リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhanced phase-amplitude coupling of human electrocorticography selectively in the posterior cortical region during rapid eye movement sleep」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhanced phase-amplitude coupling of human electrocorticography selectively in the posterior cortical region during rapid eye movement sleep

Togawa, Jumpei 京都大学 DOI:10.14989/doctor.r13513

2022.11.24

概要

【目的】動物やヒトの脳波において、異なる周波数帯域の活動が連関することが、認知・記憶など様々な脳内の情報処理過程で示されている。特に、徐波の即時位相と高周波の即時振幅の結合性(位相-振幅間カップリング[Phase-Amplitude Coupling: PAC])を、この連関の指標とすることが多い。ヒトの頭蓋内脳波では、徐波睡眠期(Slowwave sleep: SWS)でδ波とγ波のPACが高まることが知られるが、その生理学的意義は十分に明らかでない。Siclariらは、ヒトの睡眠中の頭皮上脳波のδ波やγ波のパワーを解析した結果から、夢をみている時には大脳後方皮質領域が重要な役割を果たすと考えた。これまで、睡眠中のヒトの皮質脳波(Electrocorticography: ECoG)のPACを解析し、大脳後方皮質領域の機能を詳細に研究した報告は無い。夢はREM睡眠中にみることが多く、脳波や脳血流などの研究から、REM睡眠中の脳は意識のある覚醒時に近い状態であると考えられている。本研究では、ヒトが夢をみたり意識を保持するための神経生理学的機構の作動原理をより明らかにするため、REM睡眠中および覚醒時には、大脳後方皮質領域で大脳前方領域より脳内の情報処理を反映するPACが高いという仮説をたてて、検証した。

【方法】2010年6月から2017年4月の間に、難治部分てんかん患者でてんかん外科の焦点同定のため、慢性硬膜下電極の留置を行った11人を対象とした。睡眠中の頭皮上脳波と眼電図、筋電図を同時記録し、睡眠段階を同定した。てんかん発作起始部やてんかん性放電を認める部位を除く計536電極のECoGを解析した。各電極、各睡眠段階のECoGにバンドパスフィルタをかけ、ヒルベルト変換により徐波の即時位相と高周波の即時振幅を計算し、両者の相関係数の絶対値を計算した。さらに即時振幅・即時位相のランダムな時間ずらしを行い連関を排除したデータを10000個生成し、各々で同様の相関係数の絶対値を計算し、その分布から、元の信号のPACの強度をZ値として算出した(PAC-Z)。統計解析に用いた徐波の中心周波数は0.44Hzおよび0.59Hz、高周波の中心周波数は50〜170Hzとした。本研究では、大脳後方皮質領域の関心領域を側頭・頭頂接合部とし、大脳前方皮質領域の関心領域を、前頭葉の外側面から中心前回を除いた部位とした。覚醒、軽睡眠期(Light sleep: LS)、SWSおよびREM睡眠で、大脳前方皮質領域および大脳後方皮質領域のPAC-Z値を比較した。統計検定にはMann-WhitneyのU検定を用い、多重比較補正はBonferonniの方法で行った。

【結果】大脳前方皮質領域には147電極、大脳後方皮質領域には50電極が含まれた。1)覚醒睡眠段階の特徴として大脳前方皮質領域、大脳後方皮質領域ともに、PAC-Z値はSWSとLSで高く、覚醒時とREM睡眠で低い傾向にあった。2)領域的特徴としてREM睡眠において、大脳後方皮質領域では大脳前方皮質領域よりも有意にPAC-Z値が高かった(p=0.004)。覚醒時にも、大脳後方皮質領域で大脳前方皮質領域よりPAC-Z値が高い傾向があったが、統計学的に有意ではなかった(p=0.074)。

【結論】REM睡眠でPAC-Z値が大脳後方皮質領域で大脳前方皮質領域よりも高いという結果は、大脳後方皮質領域が夢をみることにおいて重要な役割を担うという先行論文を支持し、ヒトがREM睡眠中に夢を見たり覚醒時に意識を保持する機構の一端を明らかにする知見と考えられる。

参考文献

Aeschbach D, Cutler AJ, Ronda JM. 2008. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci. 28:2766-2772.

Amiri M, Frauscher B, Gotman J. 2016. Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures. Front Hum Neurosci. 10:387.

Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, Singer W, Vicente R. 2014. Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol. 31C:51-61.

Aserinsky E, Kleitman N. 1953. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 118:273-274.

Axmacher N, Henseler MM, Jensen O, Weinreich I, Elger CE, Fell J. 2010. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc Natl Acad Sci U S A. 107:3228-3233.

Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G. 2017. Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence. J Neurosci. 37:9603-9613.

Braun AR. 1997. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain. 120 ( Pt 7):1173-1197.

Buzsaki G, Wang XJ. 2012. Mechanisms of gamma oscillations. Annu Rev Neurosci. 35:203- 225.

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. 2006. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 313:1626-1628.

Canolty RT, Knight RT. 2010. The functional role of cross-frequency coupling. Trends Cogn Sci. 14:506-515.

Chow HM, Horovitz SG, Carr WS, Picchioni D, Coddington N, Fukunaga M, Xu Y, Balkin TJ, Duyn JH, Braun AR. 2013. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A. 110:10300- 10305.

Crupi D, Hulse BK, Peterson MJ, Huber R, Ansari H, Coen M, Cirelli C, Benca RM, Ghilardi MF, Tononi G. 2009. Sleep-Dependent Improvement in Visuomotor Learning: A Causal Role for Slow Waves. Sleep. 32:1273-1284.

Dalal SS, Hamamé CM, Eichenlaub JB, Jerbi K. 2010. Intrinsic coupling between gamma oscillations, neuronal discharges, and slow cortical oscillations during human slow-wave sleep. J Neurosci. 30:14285-14287.

Del Cul A, Dehaene S, Reyes P, Bravo E, Slachevsky A. 2009. Causal role of prefrontal cortex in the threshold for access to consciousness. Brain. 132:2531-2540.

Eddy CM. 2016. The junction between self and other? Temporo-parietal dysfunction in neuropsychiatry. Neuropsychologia. 89:465-477.

Fontolan L, Morillon B, Liegeois-Chauvel C, Giraud AL. 2014. The contribution of frequency- specific activity to hierarchical information processing in the human auditory cortex. Nat Commun. 5:4694.

Fries P. 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 9:474-480.

Grivaz P, Blanke O, Serino A. 2017. Common and distinct brain regions processing multisensory bodily signals for peripersonal space and body ownership. Neuroimage. 147:602- 618.

Handel B, Haarmeier T. 2009. Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination. Neuroimage. 45:1040-1046.

He BJ, Zempel JM, Snyder AZ, Raichle ME. 2010. The temporal structures and functional significance of scale-free brain activity. Neuron. 66:353-369.

Hobson JA. 2009. REM sleep and dreaming: towards a theory of protoconsciousness. Nat Rev Neurosci. 10:803-813.

Koch C, Massimini M, Boly M, Tononi G. 2016. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci. 17:307-321.

Koike T, Kan S, Misaki M, Miyauchi S. 2011. Connectivity pattern changes in default-mode network with deep non-REM and REM sleep. Neurosci Res. 69:322-330.

Le Van Quyen M, Staba R, Bragin A, Dickson C, Valderrama M, Fried I, Engel J. 2010. Large- scale microelectrode recordings of high-frequency gamma oscillations in human cortex during sleep. J Neurosci. 30:7770-7782.

Marshall L, Helgadottir H, Molle M, Born J. 2006. Boosting slow oscillations during sleep potentiates memory. Nature. 444:610-613.

Mashour GA. 2018. The controversial correlates of consciousness. Science. 360:493-494. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. 2004. The sleep slow oscillation as a traveling wave. J Neurosci. 24:6862-6870.

Matsumoto R, Imamura H, Inouchi M, Nakagawa T, Yokoyama Y, Matsuhashi M, Mikuni N, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A. 2011. Left anterior temporal cortex actively engages in speech perception: A direct cortical stimulation study. Neuropsychologia. 49:1350-1354.

Matsumoto R, Nair DR, LaPresto E, Najm I, Bingaman W, Shibasaki H, Luders HO. 2004. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 127:2316-2330.

Motoi H, Miyakoshi M, Abel TJ, Jeong JW, Nakai Y, Sugiura A, Luat AF, Agarwal R, Sood S, Asano E. 2018. Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery. Epilepsia. 59:1954-1965.

Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. 2009. Source modeling sleep slow waves. Proc Natl Acad Sci U S A. 106:1608-1613.

Nakae T, Matsumoto R, Kunieda T, Arakawa Y, Kobayashi K, Shimotake A, Yamao Y, Kikuchi T, Aso T, Matsuhashi M, Yoshida K, Ikeda A, Takahashi R, Lambon Ralph MA, Miyamoto S. 2020. Connectivity Gradient in the Human Left Inferior Frontal Gyrus: Intraoperative Cortico- Cortical Evoked Potential Study. Cereb Cortex. 30:4633-4650.

Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, Gelbard-Sagiv H, Kipervasser S, Andelman F, Neufeld MY, Kramer U, Arieli A, Fried I, Malach R. 2008. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci. 11:1100-1108.

Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G. 2011. Regional slow waves and spindles in human sleep. Neuron. 70:153-169.

Nonoda Y, Miyakoshi M, Ojeda A, Makeig S, Juhasz C, Sood S, Asano E. 2016. Interictal high- frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves. Clin Neurophysiol. 127:2489-2499.

Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, Jackson G, Luders HO, Prayson R, Spreafico R, Vinters HV. 2004. Terminology and classification of the cortical dysplasias. Neurology. 62:S2-8.

Rechtschaffen A, Kales A. 1968. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects: Los Angeles (Calif.) : University of California. Brain research institute.

Schurz M, Tholen MG, Perner J, Mars RB, Sallet J. 2017. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities. Hum Brain Mapp. 38:4788-4805.

Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner B, Boly M, Postle BR, Tononi G. 2017. The neural correlates of dreaming. Nat Neurosci. 20:872-878.

Steriade M. 1996. Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci. 16:392-417.

Steriade M, Timofeev I, Grenier F. 2001. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol. 85:1969-1985.

Takeuchi S, Mima T, Murai R, Shimazu H, Isomura Y, Tsujimoto T. 2015. Gamma Oscillations and Their Cross-frequency Coupling in the Primate Hippocampus during Sleep. Sleep. 38:1085-1091.

Timofeev I. 2000. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex. 10:1185-1199.

Tort AB, Komorowski R, Eichenbaum H, Kopell N. 2010. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol. 104:1195- 1210.

Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H. 2009. Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci U S A. 106:20942-20947.

Tort ABL. 2008. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A. 105:20517-20522.

Usami K, Korzeniewska A, Matsumoto R, Kobayashi K, Hitomi T, Matsuhashi M, Kunieda T, Mikuni N, Kikuchi T, Yoshida K, Miyamoto S, Takahashi R, Ikeda A, Crone NE. 2019. The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation. Sleep. 42.

Valderrama M, Crepon B, Botella-Soler V, Martinerie J, Hasboun D, Alvarado-Rojas C, Baulac M, Adam C, Navarro V, Le Van Quyen M. 2012. Human gamma oscillations during slow wave sleep. PLoS One. 7:e33477.

van Vugt B. 2018. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex. Science. 360:537-542.

von Ellenrieder N, Gotman J, Zelmann R, Rogers C, Nguyen DK, Kahane P, Dubeau F, Frauscher B. 2020. How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity. Ann Neurol. 87:289-301.

von Stein A, Sarnthein J. 2000. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 38:301-313. Wieser HG, Blume WT, Fish D, Goldensohn E, Hufnagel A, King D, Sperling MR, Luders H, Pedley TA. 2001. ILAE Commission Report. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 42:282-286.

Wood JN, Grafman J. 2003. Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci. 4:139-147.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る