リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Subseasonal Forecast Skill for Weekly Mean Atmospheric Variability Over the Northern Hemisphere in Winter and Its Relationship to Midlatitude Teleconnections」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Subseasonal Forecast Skill for Weekly Mean Atmospheric Variability Over the Northern Hemisphere in Winter and Its Relationship to Midlatitude Teleconnections

Yamagami, Akio 松枝, 未遠 筑波大学

2022.07.07

概要

This study assesses the subseasonal predictability of the weekly mean geopotential height anomaly at 500 hPa and its relationship to teleconnections over the Northern Hemisphere in winter. The skill over the North Pacific, Canada, and Greenland is higher than over other areas for weeks 3 and 4 forecasts. These peaks correspond to the centers of action for the Pacific–North American (PNA) pattern and the North Atlantic Oscillation (NAO). PNA (NAO phase) predictions are better for El Niño years at lead times of 3–4 weeks (2–4 weeks). The effects of La Niña forcing on PNA and NAO forecasts are small compared with the El Niño forcing. Numerical models have a negative PNA bias at these lead times in La Niña years. Results suggest that the improvement in the midlatitude upper‐level jet rather than in the response to El Niño–Southern Oscillation forcing in the tropics could lead to better S2S predictions.

この論文で使われている画像

参考文献

Amini, S., & Straus, D. M. (2019). Control of storminess over the Pacific and North America by circulation regimes. Climate Dynamics, 52(7‐8), 4749–4770. https://doi.org/10.1007/s00382-018-4409-7

Brunet, G., Shapiro, M., Hoskins, B., Moncrieff, M., Dole, R., Kiladis, G. N., et al. (2010). Collaboration of the weather and climate com- munities to advance subseasonal‐to‐seasonal prediction. Bulletin of the American Meteorological Society, 91(10), 1397–1406. https://doi. org/10.1175/2010BAMS3013.1

DelSole, T., Trenary, L., Tippett, M. K., & Pegion, K. (2017). Predictability of week‐3–4 average temperature and precipitation over the contiguous United States. Journal of Climate, 30, 3499–3512. https://doi.org/10.1175/JCLI-D-16-0567.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Hoskins, B. J., & Ambrizzi, T. (1993). Rossby wave propagation on a realistic longitudinally varying fiow. Journal of the Atmospheric Sciences, 50, 1661–1671. https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2

Hoskins, B. J., & Karoly, D. J. (1981). The steady linear response of a spherical atmosphere to thermal and orographic forcing. Journal of the Atmospheric Sciences, 38, 1179–1196. https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2

Hurrell, J. W. (1995). Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269(5224), 676–679. https://doi.org/10.1126/science.269.5224.676

Inatsu, M., Mukougawa, H., & Xie, S. P. (2002). Tropical and extratropical SST effects on the midlatitude storm track. Journal of the Meteorological Society of Japan, 80, 1069–1076. https://doi.org/10.2151/jmsj.80.1069

Jiménez‐Esteve, B., & Domeisen, D. I. V. (2019). Nonlinearity in the North Pacific atmospheric response to a linear ENSO forcing. Geophysical Research Letters, 46, 2271–2281. https://doi.org/10.1029/2018GL081226 Lee, R. W., Woolnough, S. J., Charlton‐Perez, A. J., & Vitart, F. (2019). ENSO modulation of MJO teleconnections to the North Atlantic and Europe. Geophysical Research Letters, 46, 13,535–13,545. https://doi.org/10.1029/2019GL084683 Lin, H. (2018). Predicting the dominant patterns of subseasonal variability of wintertime surface air temperature in extratropical Northern

Hemisphere. Geophysical Research Letters, 45, 4381–4389. https://doi.org/10.1029/2018GL077509 Lin, H. (2020). Subseasonal forecast skill over the northern polar region in boreal winter. Journal of Climate, 33, 1935–1951. https://doi.org/10.1175/jcli-d-19-0408.1

Lin, H., Brunet, G., & Derome, J. (2009). An observed connection between the North Atlantic oscillation and the Madden‐Julian oscillation.

Journal of Climate, 22, 364–380. https://doi.org/10.1175/2008JCLI2515.1 Matsueda, M., & Kyouda, M. (2016). Wintertime East Asian fiow patterns and their predictability on medium‐range timescales. SOLA, 12,121–126. https://doi.org/10.2151/sola.2016-027

Matsueda, M., & Palmer, T. N. (2018). Estimates of fiow‐dependent predictability of wintertime Euro‐Atlantic weather regimes in medium‐range forecasts. Quarterly Journal of the Royal Meteorological Society, 144, 1012–1027. https://doi.org/10.1002/qj.3265

Minami, A., & Takaya, Y. (2020). Enhanced Northern Hemisphere correlation skill of subseasonal predictions in the strong negative phase of the Arctic Oscillation. Journal of Geophysical Research: Atmospheres, 125, 1–16. https://doi.org/10.1029/2019JD031268

Quinting, J. F., & Vitart, F. (2019). Representation of synoptic‐scale Rossby wave packets and blocking in the S2S prediction project database. Geophysical Research Letters, 46, 1070–1078. https://doi.org/10.1029/2018GL081381

Scaife, A. A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R. T., Dunstone, N., et al. (2014). Skillful long‐range prediction of European and North American winters. Geophysical Research Letters, 41, 2514–2519. https://doi.org/10.1002/2014GL059637

Scaife, A. A., Comer, R. E., Dunstone, N. J., Knight, J. R., Smith, D. M., MacLachlan, C., et al. (2017). Tropical rainfall, Rossby waves and regional winter climate predictions. Quarterly Journal of the Royal Meteorological Society, 143, 1–11. https://doi.org/10.1002/qj.2910 Soulard, N., Lin, H., & Yu, B. (2019). The changing relationship between ENSO and its extratropical response patterns. Scientific Reports,9(1), 1–10. https://doi.org/10.1038/s41598-019-42922-3

Straus, D. M., & Shukla, J. (2000). Distinguishing between the SST‐forced variability and internal variability in mid latitudes: Analysis of observations and GCM simulations. Quarterly Journal of the Royal Meteorological Society, 126, 2323–2350. https://doi.org/10.1256/ smsqj.56715

Straus, D. M., & Shukla, J. (2002). Does ENSO force the PNA? Journal of Climate, 15, 2340–2358. https://doi.org/10.1175/1520- 0442(2002)015<2340:DEFTP>2.0.CO;2

Toniazzo, T., & Scaife, A. A. (2006). The infiuence of ENSO on winter North Atlantic climate. Geophysical Research Letters, 33, L24704. https://doi.org/10.1029/2006GL027881

Tseng, K.‐C., Barnes, E. A., & Maloney, E. D. (2018). Prediction of the midlatitude response to strong Madden‐Julian Oscillation events on S2S time scales. Geophysical Research Letters, 45, 463–470. https://doi.org/10.1002/2017GL075734

Vitart, F. (2017). Madden–Julian Oscillation prediction and teleconnections in the S2S database. Quarterly Journal of the Royal Meteorological Society, 143, 2210–2220. https://doi.org/10.1002/qj.3079

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., et al. (2017). The subseasonal to seasonal (S2S) prediction project database. Bulletin of the American Meteorological Society, 98, 163–173. https://doi.org/10.1175/BAMS-D-16-0017.1

Walker, G. T., & Bliss, E. W. (1932). World weather V. Memoirs of the Royal Meteorological Society, 4, 53–84.

Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109, 784–812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

Wang, L., & Robertson, A. W. (2019). Week 3–4 predictability over the United States assessed from two operational ensemble prediction systems. Climate Dynamics, 52(9‐10), 5861–5875. https://doi.org/10.1007/s00382-018-4484-9

White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J. T., Lazo, J. K., Kumar, A., et al. (2017). Potential applications of subseasonal‐to‐ seasonal (S2S) predictions. Meteorological Applications, 24, 315–325. https://doi.org/10.1002/met.1654

Yu, B., Lin, H., & Soulard, N. (2019). A comparison of North American surface temperature and temperature extreme anomalies in asso- ciation with various atmospheric teleconnection patterns. Atmosphere, 10, 1–18. https://doi.org/10.3390/atmos10040172

Zampieri, L., Goessling, H. F., & Jung, T. (2018). Bright prospects for Arctic Sea ice prediction on subseasonal time scales. Geophysical Research Letters, 45, 9731–9738. https://doi.org/10.1029/2018GL079394

Zampieri, L., Goessling, H. F., & Jung, T. (2019). Predictability of Antarctic Sea ice edge on subseasonal time scales. Geophysical Research Letters, 46, 9719–9727. https://doi.org/10.1029/2019GL084096

Zhang, W., Wang, L., Xiang, B., Qi, L., & He, J. (2015). Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics,

44, 1351–1366. https://doi.org/10.1007/s00382-014-2155-z Zhang, W., Wang, Z., Stuecker, M. F., Turner, A. G., Jin, F. F., & Geng, X. (2019). Impact of ENSO longitudinal position on teleconnections to the NAO. Climate Dynamics, 52(1‐2), 257–274. https://doi.org/10.1007/s00382-018-4135-1

Zheng, C., Chang, E. K., Kim, H., Zhang, M., & Wang, W. (2019). Subseasonal to seasonal prediction of wintertime Northern Hemisphere extratropical cyclone activity by S2S and NMME models. Journal of Geophysical Research: Atmospheres, 124, 12,057–12,077. https://doi. org/10.1029/2019JD031252

Zhou, W., & Xie, S. P. (2017). Intermodel spread around the Kuroshio‐Oyashio extension region in coupled GCMs caused by meridional variation of the westerly jet from atmospheric GCMs. Journal of Climate, 30, 4589–4599. https://doi.org/10.1175/JCLI-D-16-0831.1

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る