リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of platelet replacement therapy using human induced pluripotent stem cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of platelet replacement therapy using human induced pluripotent stem cells

Nakamura, Sou Sugimoto, Naoshi Eto, Koji 京都大学 DOI:10.1111/dgd.12711

2021.02

概要

In the body, platelets mainly work as a hemostatic agent, and the lack of platelets can cause serious bleeding. Induced pluripotent stem (iPS) cells potentially allow for a stable supply of platelets that are independent of donors and eliminate the risk of infection. However, a major challenge in iPS cell-based systems is producing the number of platelets required for a single transfusion (more than 200 billion in Japan). Thus, development in large-scale culturing technology is required. In previous studies, we generated a self-renewable, immortalized megakaryocyte cell line by transfecting iPS cell-derived hematopoietic progenitor cells with c-MYC, BMI1, and BCL-XL genes. Optimization of the culture conditions, including the discovery of a novel fluid-physical factor, turbulence, in the production of platelets in vivo, and the development of bioreactors that apply turbulence have enabled us to generate platelets of clinical quality and quantity. We have further generated platelets deleted of HLA class I expression by using genetic modification technology for patients suffering from alloimmune transfusion refractoriness, since these patients are underserved by current blood donation systems. In this review, we highlight current research and our recent work on iPS cell-derived platelet induction.

この論文で使われている画像

参考文献

which is another alloantigen on platelets that can also cause allo-­PTR

Aihara, A., Koike, T., Abe, N., Nakamura, S., Sawaguchi, A., Nakamura,

T., Sugimoto, N., Nakauchi, H., Nishino, T., & Eto, K. (2017). Novel

TPO receptor agonist TA-­316 contributes to platelet biogenesis from

human iPS cells. Blood Adv. 1, 468–­476. https://doi.org/10.1182/

blood​advan​ces.20160 ​0 0844

Akashi, K., Traver, D., Miyamoto, T., & Weissman, I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature, 404, 193–­197. https://doi.org/10.1038/35004599

Avanzi, M. P., Oluwadara, O. E., Cushing, M. M., Mitchell, M. L., Fischer,

S., & Mitchell, W. B. (2016). A novel bioreactor and culture method

drives high yields of platelets from stem cells. Transfusion, 56, 170–­

178. https://doi.org/10.1111/trf.13375

Bartley, T. D., Bogenberger, J., Hunt, P., Li, Y. S., Lu, H. S., Martin, F.,

Chang, M. S., Samal, B., Nichol, J. L., Swift, S., Johnson, M. J., Hsu, R.-­

Y., Parker, V. P., Suggs, S., Skrine, J. D., Merewether, L. A., Clogston,

C., Hsu, E., Hokom, M. M., … Rosselman, R. A. (1994). Identification

and cloning of a megakaryocyte growth and development factor that

is a ligand for the cytokine receptor MpI. Cell, 77, 1117–­1124. https://

doi.org/10.1016/0092-­8674(94)90450​-­2

Beer, P. A., Campbell, P. J., Scott, L. M., Bench, A. J., Erber, W. N.,

Bareford, D., Wilkins, B. S., Reilly, J. T., Hasselbalch, H. C., Bowman,

R., Wheatley, K., Buck, G., Harrison, C. N., & Green, A. R. (2008).

MPL mutations in myeloproliferative disorders: Analysis of the

PT-­1 cohort. Blood, 112, 141–­

149. https://doi.org/10.1182/blood​

-­2008-­01-­131664

Blin, A., Le Goff, A., Magniez, A., Poirault-­Chassac, S., Teste, B., Sicot,

G., Nguyen, K. A., Hamdi, F. S., Reyssat, M., & Baruch, D. (2016).

Microfluidic model of the platelet-­

generating organ: Beyond bone

marrow biomimetics. Sci. Rep. 22, 21700. https://doi.org/10.1038/

srep2​1700

Briddell, R. A., Bruno, E., Cooper, R. J., Brandt, J. E., & Hoffman, R. (1991).

Effect of c-­kit ligand on in vitro human megakaryocytopoiesis. Blood,

78, 2854–­2859. https://doi.org/10.1182/blood.V78.11.2854.2854

and post-­transfusion purpura, in which platelet counts become even

lower post-­transfusion (Semple et al., 2011; Stanworth et al., 2015).

However, producing autologous platelets for each person takes considerable cost and time.

Alternatively, our institute and others have been stocking

iPS cells with homozygous HLA haplotypes (Turner et al., 2013;

Umekage et al., 2019). These cells have wide compatibility. It is estimated that the 10 most frequent lines of iPSCs with homozygous

HLA could cover approximately 50% of the Japanese population.

Ultimately, owing to the capability of gene editing iPS cells, HLA-­I

nullified iPS cell-­derived platelets have also been developed (Feng

et al., 2014; Gras et al., 2013; Suzuki et al., 2020) These cells can

serve as a universal product and do not require a library of different

HLA haplotypes. Furthermore, they are suitable as a platform for

further modified products, which may lead to novel therapies using

platelets.

10 | CO N C LU S I O N

Thirteen years have passed since the report of the establishment of

human iPS cells in 2007. Platelets derived from iPS cells have been

successfully manufactured to produce the number needed for clinical transfusions. As such, the first-­in-­human clinical trial of autologous iPSC-­derived platelets in patients with allo-­PTR was initiated

in 2019 (https://jrct.niph.go.jp/en-­lates​t-­detai​l/jRCTa​05019​0117).

184 A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Broudy, V. C., Lin, N. L., & Kaushansky, K. (1995). Thrombopoietin (c-­mpl

ligand) acts synergistically with erythropoietin, stem cell factor, and

interleukin-­

11 to enhance murine megakaryocyte colony growth

and increases megakaryocyte ploidy in vitro. Blood, 85, 1719–­1726.

https://doi.org/10.1182/blood.V85.7.1719.blood​journ​al857​1719

Christensen, J. L., & Weissman, I. L. (2001). Flk-­2 is a marker in hematopoietic stem cell differentiation: A simple method to isolate long-­

term stem cells. PNAS, 98, 14541–­14546. https://doi.org/10.1073/

pnas.26156​2798

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D.,

Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–­823.

https://doi.org/10.1126/scien​ce.1231143

Coppé, J. P., Patil, C. K., Rodier, F., Sun, Y., Muñoz, D. P., Goldstein, J.,

Nelson, P. S., Desprez, P. Y., & Campisi, J. (2008). Senescence-­

associated secretory phenotypes reveal cell-­nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6,

2853–­2868. https://doi.org/10.1371/journ​al.pbio.0060301

Deveaux, S., Filipe, A., Lemarchandel, V., Ghysdael, J., Roméo, P. H., &

Mignotte, V. (1996). Analysis of the thrombopoietin receptor (MPL)

promoter implicates GATA and Ets proteins in the coregulation of

megakaryocyte-­specific genes. Blood, 87, 4678–­4685. https://doi.

org/10.1182/blood.V87.11.4678.blood​journ​al871​14678

Di Buduo, C. A., Wray, L. S., Tozzi, L., Malara, A., Chen, Y., Ghezzi, C.

E., Smoot, D., Sfara, C., Antonelli, A., Spedden, E., Bruni, G., Staii,

C., De Marco, L., Magnani, M., Kaplan, D. L., & Balduini, A. (2015).

Programmable 3D silk bone marrow niche for platelet generation

ex vivo and modeling of megakaryopoiesis pathologies. Blood, 125,

2254–­2264. https://doi.org/10.1182/blood​-­2014-­0 8-­595561

Drachman, J. G., Griffin, J. D., & Kaushansky, K. (1995). The c-­Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-­Mpl. J.

Biol. Chem. 87, 2162–­2170. https://doi.org/10.1074/jbc.270.10.4979

Ema, H., & Nakauchi, H. (2000). Expansion of hematopoietic stem cells

in the developing liver of a mouse embryo. Blood, 95, 2284–­2288.

https://doi.org/10.1182/blood.V95.7.2284

Estcourt, L. J., Birchall, J., Allard, S., Bassey, S. J., Hersey, P., Kerr, J. P.,

Mumford, A. D., Stanworth, S. J., & Tinegate, H. (2017). Guidelines

for the use of platelet transfusions. Br. J. Haematol. 176, 365–­394.

https://doi.org/10.1111/bjh.14423

Feng, Q., Shabrani, N., Thon, J. N., Huo, H., Thiel, A., Machlus, K. R.,

Kim, K., Brooks, J., Li, F., Luo, C., Kimbrel, E. A., Wang, J., Kim, K.-­S.,

Italiano, J., Cho, J., Lu, S.-­J., & Lanza, R. (2014). Scalable generation of

universal platelets from human induced pluripotent stem cells. Stem

Cell Rep. 3, 817–­831. https://doi.org/10.1016/j.stemcr.2014.09.010

Frontelo, P., Manwani, D., Galdass, M., Karsunky, H., Lohmann, F.,

Gallagher, P. G., & Bieker, J. J. (2007). Novel role for EKLF in megakaryocyte lineage commitment. Blood, 110, 3871–­3880. https://doi.

org/10.1182/blood​-­2007-­03-­0 82065

Gobbi, G., Mirandola, P., Carubbi, C., Masselli, E., Sykes, S. M., Ferraro,

F., Nouvenne, A., Thon, J. N., Italiano, J. E., & Vitale, M. (2013).

Proplatelet generation in the mouse requires PKCϵ-­dependent RhoA

inhibition. Blood, 122, 1305–­1311.

Gras, C., Schulze, K., Goudeva, L., Guzman, C. A., Blasczyk, R., &

Figueiredo, C. (2013). HLA-­universal platelet transfusions prevent

platelet refractoriness in a mouse model. Hum. Gene Ther. 24, 1018–­

1028. https://doi.org/10.1089/hum.2013.074

Grozovsky, R., Begonja, A. J., Liu, K., Visner, G., Hartwig, J. H., Falet, H.,

& Hoffmeister, K. M. (2015). The Ashwell-­Morell receptor regulates

hepatic thrombopoietin production via JAK2-­STAT3 signaling. Nat.

Med. 21, 47–­54. https://doi.org/10.1038/nm.3770

Guo, Y., Niu, C., Breslin, P., Tang, M., Zhang, S., Wei, W., Kini, A. R., Paner,

G. P., Alkan, S., Morris, S. W., Diaz, M., Stiff, P. J., & Zhang, J. (2009).

c-­Myc-­mediated control of cell fate in megakaryocyte-­erythrocyte

progenitors. Blood, 114, 2097–­2106. https://doi.org/10.1182/blood​

-­2009-­01-­197947

NAKAMURA et al.

Hansen, M., Varga, E., Aarts, C., Wust, T., Kuijpers, T., von Lindern, M.,

& van den Akker, E. (2018). Efficient production of erythroid, megakaryocytic and myeloid cells, using single cell-­derived iPSC colony

differentiation. Stem Cell Res. 29, 232–­244. https://doi.org/10.1016/j.

scr.2018.04.016

Haruta, M., Tomita, Y., Yuno, A., Matsumura, K., Ikeda, T., Takamatsu, K.,

Haga, E., Koba, C., Nishimura, Y., & Senju, S. (2013). TAP-­deficient

human iPS cell-­derived myeloid cell lines as unlimited cell source for

dendritic cell-­like antigen-­presenting cells. Gene Ther. 20, 504–­513.

https://doi.org/10.1038/gt.2012.59

Hirata, S., Murata, T., Suzuki, D., Nakamura, S., Jono-­Ohnishi, R., Hirose,

H., Sawaguchi, A., Nishimura, S., Sugimoto, N., & Eto, K. (2017).

Selective inhibition of ADAM17 efficiently mediates glycoprotein

Ibα retention during ex vivo generation of human induced pluripotent stem cell-­derived platelets. Stem Cells Transl. Med. 6, 720–­730.

https://doi.org/10.5966/sctm.2016-­0104

Hirose, S.-­I., Takayama, N., Nakamura, S., Nagasawa, K., Ochi, K., Hirata, S.,

Yamazaki, S., Yamaguchi, T., Otsu, M., Sano, S., Takahashi, N., Sawaguchi,

A., Ito, M., Kato, T., Nakauchi, H., & Eto, K. (2013). Immortalization of

erythroblasts by c-­MYC and BCL-­XL enables large-­scale erythrocyte

production from human pluripotent stem cells. Stem Cell Rep. 1, 499–­

508. https://doi.org/10.1016/j.stemcr.2013.10.010

Ito, Y., Nakamura, S., Sugimoto, N., Shigemori, T., Kato, Y., Ohno, M.,

Sakuma, S., Ito, K., Kumon, H., Hirose, H., Okamoto, H., Nogawa,

M., Iwasaki, M., Kihara, S., Fujio, K., Matsumoto, T., Higashi, N.,

Hashimoto, K., Sawaguchi, A., … Eto, K. (2018). Turbulence activates

platelet biogenesis to enable clinical scale ex vivo production. Cell,

174, 636–­6 48.

Junt, T., Schulze, H., Chen, Z., Massberg, S., Goerge, T., Krueger, A.,

Wagner, D. D., Graf, T., Italiano, J. E., Shivdasani, R. A., & von Andrian,

U. H. (2007). Dynamic visualization of thrombopoiesis within bone

marrow. Science, 317, 1767–­1770.

Kaushansky, K., Lok, S. I., Holly, R. D., Broudy, V. C., Lin, N., Bailey, M.

C., Forstrom, J. W., Buddle, M. M., Oort, P. J., Hagen, F. S., Roth,

G. J., Papayannopoulou, T., & Foster, D. C. (1994). Promotion of

megakaryocyte progenitor expansion and differentiation by the

c-­

Mpl ligand thrombopoietin. Nature, 369, 568–­

571. https://doi.

org/10.1038/369568a0

Kondo, M., Weissman, I. L., & Akashi, K. (1997). Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell, 91,

661–­672. https://doi.org/10.1016/S0092​-­8674(00)80453​-­5

Kosaki, G. (2008). Platelet production by megakaryocytes: Protoplatelet

theory justifies cytoplasmic fragmentation model. Int. J. Hematol. 88,

255–­267. https://doi.org/10.1007/s1218​5-­0 08-­0147-­7

Kurita, R., Suda, N., Sudo, K., Miharada, K., Hiroyama, T., Miyoshi, H.,

Tani, K., & Nakamura, Y. (2013). Establishment of immortalized

human erythroid progenitor cell lines able to produce enucleated

red blood cells. PLoS One, 8, e59890. https://doi.org/10.1371/journ​

al.pone.0059890

Lefrançais, E., Ortiz-­Muñoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah,

D. M., Thornton, E. E., Headley, M. B., David, T., Coughlin, S. R.,

Krummel, M. F., Leavitt, A. D., Passegué, E., & Looney, M. R. (2017).

The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544, 105–­109. https://doi.org/10.1038/

natur​e21706

Levin, J., Peng, J. P., Baker, G. R., Villeval, J. L., Lecine, P., Burstein, S. A., &

Shivdasani, R. A. (1999). Pathophysiology of thrombocytopenia and

anemia in mice lacking transcription factor NF-­E2. Blood, 94, 3037–­

3047. https://doi.org/10.1182/blood.V94.9.3037

Liu, Z. J., Italiano, J., Ferrer-­Marin, F., Gutti, R., Bailey, M., Poterjoy, B.,

Rimsza, L., & Sola-­V isner, M. (2011). Developmental differences in

megakaryocytopoiesis are associated with up-­

regulated TPO signaling through mTOR and elevated GATA-­1 levels in neonatal megakaryocytes. Blood, 117, 4106–­4117. https://doi.org/10.1182/blood​

-­2010-­07-­293092

NAKAMURA et al.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Lordier, L., Bluteau, D., Jalil, A., Legrand, C., Pan, J., Rameau, P., Jouni, D.,

Bluteau, O., Mercher, T., Leon, C., Gachet, C., Debili, N., Vainchenker,

W., Raslova, H., & Chang, Y. (2012). RUNX1-­induced silencing of non-­

muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nat. Comm. 3, 717. https://doi.org/10.1038/ncomm​s1704

Machlus, K. R., & Italiano, J. E. (2013). The incredible journey: From

megakaryocyte development to platelet formation. J. Cell Biol. 201,

785–­796. https://doi.org/10.1083/jcb.20130​4 054

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville,

J. E., & Church, G. M. (2013). RNA-­guided human genome engineering via Cas9. Science, 339, 823–­826.

Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86, 897–­906. https://doi.

org/10.1016/S0092​-­8674(00)80165​-­8

Metcalf, D., Hilton, D., & Nicola, N. (1991). Leukemia inhibitory factor

can potentiate murine megakaryocyte production in vitro. Blood, 77,

2150–­2153. https://doi.org/10.1182/blood.V77.10.2150.2150

Moore, M. A. S., & Metcalf, D. (1970). Ontogeny of the haemopoietic

system: Yolk sac origin of in vivo and in vitro colony forming cells in

the developing mouse embryo. Br. J. Haematol. 18, 279–­296. https://

doi.org/10.1111/j.1365-­2141.1970.tb014​43.x

Moreau, T., Evans, A. L., Vasquez, L., Tijssen, M. R., Yan, Y., Trotter,

M. W., Howard, D., Colzani, M., Arumugam, M., Wu, W. H., Dalby,

A., Lampela, R., Bouet, G., Hobbs, C. M., Pask, D. C., Payne, H.,

Ponomaryov, T., Brill, A., Soranzo, N., … Ghevaert, C. (2016). Large-­

scale production of megakaryocytes from human pluripotent stem

cells by chemically defined forward programming. Nat. Commun. 7,

11208. https://doi.org/10.1038/ncomm​s11208

Nakagawa, Y., Nakamura, S., Nakajima, M., Endo, H., Dohda, T., Takayama,

N., Nakauchi, H., Arai, F., Fukuda, T., & Eto, K. (2013). Two differential

flows in a bioreactor promoted platelet generation from human pluripotent stem cell-­derived megakaryocytes. Exp. Hematol. 41, 742–­

748. https://doi.org/10.1016/j.exphem.2013.04.007

Nakamura, S., Takayama, N., Hirata, S., Seo, H., Endo, H., Ochi, K., Fujita,

K.-­I., Koike, T., Harimoto, K.-­I., Dohda, T., Watanabe, A., Okita, K.,

Takahashi, N., Sawaguchi, A., Yamanaka, S., Nakauchi, H., Nishimura,

S., & Eto, K. (2014). Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell, 14, 535–­548. https://doi.org/10.1016/j.

stem.2014.01.011

Navarro, S., Debili, N., Le Couedic, J. P., Klein, B., Breton-­Gorius, J., Doly,

J., & Vainchenker, W. (1991). Interleukin-­6 and its receptor are expressed by human megakaryocytes: In vitro effects on proliferation

and endoreplication. Blood, 77, 461–­471. https://doi.org/10.1182/

blood.V77.3.461.461

Nishi, E. (2013). Nardilysin. In Handbook of proteolytic enzymes, N.

Rawlings and G. Salvesen, eds. (London: Academic Press) (vol. 1, pp.

1421–­1426).

Nishimura, S., Nagasaki, M., Kunishima, S., Sawaguchi, A., Sakata,

A., Sakaguchi, H., Ohmori, T., Manabe, I., Italiano, J. E., Ryu, T.,

Takayama, N., Komuro, I., Kadowaki, T., Eto, K., & Nagai, R. (2015).

IL-­1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J. Cell Biol. 209, 453–­466. https://doi.

org/10.1083/jcb.20141​0 052

Nishimura, T., Kaneko, S., Kawana-­Tachikawa, A. I., Tajima, Y., Goto, H.,

Zhu, D., Nakayama-­Hosoya, K., Iriguchi, S., Uemura, Y., Shimizu, T.,

Takayama, N., Yamada, D., Nishimura, K., Ohtaka, M., Watanabe, N.,

Takahashi, S., Iwamoto, A., Koseki, H., Nakanishi, M., … Nakauchi, H.

(2013). Generation of rejuvenated antigen-­specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell, 12,

114–­126. https://doi.org/10.1016/j.stem.2012.11.002

Noetzli, L. J., French, S. L., & Machlus, K. R. (2019). New insights into

the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscl. Thromb. Vasc. Biol. 39, 1288–­1300. https://doi.

org/10.1161/ATVBA​HA.119.312129

185

Ono, Y., Wang, Y., Suzuki, H., Okamoto, S., Ikeda, Y., Murata, M., Poncz,

M., & Matsubara, Y. (2012). Induction of functional platelets from

mouse and human fibroblasts by p45NF-­E2/Maf. Blood, 120, 3812–­

3821. https://doi.org/10.1182/blood​-­2012-­02-­413617

Osawa, M., Hanada, K. I., Hamada, H., & Nakauchi, H. (1996). Long-­term

lymphohematopoietic reconstitution by a single CD34-­low/negative hematopoietic stem cell. Science, 273, 242–­

245. https://doi.

org/10.1126/scien​ce.273.5272.242

Palis, J., Robertson, S., Kennedy, M., Wall, C., & Keller, G. (1999).

Development of erythroid and myeloid progenitors in the yolk sac

and embryo proper of the mouse. Development, 126, 5073–­5084.

Pietras, E. M., Reynaud, D., Kang, Y. A., Carlin, D., Calero-­Nieto, F. J.,

Leavitt, A. D., Stuart, J. A., Göttgens, B., & Passegué, E. (2015).

Functionally distinct subsets of lineage-­

biased multipotent progenitors control blood production in normal and regenerative

conditions. Cell Stem Cell, 17, 35–­

46. https://doi.org/10.1016/j.

stem.2015.05.003

Rodriguez-­Fraticelli, A. E., Wolock, S. L., Weinreb, C. S., Panero, R., Patel,

S. H., Jankovic, M., Sun, J., Calogero, R. A., Klein, A. M., & Camargo,

F. D. (2018). Clonal analysis of lineage fate in native haematopoiesis.

Nature, 553, 212–­216. https://doi.org/10.1038/natur​e25168

Sanjuan-­Pla, A., Macaulay, I. C., Jensen, C. T., Woll, P. S., Luis, T. C., Mead,

A., Moore, S., Carella, C., Matsuoka, S., Jones, T. B., Chowdhury, O.,

Stenson, L., Lutteropp, M., Green, J. C. A., Facchini, R., Boukarabila,

H., Grover, A., Gambardella, A., Thongjuea, S., … Jacobsen, S. E. W.

(2013). Platelet-­biased stem cells reside at the apex of the haematopoietic stem-­

cell hierarchy. Nature, 502, 232–­

236. https://doi.

org/10.1038/natur​e12495

Semeniak, D., Kulawig, R., Stegner, D., Meyer, I., Schwiebert, S., Bösing,

H., Eckes, B., Nieswandt, B., & Schulze, H. (2016). Proplatelet formation is selectively inhibited by collagen type I through Syk-­

independent GPVI signaling. J. Cell Sci. 129, 3473–­3 484. https://doi.

org/10.1242/jcs.187971

Semple, J. W., Italiano, J. E., & Freedman, J. (2011). Platelets and the

immune continuum. Nat. Rev. Immunol. 11, 264–­

274. https://doi.

org/10.1038/nri2956

Shimizu, R., Kobayashi, E., Engel, J. D., & Yamamoto, M. (2009). Induction

of hyperproliferative fetal megakaryopoiesis by an N-­

terminally

truncated GATA1 mutant. Genes to Cells, 14, 1119–­1131. https://doi.

org/10.1111/j.1365-­2443.2009.01338.x

Shimizu, R., Ohneda, K., Engel, J. D., Trainor, C. D., & Yamamoto, M.

(2004). Transgenic rescue of GATA-­1-­deficient mice with GATA-­1

lacking a FOG-­1 association site phenocopies patients with X-­linked

thrombocytopenia. Blood, 103, 2650–­2657. https://doi.org/10.1182/

blood​-­2003-­07-­2514

Shivdasani, R. A., Rosenblatt, M. F., Zucker-­Franklin, D., Jackson, C. W.,

Hunt, P., Saris, C. J. M., & Orkin, S. H. (1995). Transcription factor

NF-­E2 is required for platelet formation independent of the actions

of thrombopoeitin/MGDF in megakaryocyte development. Cell, 81,

695–­704. https://doi.org/10.1016/0092-­8674(95)90531​-­6

Silver, L., & Palis, J. (1997). Initiation of murine embryonic erythropoiesis:

A spatial analysis. Blood, 89, 1154–­1164. https://doi.org/10.1182/

blood.V89.4.1154

Stachura, D. L., Chou, S. T., & Weiss, M. J. (2006). Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-­

1. Blood, 107, 87–­97. https://doi.org/10.1182/blood​-­2005-­07-­2740

Stanworth, S. J., Navarrete, C., Estcourt, L., & Marsh, J. (2015). Platelet

refractoriness –­Practical approaches and ongoing dilemmas in

patient management. Bri. J. Haematol. 171, 297–­

3 05. https://doi.

org/10.1111/bjh.13597

Strassel, C., Brouard, N., Mallo, L., Receveur, N., Mangin, P., Eckly, A.,

Bieche, I., Tarte, K., Gachet, C., & Lanza, F. (2016). Aryl hydrocarbon receptor-­dependent enrichment of a megakaryocytic precursor

with a high potential to produce proplatelets. Blood, 127, 2231–­2240.

https://doi.org/10.1182/blood​-­2015-­09-­670208

186 A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Strüßmann, T., Tillmann, S., Wirtz, T., Bucala, R., von Hundelshausen, P., &

Bernhagen, J. (2013). Platelets are a previously unrecognised source

of MIF. Thromb. Haemost. 110, 1004–­1013. https://doi.org/10.1160/

TH13-­01-­0 049

Suzuki, D., Flahou, C., Yoshikawa, N., Stirblyte, I., Hayashi, Y., Sawaguchi,

A., Akasaka, M., Nakamura, S., Higashi, N., Xu, H., Matsumoto, T.,

Fujio, K., Manz, M. G., Hotta, A., Takizawa, H., Eto, K., & Sugimoto,

N. (2020). iPSC-­derived platelets depleted of HLA Class I are inert to

anti-­HLA Class I and Natural Killer Cell Immunity. Stem Cell Rep. 14,

49–­59. https://doi.org/10.1016/j.stemcr.2019.11.011

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K.,

& Yamanaka, S. (2007). Induction of pluripotent stem cells from adult

human fibroblasts by defined factors. Cell, 131, 861–­872. https://doi.

org/10.1016/j.cell.2007.11.019

Takayama, N., Nishikii, H., Usui, J., Tsukui, H., Sawaguchi, A., Hiroyama, T.,

Eto, K., & Nakauchi, H. (2008). Generation of functional platelets from

human embryonic stem cells in vitro via ES-­sacs, VEGF-­promoted

structures that concentrate hematopoietic progenitors. Blood, 111,

5298–­5306. https://doi.org/10.1182/blood​-­2007-­10-­117622

Takayama, N., Nishimura, S., Nakamura, S., Shimizu, T., Ohnishi, R., Endo,

H., Yamaguchi, T., Otsu, M., Nishimura, K., Nakanishi, M., Sawaguchi,

A., Nagai, R., Takahashi, K., Yamanaka, S., Nakauchi, H., & Eto, K.

(2010). Transient activation of c-­MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells.

J. Exp. Med. 207, 2817–­2830. https://doi.org/10.1084/jem.20100844

Teramura, M., Katahira, J., Hoshino, S., Motoji, T., Oshimi, K., & Mizoguchi,

H. (1988). Clonal growth of human megakaryocyte progenitors in

serum-­free cultures: Effect of recombinant human interleukin 3. Exp.

Hematol. 16, 843–­8 48.

Themeli, M., Kloss, C. C., Ciriello, G., Fedorov, V. D., Perna, F., Gonen,

M., & Sadelain, M. (2013). Generation of tumor-­targeted human T

lymphocytes from induced pluripotent stem cells for cancer therapy.

Nat. Biotechnol. 31, 928–­933. https://doi.org/10.1038/nbt.2678

Thompson, A., Zhang, Y., Kamen, D., Jackson, C. W., Cardiff, R. D., &

Ravid, K. (1996). Deregulated expression of c-­myc in megakaryocytes

of transgenic mice increases megakaryopoiesis and decreases polyploidization. J. Biolog. Chem. 271, 22976–­22982.

Thomson, J. A. (1998). Embryonic stem cell lines derived from human

blastocysts. Science, 282, 1145–­1147. https://doi.org/10.1126/scien​

ce.282.5391.1145

Thon, J. N., Mazutis, L., Wu, S., Sylman, J. L., Ehrlicher, A., Machlus, K. R.,

Feng, Q., Lu, S., Lanza, R., Neeves, K. B., Weitz, D. A., & Italiano, J. E.

(2014). Platelet bioreactor-­on-­a-­chip. Blood, 124, 1857–­1867. https://

doi.org/10.1182/blood​-­2014-­05-­574913

Thon, J. N., Montalvo, A., Patel-­Hett, S., Devine, M. T., Richardson, J. L.,

Ehrlicher, A., Larson, M. K., Hoffmeister, K., Hartwig, J. H., & Italiano,

J. E. (2010). Cytoskeletal mechanics of proplatelet maturation and

NAKAMURA et al.

platelet release. J. Cell Biol. 191, 861–­874. https://doi.org/10.1083/

jcb.20100​6102

Tober, J., Koniski, A., McGrath, K. E., Vemishetti, R., Emerson, R., De

Mesy-­Bentley, K. K. L., Waugh, R., & Palis, J. (2007). The megakaryocyte lineage originates from hemangioblast precursors and

is an integral component both of primitive and of definitive hematopoiesis. Blood, 109, 1433–­

1441. https://doi.org/10.1182/blood​

-­2006-­06-­031898

Tozawa, K., Ono-­Uruga, Y., Yazawa, M., Mori, T., Murata, M., Okamoto,

S., Ikeda, Y., & Matsubara, Y. (2019). Megakaryocytes and platelets from a novel human adipose tissue–­

derived mesenchymal

stem cell line. Blood, 133, 633–­6 43. https://doi.org/10.1182/blood​

-­2018-­0 4-­8 42641

Turner, M., Leslie, S., Martin, N. G., Peschanski, M., Rao, M., Taylor, C. J.,

Trounson, A., Turner, D., Yamanaka, S., & Wilmut, I. (2013). Toward

the development of a global induced pluripotent stem cell library. Cell

Stem Cell, 13, 382–­384. https://doi.org/10.1016/j.stem.2013.08.003

Umekage, M., Sato, Y., & Takasu, N. (2019). Overview: An iPS cell stock at

CiRA. Inflamm. Regen. 39, 17.

Vizcardo, R., Masuda, K., Yamada, D., Ikawa, T., Shimizu, K., Fujii, S.

I., Koseki, H., & Kawamoto, H. (2013). Regeneration of human

tumor antigen-­

specific T cells from iPSCs derived from mature

CD8+ T cells. Cell Stem Cell, 12, 31–­36. https://doi.org/10.1016/j.

stem.2012.12.006

Wang, X., Crispino, J. D., Letting, D. L., Nakazawa, M., Poncz, M., &

Blobel, G. A. (2002). Control of megakaryocyte-­specific gene expression by GATA-­1 and FOG-­1: Role of Ets transcription factors. EMBO J.

21, 5225–­5234. https://doi.org/10.1093/emboj/​cdf527

Watanabe, N., Nogawa, M., Ishiguro, M., Maruyama, H., Shiba, M.,

Satake, M., Eto, K., & Handa, M. (2017). Refined methods to evaluate

the in vivo hemostatic function and viability of transfused human

platelets in rabbit models. Transfusion, 57, 2035–­2044. https://doi.

org/10.1111/trf.14189

Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M.,

Rudolph, K. L., Ema, H., & Nakauchi, H. (2013). Clonal analysis unveils self-­renewing lineage-­restricted progenitors generated directly

from hematopoietic stem cells. Cell, 154, 1112–­

1126. https://doi.

org/10.1016/j.cell.2013.08.007

How to cite this article: Nakamura S, Sugimoto N, Eto K.

Development of platelet replacement therapy using human

induced pluripotent stem cells. Develop Growth Differ.

2021;63:178–­186. https://doi.org/10.1111/dgd.12711

...

参考文献をもっと見る