リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Novel Method for Generating Non-myeloablative Bone Marrow Chimeric Mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Novel Method for Generating Non-myeloablative Bone Marrow Chimeric Mice

森田, 麻衣子 筑波大学 DOI:10.15068/0002008143

2023.09.04

概要

Most adult bone marrow HSCs reside in a quiescent state at any given time and
infrequently cycle for self-renewal or differentiation into blood lineages. In clinical, HSCs
have been utilized Hematopoietic Stem Cell Transplantation (HSCT) for decades, but
the function of HSCs and the system to maintain HSCs are still largely unknown. In the
field of basic research, murine HSCs have been studied for a long time1. To analyze the
function of HSCs, ex vivo HSC culture and transplantation into lethally irradiated mice
are required12. However, there are several problems with the ex vivo culture medium.
One of them is that bovine serum albumin (BSA) which is used for HSC culture has lot
to lot differences29. Early hematopoietic stem cell culture media used fetal bovine serum
(FBS), which is used to culture cell lines. However, the use of FBS had the problem that
the biological effects of general "nutritional" serum factors and those of particular
regulatory factors are difficult to distinguish33. The influence of unknown substances
could be excluded by using BSA in the culture medium33. Recently, our group has shown
that lots differences of BSA also have significant effects on HSC proliferation and
engraftment, resulting in the lack of reproducibility between laboratories29. When
focusing on recombinant serum albumin, recombinant human serum albumin (rHSA)
became a candidate as a substitute for BSA. We found that rHSA produced in yeast could
proliferate HSCs ex vivo in culture and HSCs cultured in an rHSA-based medium
showed stable PB chimerism irrespective of lots. That chimerism was twice that of
fleshly isolated HSCs29. ...

この論文で使われている画像

参考文献

1.

Weissman, I. L. and Shizuru, J. A. The origins of the identification and isolation of

hematopoietic stem cells, and their capability to induce donor-specific

transplantation tolerance and treat autoimmune diseases. (2008) doi:10.1182/blood.

2.

Charlesworth, C. T., Hsu, I., Wilkinson, A. C. and Nakauchi, H. Immunological

barriers to haematopoietic stem cell gene therapy. Nature Reviews Immunology at

https://doi.org/10.1038/s41577-022-00698-0 (2022).

3.

Lorenz E, Uphoff D, Reid TR, S. E. Modification of irradiation injury in mice and

guinea pigs by bone marrow injections. J Natl Cancer Inst. 12, 197–201 (1951).

4.

Ford, C. E., Hamerton, J. L., Barnes, D. W. H. and Loutit, J. F. Cytological

identification of radiation-chimæras. Nature 177, 452–454 (1956).

5.

Till JE, M. E. A direct measurement of the radiation sensitivity of normal mouse

bone marrow cells. Radiat Res. vol. 14 213–22 (1961).

6.

Becker, A. J., McCulloch, E. A. and Till, J. E. Cytological Demonstration of the

Clonal Nature of Spleen Colonies Derived from Transplanted Mouse Marrow Cells.

Nature 197, 452–454 (1963).

7.

Wu, A. M., Till, J. E., Siminovitch, L. and McCulloch, E. A. A cytological study of the

capacity for differentiation of normal hemopoietic colony-forming cells. J. Cell.

Physiol. 69, 177–184 (1967).

8.

Wu, A. M., Till, J. E., Siminovitch, L. and McCulloch, E. A. Cytological evidence for a

relationship between normal hemotopoietic colony-forming cells and cells of the

lymphoid system. J. Exp. Med. 127, 455–464 (1968).

9.

Hulett, H. R., Bonner, W. A., Barrett, J. and Herzenberg, L. A. Cell Sorting:

68

Automated Separation of Mammalian Cells as a Function of Intracellular

Fluorescence. Science (80-. ). 166, 747–749 (1969).

10.

Köhler, G. and Milstein, C. Continuous cultures of fused cells secreting antibody of

predefined specificity. Nature 256, 495–497 (1975).

11.

Shen, F. W., Tung, J. S. and Boyse, E. A. Further definition of the Ly-5 system.

Immunogenetics 24, 146–149 (1986).

12.

Uchida, N. and Weissman, I. L. Searching for hematopoietic stem cells: evidence

that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone

marrow. J. Exp. Med. 175, 175–184 (1992).

13.

Ikuta, K. and Weissman, I. L. Evidence that hematopoietic stem cells express mouse

c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. U.

S. A. 89, 1502–1506 (1992).

14.

Osawa, M., Hanada, K., Hamada, H. and Nakauchi, H. Long-Term

Lymphohematopoietic Reconstitution by a Single CD34-Low/Negative Hematopoietic

Stem Cell. Science (80-. ). 273, 242–245 (1996).

15.

Spangrude, G. J., Heimfeld, S. and Weissman, I. L. Purification and characterization

of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

16.

Muller-Sieburg, C. E., Whitlock, C. A. and Weissman, I. L. Isolation of two early B

lymphocyte progenitors from mouse marrow: a committed pre-pre-B cell and a

clonogenic Thy-1-lo hematopoietic stem cell. Cell 44, 653–662 (1986).

17.

Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C. et al. SLAM

family receptors distinguish hematopoietic stem and progenitor cells and reveal

endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

18.

Morrison, S. J. and Scadden, D. T. The bone marrow niche for haematopoietic stem

69

cells. Nature 505, 327–334 (2014).

19.

Zhang, C. C. and Lodish, H. F. Cytokines regulating hematopoietic stem cell

function. Curr. Opin. Hematol. 15, 307–311 (2008).

20.

Alexander, W. S., Roberts, A. W., Nicola, N. A., Li, R. and Metcalf, D. Deficiencies in

progenitor cells of multiple hematopoietic lineages and defective

megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87,

2162–2170 (1996).

21.

Qian, H., Buza-Vidas, N., Hyland, C. D., Jensen, C. T., Antonchuk, J. et al. Critical

role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell

Stem Cell 1, 671–684 (2007).

22.

Sharma, Y., Astle, C. M. and Harrison, D. E. Heterozygous kit mutants with little or

no apparent anemia exhibit large defects in overall hematopoietic stem cell

function. Exp. Hematol. 35, 214–220 (2007).

23.

Seita, J., Ema, H., Ooehara, J., Yamazaki, S., Tadokoro, Y. et al. Lnk negatively

regulates self-renewal of hematopoietic stem cells by modifying thrombopoietinmediated signal transduction. Proc. Natl. Acad. Sci. U. S. A. 104, 2349–2354 (2007).

24.

Ema, H., Takano, H., Sudo, K. and Nakauchi, H. In vitro self-renewal division of

hematopoietic stem cells. J. Exp. Med. 192, 1281–1288 (2000).

25.

Kohnken, R., Porcu, P. and Mishra, A. Overview of the Use of Murine Models in

Leukemia and Lymphoma Research. Front. Oncol. 7, 22 (2017).

26.

Miyoshi, H. Gene delivery to hematopoietic stem cells using lentiviral vectors.

Methods Mol. Biol. 246, 429–438 (2004).

27.

Morgan, R. A., Gray, D., Lomova, A. and Kohn, D. B. Hematopoietic Stem Cell Gene

Therapy: Progress and Lessons Learned. Cell Stem Cell vol. 21 574–590 at

70

https://doi.org/10.1016/j.stem.2017.10.010 (2017).

28.

Granot, N. and Storb, R. History of hematopoietic cell transplantation: Challenges

and progress. Haematologica vol. 105 2716–2729 at

https://doi.org/10.3324/haematol.2019.245688 (2020).

29.

Ieyasu, A., Ishida, R., Kimura, T., Morita, M., Wilkinson, A. C. et al. An AllRecombinant Protein-Based Culture System Specifically Identifies Hematopoietic

Stem Cell Maintenance Factors. Stem cell reports 8, 500–508 (2017).

30.

Wilke, C., Holtan, S. G., Sharkey, L., Defor, T., Arora, M. et al. Marrow damage and

hematopoietic recovery following allogeneic bone marrow transplantation for acute

leukemias: Effect of radiation dose and conditioning regimen. Radiother. Oncol. 118,

65–71 (2016).

31.

Probin, V., Wang, Y. and Zhou, D. Busulfan-induced senescence is dependent on

ROS production upstream of the MAPK pathway. Free Radic Biol Med 42, 1858–

1865 (2007).

32.

Wang, Y., Liu, L., Pazhanisamy, S. K., Li, H., Meng, A. et al. Total body irradiation

causes residual bone marrow injury by induction of persistent oxidative stress in

murine hematopoietic stem cells. Free Radic. Biol. Med. 48, 348–356 (2010).

33.

Guilbert, L. J. and Iscove, N. N. Partial replacement of serum by selenite,

transferrin, albumin and lecithin in haemopoietic cell cultures. Nature 263, 594–

595 (1976).

34.

Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M. et al. Clonal

analysis unveils self-renewing lineage-restricted progenitors generated directly

from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

35.

Iwama, A., Oguro, H., Negishi, M., Kato, Y., Morita, Y. et al. Enhanced self-renewal

71

of hematopoietic stem cells mediated by the polycomb gene product Bmi-1.

Immunity 21, 843–851 (2004).

36.

Yamazaki, S., Iwama, A., Takayanagi, S., Eto, K., Ema, H. et al. TGF-beta as a

candidate bone marrow niche signal to induce hematopoietic stem cell hibernation.

Blood 113, 1250–1256 (2009).

37.

Nishikawa, S., Nakasato, M., Takakura, N., Ogawa, M., Kodama, H. et al. Stromal

cell-dependent bone marrow culture with a nearly protein-free defined medium.

Immunology Letters vol. 40 (1994).

38.

Taya, Y., Ota, Y., Wilkinson, A. C., Kanazawa, A., Watarai, H. et al. Depleting

dietary valine permits nonmyeloablative mouse hematopoietic stem cell

transplantation. Science 354, 1152–1155 (2016).

39.

Wilkinson, A. C., Morita, M., Nakauchi, H. and Yamazaki, S. Branched-chain amino

acid depletion conditions bone marrow for hematopoietic stem cell transplantation

avoiding amino acid imbalance-associated toxicity. Exp. Hematol. 63, 12-16.e1

(2018).

40.

Tsuji, Y., Yoshimura, N., Aoki, H., Sharov, A. A., Ko, M. S. H. et al. Maintenance of

undifferentiated mouse embryonic stem cells in suspension by the serum- and

feeder-free defined culture condition. Dev. Dyn. 237, 2129–2138 (2008).

41.

Wilkinson, A. C., Ishida, R., Kikuchi, M., Sudo, K., Morita, M. et al. Long-term ex

vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation.

Nature 571, 117–121 (2019).

42.

Wilkinson, A. C., Ishida, R., Nakauchi, H. and Yamazaki, S. Long-term ex vivo

expansion of mouse hematopoietic stem cells. Nat. Protoc. 15, 628–648 (2020).

43.

Rivera-Hernández, G., Antunes-Ricardo, M., Martínez-Morales, P. and Sánchez, M.

72

L. Polyvinyl alcohol based-drug delivery systems for cancer treatment. Int. J.

Pharm. 600, 120478 (2021).

44.

Biggers, J. D., Summers, M. C. and McGinnis, L. K. Polyvinyl alcohol and amino

acids as substitutes for bovine serum albumin in culture media for mouse

preimplantation embryos. Hum. Reprod. Update 3, 125–135 (1997).

45.

Lampreht Tratar, U., Horvat, S. and Cemazar, M. Transgenic Mouse Models in

Cancer Research. Front. Oncol. 8, 268 (2018).

46.

Bradley, A., Evans, M., Kaufman, M. H. and Robertson, E. Formation of germ-line

chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256

(1984).

47.

Evans, M. J. and Kaufman, M. H. Establishment in culture of pluripotential cells

from mouse embryos. Nature 292, 154–156 (1981).

48.

Hatada, S., Nikkuni, K., Bentley, S. A., Kirby, S. and Smithies, O. Gene correction in

hematopoietic progenitor cells by homologous recombination. Proc. Natl. Acad. Sci.

U. S. A. 97, 13807–13811 (2000).

49.

Stripecke, R., Carmen Villacres, M., Skelton, D., Satake, N., Halene, S. et al.

Immune response to green fluorescent protein: implications for gene therapy. Gene

Ther. 6, 1305–1312 (1999).

50.

Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S. et al. Multiorgan, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell

105, 369–377 (2001).

51.

Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. and Anderton, S. M. B cells

regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

52.

van Til, N. P., Stok, M., Aerts Kaya, F. S. F., de Waard, M. C., Farahbakhshian, E.

73

et al. Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the

Pompe disease phenotype. Blood 115, 5329–5337 (2010).

53.

Cao, X., Wu, X., Frassica, D., Yu, B., Pang, L. et al. Irradiation induces bone injury

by damaging bone marrow microenvironment for stem cells. Proc. Natl. Acad. Sci.

U. S. A. 108, 1609–1614 (2011).

54.

Busch, K. and Rodewald, H.-R. Unperturbed vs. post-transplantation hematopoiesis:

both in vivo but different. Curr. Opin. Hematol. 23, 295–303 (2016).

55.

Kuwatani, M., Ikarashi, Y., Mineishi, S., Asaka, M. and Wakasugi, H. An

irradiation-free nonmyeloablative bone marrow transplantation model: importance

of the balance between donor T-cell number and the intensity of conditioning.

Transplantation 80, 1145–1152 (2005).

56.

Peake, K., Manning, J., Lewis, C.-A., Barr, C., Rossi, F. et al. Busulfan as a

myelosuppressive agent for generating stable high-level bone marrow chimerism in

mice. J. Vis. Exp. e52553 (2015) doi:10.3791/52553.

57.

Cachaço, A. S., Carvalho, T., Santos, A. C., Igreja, C., Fragoso, R. et al. TNF-alpha

regulates the effects of irradiation in the mouse bone marrow microenvironment.

PLoS One 5, e8980 (2010).

58.

Yan, M., Kanbe, E., Peterson, L. F., Boyapati, A., Miao, Y. et al. A previously

unidentified alternatively spliced isoform of t(8;21) transcript promotes

leukemogenesis. Nat. Med. 12, 945–949 (2006).

59.

Ren, R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous

leukaemia. Nat. Rev. Cancer 5, 172–183 (2005).

60.

Cross, N. C. P., White, H. E., Ernst, T., Welden, L., Dietz, C. et al. Development and

evaluation of a secondary reference panel for BCR-ABL1 quantification on the

74

International Scale. Leukemia 30, 1844–1852 (2016).

61.

He, Y., Wertheim, J. A., Xu, L., Miller, J. P., Karnell, F. G. et al. The coiled-coil

domain and Tyr177 of bcr are required to induce a murine chronic myelogenous

leukemia-like disease by bcr/abl. Blood 99, 2957–2968 (2002).

62.

Kobayashi, T., Yamaguchi, T., Hamanaka, S., Kato-Itoh, M., Yamazaki, Y. et al.

Generation of rat pancreas in mouse by interspecific blastocyst injection of

pluripotent stem cells. Cell 142, 787–799 (2010).

63.

Vermes, I., Haanen, C., Steffens-Nakken, H. and Reutelingsperger, C. A novel assay

for apoptosis. Flow cytometric detection of phosphatidylserine expression on early

apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 184, 39–

51 (1995).

64.

Hu, Y. and Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing

depleted and enriched populations in stem cell and other assays. J. Immunol.

Methods 347, 70–78 (2009).

65.

Shimoto, M., Sugiyama, T. and Nagasawa, T. Numerous niches for hematopoietic

stem cells remain empty during homeostasis. Blood 129, 2124–2131 (2017).

66.

Redelsperger, I. M., Taldone, T., Riedel, E. R., Lepherd, M. L., Lipman, N. S. et al.

Stability of Doxycycline in Feed and Water and Minimal Effective Doses in

Tetracycline-Inducible Systems. J. Am. Assoc. Lab. Anim. Sci. 55, 467–474 (2016).

67.

Nakauchi, H. Isolation and clonal characterization of hematopoietic and liver stem

cells. Cornea 23, S2-7 (2004).

68.

Rossi, L., Challen, G. A., Sirin, O., Lin, K. K.-Y. and Goodell, M. A. Hematopoietic

stem cell characterization and isolation. Methods Mol. Biol. 750, 47–59 (2011).

69.

Rector, K., Liu, Y. and Van Zant, G. Comprehensive hematopoietic stem cell

75

isolation methods. Methods Mol. Biol. 976, 1–15 (2013).

70.

van der Valk, J., Brunner, D., De Smet, K., Fex Svenningsen, Å., Honegger, P. et al.

Optimization of chemically defined cell culture media - Replacing fetal bovine serum

in mammalian in vitro methods. Toxicology in Vitro vol. 24 1053–1063 at

https://doi.org/10.1016/j.tiv.2010.03.016 (2010).

71.

Bedzhov, I., Leung, C. Y., Bialecka, M. and Zernicka-Goetz, M. In vitro culture of

mouse blastocysts beyond the implantation stages. Nat. Protoc. 9, 2732–2739 (2014).

72.

Bruin, J. E., Erener, S., Vela, J., Hu, X., Johnson, J. D. et al. Characterization of

polyhormonal insulin-producing cells derived in vitro from human embryonic stem

cells. Stem Cell Res. 12, 194–208 (2014).

73.

Kobayashi, H., Morikawa, T., Okinaga, A., Hamano, F., Hashidate-Yoshida, T. et al.

Environmental Optimization Enables Maintenance of Quiescent Hematopoietic

Stem Cells Ex Vivo. Cell Rep. 28, 145-158.e9 (2019).

74.

Amos, P. J., Cagavi Bozkulak, E. and Qyang, Y. Methods of cell purification: A

critical juncture for laboratory research and translational science. Cells Tissues

Organs 195, 26–40 (2011).

75.

Ferrari, G., Thrasher, A. J. and Aiuti, A. Gene therapy using haematopoietic stem

and progenitor cells. Nat. Rev. Genet. 22, 216–234 (2021).

76.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. et al. A Programmable

Dual-RNA – Guided. 337, 816–821 (2012).

76

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る