リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparative Study on Beneficial Functions of Resveratrol and Its Dimer Epsilon- Viniferin in the Adipocyte」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparative Study on Beneficial Functions of Resveratrol and Its Dimer Epsilon- Viniferin in the Adipocyte

洪, 銘蔚 HUNG, MingWei 筑波大学 DOI:10.15068/00160361

2020.07.21

概要

Resveratrol (RES) and its dimer ε-viniferin (VIN) are polyphenolic compounds found in red wine. The present study compared the effects of VIN and RES on the differentiation of preadipocytes and found that low concentrations of VIN, but not RES, promoted favorable adipocyte differentiation, with enhanced expression of the beneficial hormone adiponectin and decreased lipid accumulation.

Obesity is a primary feature of metabolic disease and has become a major public health concern worldwide. As the main clinical manifestation of the disturbance of energy intake and consumption, obesity is associated with the development of various diseases, including coronary heart disease, hypertension, type 2 diabetes mellitus (T2DM), cancer, and osteoarthritis. The hyperplasia and hypertrophy of adipocytes contribute to an increase of body adipose mass, which is a hallmark of obesity. Adipose tissue plays an important role in lipid homeostasis and energy balance. Its primary role is to store energy in the form of triglycerides when energy intake exceeds energy expenditure and release it in the form of free fatty acids during starvation. Adipocyte differentiation, known as adipogenesis, is a process that is accompanied with coordinated changes in cell morphology, hormone sensitivity, and gene expression. Adipocytes also synthesize and secrete various biologically active molecules known as adipocytokines. Among them, adiponectin is regarded as beneficial because it efficiently reduces insulin resistance, exerts anti-inflammatory effects, and regulates lipid metabolism. During adipocyte differentiation, transcriptional factors, such as peroxisome proliferator-activated receptor- (PPAR-γ) and CCAAT/enhancer-binding protein- (C/EBP- are involved in the sequential expression of adipocyte-specific proteins. The regulation of adipogenesis has been studied using various cellular and animal models. The 3T3-L1 cell line is one of the best characterized and most reliable model cell for studying adipogenesis in vitro. It is generally thought that compounds suppressing adipogenesis in 3T3-L1 cells could be effective in treating and preventing obesity.

Numerous studies have revealed that dietary polyphenols can play a beneficial function in preventing obesity and obesity-related chronic diseases. RES, a natural polyphenolic compound found in grapes and red wine, is probably the most widely studied among them. Many cellular and animal studies have shown that RES exerts anti-obesity effects by reducing the viability and proliferation of preadipocytes, suppressing adipocyte differentiation with decreased triglyceride accumulation, inhibiting lipogenesis, and/or stimulating lipolysis and fatty acid β-oxidation. Comparatively less is understood about its dimer, VIN, although the VIN content in grapes and red wine is comparable to or greater than that of RES, depending on the type of red wine and the stage of the noble rot on the grapes. The objectives of this study were to investigate the effect of VIN and RES on 3T3-L1 preadipocyte differentiation, focusing on the expression of adiponectin and regulators of differentiation and lipid accumulation, and to compare the effects of the two compounds.

この論文で使われている画像

参考文献

1. Ahmadian, M., Duncan, R.E., Jaworski, K., Sarkadi-Nagy, E., and Sul, H.S. (2007).Triacylglycerol metabolism in adipose tissue. Future lipidology 2, 229-237.

2. Sethi, J.K., and Vidal-Puig, A.J. (2007). Thematic review series: adipocyte biology.Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of lipid research 48, 1253-1262.

3. Ibrahim, M.M. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity reviews: an official journal of the International Association for the Study of Obesity 11, 11-18.

4. Trayhurn, P., and Wood, I.S. (2004). Adipokines: inflammation and the pleiotropic role of white adipose tissue. The British journal of nutrition 92, 347-355.

5. Matsuzawa, Y. (2006). Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nature clinical practice Cardiovascular medicine 3, 35-42.

6. Lau, D.C., Dhillon, B., Yan, H., Szmitko, P.E., and Verma, S. (2005). Adipokines: molecular links between obesity and atheroslcerosis. American journal of physiology Heart and circulatory physiology 288, H2031-2041.

7. Tritos, N.A., and Mantzoros, C.S. (1997). Leptin: its role in obesity and beyond.Diabetologia 40, 1371-1379.

8. Rohner-Jeanrenaud, F., and Jeanrenaud, B. (1996). Obesity, leptin, and the brain.The New England journal of medicine 334, 324-325.

9. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994). Positional cloning of the mouse obese gene and its human homologue.Nature 372, 425-432.

10. Ahima, R.S., and Lazar, M.A. (2008). Adipokines and the peripheral and neural control of energy balance. Molecular endocrinology 22, 1023-1031.

11. Rosenbaum, M., Sy, M., Pavlovich, K., Leibel, R.L., and Hirsch, J. (2008). Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. The Journal of clinical investigation 118, 2583-2591.

12. Farooqi, I.S., Bullmore, E., Keogh, J., Gillard, J., O'Rahilly, S., and Fletcher, P.C. (2007). Leptin regulates striatal regions and human eating behavior. Science 317, 1355.

13. Kershaw, E.E., and Flier, J.S. (2004). Adipose tissue as an endocrine organ. The Journal of clinical endocrinology and metabolism 89, 2548-2556.

14. Farooqi, I.S., Matarese, G., Lord, G.M., Keogh, J.M., Lawrence, E., Agwu, C., Sanna, V., Jebb, S.A., Perna, F., Fontana, S., et al. (2002). Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. The Journal of clinical investigation 110, 1093-1103.

15. Bluher, S., and Mantzoros, C.S. (2009). Leptin in humans: lessons from translational research. The American journal of clinical nutrition 89, 991S-997S.

16. Chan, J.L., and Mantzoros, C.S. (2005). Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 366, 74-85.

17. Locker, D., Matear, D., Stephens, M., and Jokovic, A. (2002). Oral health-related quality of life of a population of medically compromised elderly people. Community dental health 19, 90-97.

18. Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., and Matsubara, K. (1996). cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochemical and biophysical research communications 221, 286-289.

19. Scherer, P.E., Williams, S., Fogliano, M., Baldini, G., and Lodish, H.F. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. The Journal of biological chemistry 270, 26746-26749.

20. Halleux, C., Sottile, V., Gasser, J.A., and Seuwen, K. (2001). Multi-lineage potential of human mesenchymal stem cells following clonal expansion. Journal of musculoskeletal & neuronal interactions 2, 71-76.

21. Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., and Tobe, K. (2006).Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of clinical investigation 116, 1784-1792.

22. Ouchi, N., and Walsh, K. (2007). Adiponectin as an anti-inflammatory factor.Clinica chimica acta; international journal of clinical chemistry 380, 24-30.

23. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., and Shimomura, I. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation 114, 1752-1761.

24. Bruun, J.M., Lihn, A.S., Verdich, C., Pedersen, S.B., Toubro, S., Astrup, A., and Richelsen, B. (2003). Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. American journal of physiology Endocrinology and metabolism 285, E527-533.

25. Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T.,Miyagishi, M., Hara, K., Tsunoda, M., et al. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769.

26. Yamauchi, T., Nio, Y., Maki, T., Kobayashi, M., Takazawa, T., Iwabu, M., Okada-Iwabu, M., Kawamoto, S., Kubota, N., Kubota, T., et al. (2007). Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature medicine 13, 332-339.

27. Bauche, I.B., El Mkadem, S.A., Pottier, A.M., Senou, M., Many, M.C., Rezsohazy, R., Penicaud, L., Maeda, N., Funahashi, T., and Brichard, S.M. (2007). Overexpression of adiponectin targeted to adipose tissue in transgenic mice: impaired adipocyte differentiation. Endocrinology 148, 1539-1549.

28. Okamoto, Y., Kihara, S., Ouchi, N., Nishida, M., Arita, Y., Kumada, M., Ohashi, K., Sakai, N., Shimomura, I., Kobayashi, H., et al. (2002). Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106, 2767-2770.

29. Ouedraogo, R., Gong, Y., Berzins, B., Wu, X., Mahadev, K., Hough, K., Chan, L., Goldstein, B.J., and Scalia, R. (2007). Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. The Journal of clinical investigation 117, 1718-1726.

30. Wang, Z.V., and Scherer, P.E. (2008). Adiponectin, cardiovascular function, and hypertension. Hypertension 51, 8-14.

31. Gualillo, O., Gonzalez-Juanatey, J.R., and Lago, F. (2007). The emerging role of adipokines as mediators of cardiovascular function: physiologic and clinical perspectives. Trends in cardiovascular medicine 17, 275-283.

32. Guerre-Millo, M. (2008). Adiponectin: an update. Diabetes & metabolism 34, 12-18.

33. Brunt, E.M. (2004). Nonalcoholic steatohepatitis. Seminars in liver disease 24, 3-20.

34. Lo, S.F., Yang, S.Y., Chen, K.T., Hsing, Y.I., Zeevaart, J.A., Chen, L.J., and Yu, S.M. (2008). A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant cell 20, 2603-2618.

35. Hotamisligil, G.S., Shargill, N.S., and Spiegelman, B.M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91.

36. Hotamisligil, G.S., Budavari, A., Murray, D., and Spiegelman, B.M. (1994).Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-alpha. The Journal of clinical investigation 94, 1543-1549.

37. Uysal, K.T., Wiesbrock, S.M., Marino, M.W., and Hotamisligil, G.S. (1997).Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610-614.

38. Kern, P.A., Saghizadeh, M., Ong, J.M., Bosch, R.J., Deem, R., and Simsolo, R.B. (1995). The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. The Journal of clinical investigation 95, 2111-2119.

39. Ziccardi, P., Nappo, F., Giugliano, G., Esposito, K., Marfella, R., Cioffi, M., D'Andrea, F., Molinari, A.M., and Giugliano, D. (2002). Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 105, 804-809.

40. Hivert, M.F., Sullivan, L.M., Fox, C.S., Nathan, D.M., D'Agostino, R.B., Sr.,Wilson, P.W., and Meigs, J.B. (2008). Associations of adiponectin, resistin, and tumor necrosis factor-alpha with insulin resistance. The Journal of clinical endocrinology and metabolism 93, 3165-3172.

41. Dominguez, H., Storgaard, H., Rask-Madsen, C., Steffen Hermann, T., Ihlemann, N., Baunbjerg Nielsen, D., Spohr, C., Kober, L., Vaag, A., and Torp-Pedersen, C. (2005). Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. Journal of vascular research 42, 517-525.

42. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M., and Taylor, R. (1996). Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881-885.

43. Lo, J., Bernstein, L.E., Canavan, B., Torriani, M., Jackson, M.B., Ahima, R.S., and Grinspoon, S.K. (2007). Effects of TNF-alpha neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. American journal of physiology Endocrinology and metabolism 293, E102-109.

44. Marra, M., Campanati, A., Testa, R., Sirolla, C., Bonfigli, A.R., Franceschi, C., Marchegiani, F., and Offidani, A. (2007). Effect of etanercept on insulin sensitivity in nine patients with psoriasis. International journal of immunopathology and pharmacology 20, 731-736.

45. Fried, S.K., Bunkin, D.A., and Greenberg, A.S. (1998). Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. The Journal of clinical endocrinology and metabolism 83, 847-850.

46. Pradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E., and Ridker, P.M. (2001).C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama 286, 327-334.

47. Kim, H.J., Higashimori, T., Park, S.Y., Choi, H., Dong, J., Kim, Y.J., Noh, H.L., Cho, Y.R., Cline, G., Kim, Y.B., et al. (2004). Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060-1067.

48. Matthews, V.B., Allen, T.L., Risis, S., Chan, M.H., Henstridge, D.C., Watson, N.,Zaffino, L.A., Babb, J.R., Boon, J., Meikle, P.J., et al. (2010). Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53, 2431-2441.

49. Sabio, G., Das, M., Mora, A., Zhang, Z., Jun, J.Y., Ko, H.J., Barrett, T., Kim, J.K., and Davis, R.J. (2008). A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539-1543.

50. Mooney, R.A. (2007). Counterpoint: Interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. Journal of applied physiology 102, 816-818; discussion 818-819.

51. Pedersen, B.K., and Febbraio, M.A. (2007). Point: Interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. Journal of applied physiology 102, 814-816.

52. Abbasi, F., Brown, B.W., Jr., Lamendola, C., McLaughlin, T., and Reaven, G.M. (2002). Relationship between obesity, insulin resistance, and coronary heart disease risk. Journal of the American College of Cardiology 40, 937-943.

53. Despres, J.P., Moorjani, S., Lupien, P.J., Tremblay, A., Nadeau, A., and Bouchard, C. (1990). Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10, 497-511.

54. Jensen, M.D. (2006). Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human model. Obesity 14 Suppl 1, 20S-24S.

55. Lebovitz, H.E., and Banerji, M.A. (2005). Point: visceral adiposity is causally related to insulin resistance. Diabetes care 28, 2322-2325.

56. Mittelman, S.D., Van Citters, G.W., Kirkman, E.L., and Bergman, R.N. (2002).Extreme insulin resistance of the central adipose depot in vivo. Diabetes 51, 755-761.

57. Despres, J.P. (2006). Is visceral obesity the cause of the metabolic syndrome?Annals of medicine 38, 52-63.

58. Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., and Ferrante, A.W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of clinical investigation 112, 1796-1808.

59. Yudkin, J.S., Stehouwer, C.D., Emeis, J.J., and Coppack, S.W. (1999). C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arteriosclerosis, thrombosis, and vascular biology 19, 972-978.

60. Lemieux, I., Pascot, A., Prud'homme, D., Almeras, N., Bogaty, P., Nadeau, A., Bergeron, J., and Despres, J.P. (2001). Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arteriosclerosis, thrombosis, and vascular biology 21, 961-967.

61. Cote, M., Mauriege, P., Bergeron, J., Almeras, N., Tremblay, A., Lemieux, I., and Despres, J.P. (2005). Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipoprotein and lipid levels in men. The Journal of clinical endocrinology and metabolism 90, 1434-1439.

62. Matsuzawa, Y. (2006). Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nature clinical practice Cardiovascular medicine 3, 35-42.

63. Havel, P.J. (2002). Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Current opinion in lipidology 13, 51-59.

64. Miranda, P.J., DeFronzo, R.A., Califf, R.M., and Guyton, J.R. (2005). Metabolic syndrome: definition, pathophysiology, and mechanisms. American heart journal 149, 33-45.

65. Garg, A., and Misra, A. (2004). Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinology and metabolism clinics of North America 33, 305-331.

66. Danforth, E., Jr. (2000). Failure of adipocyte differentiation causes type II diabetes mellitus? Nature genetics 26, 13.

67. Poulos, S.P., Dodson, M.V., and Hausman, G.J. (2010). Cell line models for differentiation: preadipocytes and adipocytes. Experimental biology and medicine 235, 1185-1193.

68. Kershaw, E.E., and Flier, J.S. (2004). Adipose tissue as an endocrine organ. The Journal of clinical endocrinology and metabolism 89, 2548-2556.

69. Charo, I.F., and Taubman, M.B. (2004). Chemokines in the pathogenesis of vascular disease. Circulation research 95, 858-866.

70. Rossi, D., and Zlotnik, A. (2000). The biology of chemokines and their receptors.Annual review of immunology 18, 217-242.

71. Green, H., and Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5, 19-27.

72. Huang, W.C., Chang, W.T., Wu, S.J., Xu, P.Y., Ting, N.C., and Liou, C.J. (2013).Phloretin and phlorizin promote lipolysis and inhibit inflammation in mouse 3T3-L1 cells and in macrophage-adipocyte co-cultures. Molecular nutrition & food research 57, 1803-1813.

73. Turner, P.A., Tang, Y., Weiss, S.J., and Janorkar, A.V. (2015). Three-dimensional spheroid cell model of in vitro adipocyte inflammation. Tissue engineering Part A 21, 1837-1847.

74. Student, A.K., Hsu, R.Y., and Lane, M.D. (1980). Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. The Journal of biological chemistry 255, 4745-4750.

75. Wolins, N.E., Quaynor, B.K., Skinner, J.R., Tzekov, A., Park, C., Choi, K., and Bickel, P.E. (2006). OP9 mouse stromal cells rapidly differentiate into adipocytes: characterization of a useful new model of adipogenesis. Journal of lipid research 47, 450-460.

76. Poulos, S.P., Dodson, M.V., and Hausman, G.J. (2010). Cell line models for differentiation: preadipocytes and adipocytes. Experimental biology and medicine 235, 1185-1193.

77. Barroso, I., Gurnell, M., Crowley, V.E., Agostini, M., Schwabe, J.W., Soos, M.A., Maslen, G.L., Williams, T.D., Lewis, H., Schafer, A.J., et al. (1999). Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880-883.

78. Monajemi, H., Zhang, L., Li, G., Jeninga, E.H., Cao, H., Maas, M., Brouwer, C.B., Kalkhoven, E., Stroes, E., Hegele, R.A., et al. (2007). Familial partial lipodystrophy phenotype resulting from a single-base mutation in deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. The Journal of clinical endocrinology and metabolism 92, 1606-1612.

79. Hardie, D.G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nature reviews Molecular cell biology 8, 774-785.

80. Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383-1386.

81. Zimmermann, R., Strauss, J.G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., et al. (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383-1386.

82. Wolkart, G., Schrammel, A., Dorffel, K., Haemmerle, G., Zechner, R., and Mayer, B. (2012). Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARalpha agonist. British journal of pharmacology 165, 380-389.

83. Paulauskis, J.D., and Sul, H.S. (1989). Hormonal regulation of mouse fatty acid synthase gene transcription in liver. The Journal of biological chemistry 264, 574-577.

84. Latasa, M.J., Griffin, M.J., Moon, Y.S., Kang, C., and Sul, H.S. (2003). Occupancy and function of the -150-sterol regulatory element and -65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Molecular and cellular biology 23, 5896-5907.

85. Shaw, R.J., Kosmatka, M., Bardeesy, N., Hurley, R.L., Witters, L.A., DePinho, R.A., and Cantley, L.C. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proceedings of the National Academy of Sciences of the United States of America 101, 3329-3335.

86. Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.H., Bardeesy, N., Depinho, R.A., Montminy, M., and Cantley, L.C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646.

87. Reznick, R.M., and Shulman, G.I. (2006). The role of AMP-activated protein kinase in mitochondrial biogenesis. The Journal of physiology 574, 33-39.

88. Barnes, B.R., Long, Y.C., Steiler, T.L., Leng, Y., Galuska, D., Wojtaszewski, J.F., Andersson, L., and Zierath, J.R. (2005). Changes in exercise-induced gene expression in 5'-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice. Diabetes 54, 3484-3489.

89. Narkar, V.A., Downes, M., Yu, R.T., Embler, E., Wang, Y.X., Banayo, E., Mihaylova, M.M., Nelson, M.C., Zou, Y., Juguilon, H., et al. (2008). AMPK and PPARdelta agonists are exercise mimetics. Cell 134, 405-415.

90. Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060.

91. Fryer, L.G., Parbu-Patel, A., and Carling, D. (2002). The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. The Journal of biological chemistry 277, 25226-25232.

92. Bordone, L., and Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature reviews Molecular cell biology 6, 298-305.

93. Jensen, M.V., Joseph, J.W., Ronnebaum, S.M., Burgess, S.C., Sherry, A.D., and Newgard, C.B. (2008). Metabolic cycling in control of glucose-stimulated insulin secretion. American journal of physiology Endocrinology and metabolism 295, E1287-1297.

94. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of clinical investigation 108, 1167-1174.

95. Coskun, T., Bina, H.A., Schneider, M.A., Dunbar, J.D., Hu, C.C., Chen, Y., Moller, D.E., and Kharitonenkov, A. (2008). Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018-6027.

96. Kharitonenkov, A., Shiyanova, T.L., Koester, A., Ford, A.M., Micanovic, R., Galbreath, E.J., Sandusky, G.E., Hammond, L.J., Moyers, J.S., Owens, R.A., et al. (2005). FGF-21 as a novel metabolic regulator. The Journal of clinical investigation 115, 1627-1635.

97. Kharitonenkov, A., Wroblewski, V.J., Koester, A., Chen, Y.F., Clutinger, C.K., Tigno, X.T., Hansen, B.C., Shanafelt, A.B., and Etgen, G.J. (2007). The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774-781.

98. Xu, J., Lloyd, D.J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., Vonderfecht, S., Hecht, R., Li, Y.S., Lindberg, R.A., et al. (2009). Fibroblast growth factor 21 reverses hepatic steatosis increases energy expenditure and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250-259.

99. Badman, M.K., Pissios, P., Kennedy, A.R., Koukos, G., Flier, J.S., and Maratos-Flier, E. (2007). Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell metabolism 5, 426-437.

100. Galman, C., Lundasen, T., Kharitonenkov, A., Bina, H.A., Eriksson, M., Hafstrom, I., Dahlin, M., Amark, P., Angelin, B., and Rudling, M. (2008). The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell metabolism 8, 169-174.

101. Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz, R., Mohammadi, M., Esser, V., et al. (2007). Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell metabolism 5, 415-425.

102. Tsai, A.G., Williamson, D.F., and Glick, H.A. (2011). Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obesity reviews: an official journal of the International Association for the Study of Obesity 12, 50-61.

103. Lai, C.S., Chen, Y.Y., Lee, P.S., Kalyanam, N., Ho, C.T., Liou, W.S., Yu, R.C.,and Pan, M.H. (2016). Bisdemethoxycurcumin Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Fed C57BL/6 Mice. Journal of agricultural and food chemistry 64, 821-830.

104. Kang, M.C., Kang, N., Ko, S.C., Kim, Y.B., and Jeon, Y.J. (2016). Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipocytes and obese mice fed a high-fat diet. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 90, 36-44.

105. Tutino, V., Orlando, A., Russo, F., and Notarnicola, M. (2016). Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line. Journal of cellular physiology 231, 483-489.

106. Eseberri, I., Miranda, J., Lasa, A., Churruca, I., and Portillo, M.P. (2015).Doses of Quercetin in the Range of Serum Concentrations Exert Delipidating Effects in 3T3-L1 Preadipocytes by Acting on Different Stages of Adipogenesis, but Not in Mature Adipocytes. Oxidative medicine and cellular longevity 2015, 480943.

107. Meydani, M., and Hasan, S.T. (2010). Dietary polyphenols and obesity.Nutrients 2, 737-751.

108. Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D.R., You, M., Bisht, K.S., and Patel, N.A. (2013). Protein kinase C delta (PKCdelta) splice variants modulate apoptosis pathway in 3T3L1 cells during adipogenesis: identification of PKCdeltaII inhibitor. The Journal of biological chemistry 288, 26834-26846.

109. Ulrik, S., Ole, V., and Christine, B., (2007). A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chemistry 2, 449– 457.

110. Burns, J., Yokota, T., Ashihara, H., Lean, M.E., and Crozier, A. (2002). Plant foods and herbal sources of resveratrol. Journal of agricultural and food chemistry 50, 3337-3340.

111. van der Spuy, W.J., and Pretorius, E. (2009). Is the use of resveratrol in the treatment and prevention of obesity premature? Nutrition research reviews 22, 111-117.

112. Nijveldt, R.J., van Nood, E., van Hoorn, D.E., Boelens, P.G., van Norren, K., and van Leeuwen, P.A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American journal of clinical nutrition 74, 418-425.

113. Ahn, J., Lee, H., Kim, S., Park, J., and Ha, T. (2008). The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochemical and biophysical research communications 373, 545-549.

114. Kato, H., Tanaka, G., Masuda, S., Ogasawara, J., Sakurai, T., Kizaki, T., Ohno, H., and Izawa, T. (2015). Melatonin promotes adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes. Journal of pineal research 59, 267-275.

115. Matsuo, H., Kondo, Y., Kawasaki, T., and Imamura, N. (2015). Cineromycin B isolated from Streptomyces cinerochromogenes inhibits adipocyte differentiation of 3T3-L1 cells via Kruppel-like factors 2 and 3. Life sciences 135, 35-42.

116. Mammi, C., Marzolla, V., Armani, A., Feraco, A., Antelmi, A., Maslak, E., Chlopicki, S., Cinti, F., Hunt, H., Fabbri, A., et al. (2016). A novel combined glucocorticoid-mineralocorticoid receptor selective modulator markedly prevents weight gain and fat mass expansion in mice fed a high-fat diet. International journal of obesity 40, 964-972.

117. Ma, X., Ding, W., Wang, J., Wu, G., Zhang, H., Yin, J., Zhou, L., and Li, D. (2012). LOC66273 isoform 2, a novel protein highly expressed in white adipose tissue, induces adipogenesis in 3T3-L1 cells. The Journal of nutrition 142, 448-455.

118. Lien, C.C., Jiang, J.L., Jian, D.Y., Kwok, C.F., Ho, L.T., and Juan, C.C. (2016).Chronic endothelin-1 infusion causes adipocyte hyperplasia in rats. Obesity 24, 643-653.

119. Yun, U.J., Song, N.J., Yang, D.K., Kwon, S.M., Kim, K., Kim, S., Jo, D.G.,Park, W.J., Park, K.W., and Kang, H. (2015). miR-195a inhibits adipocyte differentiation by targeting the preadipogenic determinator Zfp423. Journal of cellular biochemistry 116, 2589-2597.

120. Al-Awwadi, N., Azay, J., Poucheret, P., Cassanas, G., Krosniak, M., Auger, C., Gasc, F., Rouanet, J.M., Cros, G., and Teissedre, P.L. (2004). Antidiabetic activity of red wine polyphenolic extract, ethanol, or both in streptozotocin-treated rats. Journal of agricultural and food chemistry 52, 1008-1016.

121. Clifford, A.J., Ebeler, S.E., Ebeler, J.D., Bills, N.D., Hinrichs, S.H., Teissedre, P.L., and Waterhouse, A.L. (1996). Delayed tumor onset in transgenic mice fed an amino acid-based diet supplemented with red wine solids. The American journal of clinical nutrition 64, 748-756.

122. Norata, G.D., Marchesi, P., Passamonti, S., Pirillo, A., Violi, F., and Catapano,A.L. (2007). Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice. Atherosclerosis 191, 265-271.

123. Aggarwal, B.B., Bhardwaj, A., Aggarwal, R.S., Seeram, N.P., Shishodia, S., and Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer research 24, 2783-2840.

124. Delmas, D., Jannin, B., and Latruffe, N. (2005). Resveratrol: preventing properties against vascular alterations and ageing. Molecular nutrition & food research 49, 377-395.

125. Quiney, C., Dauzonne, D., Kern, C., Fourneron, J.D., Izard, J.C., Mohammad, R.M., Kolb, J.P., and Billard, C. (2004). Flavones and polyphenols inhibit the NO pathway during apoptosis of leukemia B-cells. Leukemia research 28, 851-861.

126. Piver, B., Berthou, F., Dreano, Y., and Lucas, D. (2003). Differential inhibition of human cytochrome P450 enzymes by epsilon-viniferin, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages. Life sciences 73, 1199-1213.

127. Holvoet, P., Kritchevsky, S.B., Tracy, R.P., Mertens, A., Rubin, S.M., Butler, J., Goodpaster, B., and Harris, T.B. (2004). The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes 53, 1068-1073.

128. Wenzel, E., Soldo, T., Erbersdobler, H., and Somoza, V. (2005). Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats. Molecular nutrition & food research 49, 482-494.

129. Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342.

130. Arichi, H., Kimura, Y., Okuda, H., Baba, K., Kozawa, M., and Arichi, S. (1982).Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism. Chemical & pharmaceutical bulletin 30, 1766-1770.

131. Garvin, S., Ollinger, K., and Dabrosin, C. (2006). Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer letters 231, 113-122.

132. Wang, Z., Huang, Y., Zou, J., Cao, K., Xu, Y., and Wu, J.M. (2002). Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. International journal of molecular medicine 9, 77-79.

133. Wang, Z., Zou, J., Cao, K., Hsieh, T.C., Huang, Y., and Wu, J.M. (2005).Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. International journal of molecular medicine 16, 533-540.

134. Floreani, M., Napoli, E., Quintieri, L., and Palatini, P. (2003). Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities and protects isolated atria from menadione toxicity. Life sciences 72, 2741-2750.

135. Valenzano, D.R., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L., and Cellerino, A. (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Current biology: CB 16, 296-300.

136. Athar, M., Back, J.H., Tang, X., Kim, K.H., Kopelovich, L., Bickers, D.R., and Kim, A.L. (2007). Resveratrol: a review of preclinical studies for human cancer prevention. Toxicology and applied pharmacology 224, 274-283.

137. Parker, J.A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., and Neri, C. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature genetics 37, 349-350.

138. Dong, W., Li, N., Gao, D., Zhen, H., Zhang, X., and Li, F. (2008). Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. Journal of vascular surgery 48, 709-714.

139. Shang, J., Chen, L.L., Xiao, F.X., Sun, H., Ding, H.C., and Xiao, H. (2008).Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta pharmacologica Sinica 29, 698-706.

140. Bertelli, A.A., Giovannini, L., Giannessi, D., Migliori, M., Bernini, W., Fregoni, M., and Bertelli, A. (1995). Antiplatelet activity of synthetic and natural resveratrol in red wine. International journal of tissue reactions 17, 1-3.

141. Ramadori, G., Gautron, L., Fujikawa, T., Vianna, C.R., Elmquist, J.K., and Coppari, R. (2009). Central administration of resveratrol improves diet-induced diabetes. Endocrinology 150, 5326-5333.

142. Landrault, N., Larronde, F., Delaunay, J.C., Castagnino, C., Vercauteren, J., Merillon, J.M., Gasc, F., Cros, G., and Teissedre, P.L. (2002). Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development. Journal of agricultural and food chemistry 50, 2046-2052.

143. Mazauric, J.P., and Salmon, J.M. (2005). Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. Journal of agricultural and food chemistry 53, 5647-5653.

144. Zghonda, N., Yoshida, S., Araki, M., Kusunoki, M., Mliki, A., Ghorbel, A., and Miyazaki, H. (2011). Greater effectiveness of epsilon-viniferin in red wine than its monomer resveratrol for inhibiting vascular smooth muscle cell proliferation and migration. Bioscience, biotechnology, and biochemistry 75, 1259-1267.

145. Ohara, K., Kusano, K., Kitao, S., Yanai, T., Takata, R., and Kanauchi, O. (2015). epsilon-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochemical and biophysical research communications 468, 877-882.

146. Actis-Goretta, L., Ottaviani, J.I., Keen, C.L., and Fraga, C.G. (2003). Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS letters 555, 597-600.

147. Ungvari, Z., Orosz, Z., Labinskyy, N., Rivera, A., Xiangmin, Z., Smith, K., and Csiszar, A. (2007). Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. American journal of physiology Heart and circulatory physiology 293, H37-47.

148. Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I., and Spiegelman, B.M. (1994). mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes & development 8, 1224-1234.

149. Tsai, A.G., Williamson, D.F., and Glick, H.A. (2011). Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obesity reviews: an official journal of the International Association for the Study of Obesity 12, 50-61.

150. Bouchard, C. (2010). Defining the genetic architecture of the predisposition to obesity: a challenging but not insurmountable task. The American journal of clinical nutrition 91, 5-6.

151. Heber, D. (2010). An integrative view of obesity. The American journal of clinical nutrition 91, 280S-283S.

152. Siriwardhana, N., Kalupahana, N.S., Cekanova, M., LeMieux, M., Greer, B., and Moustaid-Moussa, N. (2013). Modulation of adipose tissue inflammation by bioactive food compounds. The Journal of nutritional biochemistry 24, 613-623.

153. Gregoire, F.M., Smas, C.M., and Sul, H.S. (1998). Understanding adipocyte differentiation. Physiological reviews 78, 783-809.

154. Lowell, B.B. (1999). PPAR gamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99, 239-242.

155. Li, Y., Goto, T., Yamakuni, K., Takahashi, H., Takahashi, N., Jheng, H.F.,Nomura, W., Taniguchi, M., Baba, K., Murakami, S., et al. (2016). 4-Hydroxyderricin, as a PPARgamma Agonist, Promotes Adipogenesis, Adiponectin Secretion, and Glucose Uptake in 3T3-L1 Cells. Lipids 51, 787-795.

156. Nakamura, M.T., Yudell, B.E., and Loor, J.J. (2014). Regulation of energy metabolism by long-chain fatty acids. Progress in lipid research 53, 124-144.

157. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776.

158. Jiang, S., Wang, W., Miner, J., and Fromm, M. (2012). Cross regulation of sirtuin 1, AMPK, and PPARgamma in conjugated linoleic acid treated adipocytes. PloS one 7, e48874.

159. Jung, U.J., and Choi, M.S. (2014). Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International journal of molecular sciences 15, 6184-6223.

160. Geffken, D.F., Cushman, M., Burke, G.L., Polak, J.F., Sakkinen, P.A., and Tracy, R.P. (2001). Association between physical activity and markers of inflammation in a healthy elderly population. American journal of epidemiology 153, 242-250.

161. Pischon, T., Hankinson, S.E., Hotamisligil, G.S., Rifai, N., and Rimm, E.B. (2003). Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obesity research 11, 1055-1064.

162. Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., and Tobe, K.(2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of clinical investigation 116, 1784-1792.

163. Aguirre, L., Fernandez-Quintela, A., Arias, N., and Portillo, M.P. (2014).Resveratrol: anti-obesity mechanisms of action. Molecules 19, 18632-18655.

164. Kwon, J.Y., Seo, S.G., Yue, S., Cheng, J.X., Lee, K.W., and Kim, K.H. (2012).An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis. Nutrition research 32, 607-616.

165. Kang, N.E., Ha, A.W., Kim, J.Y., and Kim, W.K. (2012). Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes. Nutrition research and practice 6, 499-504.

166. Carpene, C., Gomez-Zorita, S., Deleruyelle, S., and Carpene, M.A. (2015).Novel strategies for preventing diabetes and obesity complications with natural polyphenols. Current medicinal chemistry 22, 150-164.

167. Cho, S.J., Jung, U.J., and Choi, M.S. (2012). Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. The British journal of nutrition 108, 2166-2175.

168. Shan, T., Ren, Y., and Wang, Y. (2013). Sirtuin 1 affects the transcriptional expression of adipose triglyceride lipase in porcine adipocytes. Journal of animal science 91, 1247-1254.

169. Mazauric, J.P., and Salmon, J.M. (2005). Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines. Journal of agricultural and food chemistry 53, 5647-5653.

170. Ngoc, T.M., Minh, P.T., Hung, T.M., Thuong, P.T., Lee, I., Min, B.S., and Bae,K. (2008). Lipoxygenase inhibitory constituents from rhubarb. Archives of pharmacal research 31, 598-605.

171. Yoo, M.Y., Oh, K.S., Lee, J.W., Seo, H.W., Yon, G.H., Kwon, D.Y., Kim, Y.S.,Ryu, S.Y., and Lee, B.H. (2007). Vasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aorta. Phytotherapy research: PTR 21, 186-189.

172. Nivelle, L., Aires, V., Rioult, D., Martiny, L., Tarpin, M., and Delmas, D. (2018). Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 116, 323-334.

173. Zghonda, N., Yoshida, S., Ezaki, S., Otake, Y., Murakami, C., Mliki, A., Ghorbel, A., and Miyazaki, H. (2012). epsilon-Viniferin is more effective than its monomer resveratrol in improving the functions of vascular endothelial cells and the heart. Bioscience, biotechnology, and biochemistry 76, 954-960.

174. Ohara, K., Kusano, K., Kitao, S., Yanai, T., Takata, R., and Kanauchi, O. (2015). epsilon-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochemical and biophysical research communications 468, 877-882.

175. Hsu, C.L., and Yen, G.C. (2007). Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. Journal of agricultural and food chemistry 55, 8404-8410.

176. Rayalam, S., Yang, J.Y., Ambati, S., Della-Fera, M.A., and Baile, C.A. (2008).Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytotherapy research: PTR 22, 1367-1371.

177. Zang, M., Xu, S., Maitland-Toolan, K.A., Zuccollo, A., Hou, X., Jiang, B., Wierzbicki, M., Verbeuren, T.J., and Cohen, R.A. (2006). Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 2180-2191.

178. Hwang, J.T., Kwon, D.Y., Park, O.J., and Kim, M.S. (2008). Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes & nutrition 2, 323-326.

179. Shang, J., Chen, L.L., Xiao, F.X., Sun, H., Ding, H.C., and Xiao, H. (2008).Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase. Acta pharmacologica Sinica 29, 698-706.

180. Tauriainen, E., Luostarinen, M., Martonen, E., Finckenberg, P., Kovalainen, M., Huotari, A., Herzig, K.H., Lecklin, A., and Mervaala, E. (2011). Distinct effects of calorie restriction and resveratrol on diet-induced obesity and Fatty liver formation. Journal of nutrition and metabolism 2011, 525094.

181. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood,J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196.

182. Barger, J.L., Kayo, T., Vann, J.M., Arias, E.B., Wang, J., Hacker, T.A., Wang, Y., Raederstorff, D., Morrow, J.D., Leeuwenburgh, C., et al. (2008). A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PloS one 3, e2264.

183. Ohta, H., and Itoh, N. (2014). Roles of FGFs as Adipokines in Adipose Tissue Development, Remodeling, and Metabolism. Frontiers in endocrinology 5, 18.

184. Ajmo, J.M., Liang, X., Rogers, C.Q., Pennock, B., and You, M. (2008).Resveratrol alleviates alcoholic fatty liver in mice. American journal of physiology Gastrointestinal and liver physiology 295, G833-842.

185. Veniant, M.M., Sivits, G., Helmering, J., Komorowski, R., Lee, J., Fan, W., Moyer, C., and Lloyd, D.J. (2015). Pharmacologic Effects of FGF21 Are Independent of the ""Browning"" of White Adipose Tissue. Cell metabolism 21, 731-738.

186. Hassan, M., El Yazidi, C., Landrier, J.F., Lairon, D., Margotat, A., and Amiot,M.J. (2007). Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochemical and biophysical research communications 361, 208-213.

187. Han, Y., Lee, S.H., Lee, I.S., and Lee, K.Y. (2017). Regulatory effects of 4-methoxychalcone on adipocyte differentiation through PPARgamma activation and reverse effect on TNF-alpha in 3T3-L1 cells. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 106, 17-24.

188. Staels, B., and Fruchart, J.C. (2005). Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54, 2460-2470.

189. He, Y., Li, Y., Zhao, T., Wang, Y., and Sun, C. (2013). Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway. PloS one 8, e70135.

190. Bai, L., Pang, W.J., Yang, Y.J., and Yang, G.S. (2008). Modulation of Sirt1 byresveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Molecular and cellular biochemistry 307, 129-140.

191. Ono, M., and Fujimori, K. (2011). Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. Journal of agricultural and food chemistry 59, 13346-13352.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る