Endocrinol Physiol 317:

E53–E64, 2019 [Erratum in Am J Physiol Endocrinol Physiol 318:

E440, 2020]. doi:10.1152/ajpendo.00200.2018.

AJP-Endocrinol Metab  doi:10.1152/ajpendo.00329.2022  www.ajpendo.org

Downloaded from journals.physiology.org/journal/ajpendo at Kyoto Univ (054.066.017.246) on May 17, 2023.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る