リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Experimental investigation of friction at buckling-restrained brace debonding interfaces」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Experimental investigation of friction at buckling-restrained brace debonding interfaces

SitlerBenjamin Jacob 竹内徹 寺澤友貴 寺嶋正雄 Ben Sitler Toru Takeuchi Yuki Terazawa Masao Terashima 東京工業大学 DOI:https://doi.org/10.1061/(ASCE)ST.1943-541X.0003184

2022.02

概要

The friction behavior of mortar–polymer–steel debonding interfaces was experimentally investigated to support numerical simulation of buckling-restrained braces (BRBs). Characteristic contact and slip demands were developed using two-dimensional Abaqus models to inform a full-scale test program. A stabilized dynamic friction coefficient of 0.065 was observed for reciprocating two-way sliding at the reference bearing pressure (20 MPa), slip amplitude (±20mm ), and velocity (30mm/s ) but increased to 0.16 at low bearing pressures and reduced to 0.03 for quasi-static loading. A recurring 40% dynamic amplification was observed in each one-way sliding cycle, where contact was only applied in one direction of the reciprocating motion, replicating the actual condition of BRB wavecrests. A system wear effect was also observed where small patches of mortar were exposed and then resurfaced, increasing the smeared friction coefficient by up to 0.15. Finally, the compressible debonding gap closely matched the polymer thickness, excluding textile backing, if present. A nonlinear friction model dependent on pressure–velocity–distance was developed, and recommendations were made to improve common testing provisions.

この論文で使われている画像

参考文献

AISC. 2016. Seismic provisions for structural steel buildings. AISC 341-16. Chicago: AISC.

Avci-Karatas, C., O. C. Celik, and S. Ozmen Eruslu. 2019. “Modeling of buckling restrained braces (BRBs) using full-scale experimental data.” KSCE J. Civ. Eng. -019-2430-y. 23 (10): 4431–4444. https://doi.org/10.1007/s12205

Black, C. J., N. Makris, and I. D. Aiken. 2004. “Component testing, seismic evaluation and characterization of buckling-restrained braces.” J. Struct. Eng. 130 (6): 880–894. https://doi.org/10.1061/(ASCE)0733-9445 (2004)130:6(880).

Budaházy, V., and L. Dunai. 2015. “Numerical analysis of concrete filled buckling restrained braces.” J. Constr. Steel Res. 115 (Dec): 92–105. https://doi.org/10.1016/j.jcsr.2015.07.028.

Chen, Q., C. L. Wang, S. Meng, and B. Zeng. 2016. “Effect of the unbond- ing materials on the mechanic behavior of all-steel buckling-restrained braces.” Eng. Struct. 111 (Mar): 478–493. https://doi.org/10.1016/j.engstruct.2015.12.030.

Guo, Y. L., J. Z. Tong, X. A. Wang, and B. H. Zhang. 2017. “Subassem- blage tests and numerical analyses of buckling-restrained braces under pre-compression.” Eng. Struct. 138 (May): 473–489. https://doi.org/10.1016/j.engstruct.2017.02.046.

Hasegawa, H., T. Takeuchi, M. Iwata, S. Yamada, and H. Akiyama. 1999. “Experimental study on dynamic behavior of unbonded braces.” [in Jap- anese] AIJ J. Tech. Des. 5(9):103–106. https://doi.org/10.3130/aijt.5.103.

Iwata, M., T. Kato, and A. Wada. 2000. “Buckling-restrained braces as hysteretic dampers.” In Behaviour of steel structures in seismic areas, 33–38. Boca Raton, FL: CRC Press.

Kasai, K., and K. Nishizawa. 2010. “Experiments and dynamic analysis method for buckling restrained brace.” [in Japanese] In Proc., AIJ Annual Meeting, 807–808. Toyama, Japan: Architectural Institute of Japan. https://www.aij.or.jp/paper/detail.html?productId=221821.

Kumar, M., A. S. Whittaker, and M. C. Constantinou. 2015. “Character- izing friction in sliding isolation bearings.” Earthquake Eng. Struct. Dyn. 44 (9): 1409–1425. https://doi.org/10.1002/eqe.2524.

Lanning, J., G. Benzoni, and C. M. Uang. 2016. “Using buckling-restrained braces on long-span bridges. I: Full-scale testing and design implica- tions.” J. Bridge Eng. 21 (5): 04016001. https://doi.org/10.1061 /(ASCE)BE.1943-5592.0000781.

Qu, Z., X. Jinzhen, Y. Cao, W. Li, and T. Wang. 2020. “Effects of strain rate on the hysteretic behavior of buckling-restrained braces.” J. Struct. Eng. 146 (1): 06019003. https://doi.org/10.1061/(ASCE)ST.1943 -541X.0002486.

Sitler, B. 2021. “Development of a multistage buckling-restrained brace and higher-mode buckling friction model for long cores.” Ph.D. thesis, Dept. of Architecture and Building Engineering, Tokyo Institute of Technology.

Sitler, B., and T. Takeuchi. 2021. “Higher-mode buckling and friction in long and large-scale buckling-restrained braces.” Struct. Des. Tall Spec. Build. 30 (1): e1812. https://doi.org/10.1002/tal.1812.

Smith, M. 2017. ABAQUS/explicit user’s manual, version 2017. Providence, RI: Simulia.

Stachowiak, G., and A. Batchelor. 2014. Engineering tribology. Amsterdam, Netherlands: Butterworth-Heinemann.

Stratan, A., C. I. Zub, and D. Dubina. 2020. “Prequalification of a set of buckling restrained braces: Part II—Numerical simulations.” Steel Compos. Struct. 34 (4): 561–580. https://doi.org/10.12989/scs.2020.34.4.561.

Tsai, K. C., A. C. Wu, C. Y. Wei, P. C. Lin, M. C. Chuang, and Y. J. Yu. 2014. “Welded end-slot connections and debonding layers for BRBs.” Earthquake Eng. Struct. Dyn. 43 (12): 1785–1807. https://doi.org/10a.1002/eqe.2423.

Yoshikawa, H., K. Nishimoto, H. Konishi, and A. Watanabe. 2010. “Fatigue properties of unbonded braces and u-shaped steel dampers.” [in Japanese] Nippon Steel Engineering Technical Report. Tokyo: Nippon Steel.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る