リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Conformational characteristics of regioselectively PEG/PS-grafted cellulosic bottlebrushes in solution: cross-sectional structure and main-chain stiffness」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Conformational characteristics of regioselectively PEG/PS-grafted cellulosic bottlebrushes in solution: cross-sectional structure and main-chain stiffness

Kinose, Yuji Sakakibara, Keita Tsujii, Yoshinobu 京都大学 DOI:10.1038/s41428-021-00594-9

2022.04

概要

Cellulosic bottlebrushes with polystyrene (PS) and poly(ethylene glycol) (PEG) side chains at the O-6 and O-2, 3 positions, respectively (PEG-PS-cellulose), were synthesized and characterized in diluted solution to reveal the second structure of heterografted bottlebrushes. The regioselectivity and degree of substitution were evaluated by 1H- and 13C-nuclear magnetic resonance spectroscopy and size-exclusion chromatography (SEC). The cross-sectional structure of PEG-PS-cellulose was evaluated from the cross-sectional radius of gyration determined by the small angle X-ray scattering technique as a function of the molecular weight of the PS side chain. As a result, PEG-PS-cellulose was found to show a core-shell-corona structure, in which PEG and PS side chains formed a homogeneous shell layer surrounding the cellulosic core and the outer segments of PS chains formed an outer corona layer. The stiffness parameter (λ−1) of the main chain was analyzed by the SEC–multiangle light scattering technique along with the Kratky-Porod wormlike chain model. In comparison with a previously reported cellulosic bottlebrush with a PS side chain at the O-6 position, it is suggested that the observed increase in λ−1 with increasing molecular weight of PS is mainly derived from the interaction among PS side chains located in an outer layer, while the PEG side chains at the O-2, 3 position effectively suppressed the internal rotation of the cellulosic main chain.

この論文で使われている画像

参考文献

1.

Xie G, Martinez MR, Olszewski M, Sheiko SS, Matyjaszewski K. Molecular

Bottlebrushes as Novel Materials. Biomacromolecules. 2019;20(1):27-54.

2.

Tsukahara Y, Miyata M, Senoo K, Yoshimoto N, Kaeriyama K. Mesomorphic Phase

Formation of Poly (macromonomer)s of Polystyrene Macromonomers. Polym Adv

Technol. 2000;11(5):210-218.

3.

Daniel WF, Burdynska J, Vatankhah-Varnoosfaderani M, et al. Solvent-Free, Supersoft

and Superelastic Bottlebrush Melts and Networks. Nat Mater. 2016;15(2):183-189.

4.

Altay E, Nykypanchuk D, Rzayev J. Mesoporous Polymer Frameworks from EndReactive Bottlebrush Copolymers. ACS Nano. 2017;11(8):8207-8214.

5.

Liu X. Surface Forces between Bottlebrush Polymer Layers. Curr Opin Colloid Interface

Sci. 2020;47:16-26.

6.

Tu S, Choudhury CK, Luzinov I, Kuksenok O. Recent advances towards applications of

molecular bottlebrushes and their conjugates. Curr Opin Solid State Mater Sci.

2019;23(1):50-61.

7.

Kinose Y, Sakakibara K, Sato O, Tsujii Y. Near-Zero Azimuthal Anchoring of Liquid

Crystals Assisted by Viscoelastic Bottlebrush Polymers. ACS Appl Polym Mater.

2021;3(5):2618-2625.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

8.

Yoshikawa C, Sakakibara K, Nonsuwan P, Yamazaki T, Tsujii Y. Nonbiofouling Coatings

Using Bottlebrushes with Concentrated Polymer Brush Architecture. Biomacromolecules.

2021;22(6):2505-2514.

9.

Chen K, Hu X, Zhu N, Guo K. Design, Synthesis, and Self-Assembly of Janus

Bottlebrush Polymers. Macromol Rapid Commun. 2020;41(20):2000357.

10.

Le AN, Liang R, Zhong M. Synthesis and Self-Assembly of Mixed-Graft Block

Copolymers. Chemistry. 2019;25(35):8177-8189.

11.

Xie G, Krys P, Tilton RD, Matyjaszewski K. Heterografted Molecular Brushes as

Stabilizers for Water-in-Oil Emulsions. Macromolecules. 2017;50(7):2942-2950.

12.

Li Y, Zou J, Das BP, Tsianou M, Cheng C. Well-Defined Amphiphilic Double-Brush

Copolymers and Their Performance as Emulsion Surfactants. Macromolecules.

2012;45(11):4623-4629.

13.

Palacios-Hernandez T, Luo H, Garcia EA, Pacheco LA, Herrera-Alonso M. Nanoparticles

from Amphiphilic Heterografted Macromolecular Brushes with Short Backbones.

Macromolecules. 2018;51(8):2831-2837.

14.

Chang HY, Lin YL, Sheng YJ, Tsao HK. Multilayered Polymersome Formed by

Amphiphilic

Asymmetric

2012;45(11):4778-4789.

Macromolecular

Brushes.

Macromolecules.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

15.

Nam J, Kim Y, Kim JG, Seo M. Self-Assembly of Monolayer Vesicles via BackboneShiftable Synthesis of Janus Core–Shell Bottlebrush Polymer. Macromolecules.

2019;52(24):9484-9494.

16.

Guo ZH, Le AN, Feng X, et al. Janus Graft Block Copolymers: Design of a Polymer

Architecture for Independently Tuned Nanostructures and Polymer Properties. Angew

Chem, Int Ed. 2018;57(28):8493-8497.

17.

Kawamoto K, Zhong M, Gadelrab KR, et al. Graft-through Synthesis and Assembly of

Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers. J Am Chem

Soc. 2016;138(36):11501-11504.

18.

Stepanyan R, Subbotin A, ten Brinke G. Comb Copolymer Brush with Chemically

Different Side Chains. Macromolecules. 2002;35(14):5640-5648.

19.

Hsu H-P, Paul W, Binder K. Intramolecular Phase Separation of Copolymer “Bottle

Brushes”: No Sharp Phase Transition but a Tunable Length Scale. Europhys Lett.

2006;76(3):526-532.

20.

Theodorakis PE, Paul W, Binder K. Analysis of the Cluster Formation in Two-Component

Cylindrical Bottle-Brush Polymers under Poor Solvent Conditions: a Simulation Study.

Eur Phys J E: Soft Matter Biol Phys. 2011;34(5):52.

21.

de Jong J, ten Brinke G. Conformational Aspects and Intramolecular Phase Separation of

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Alternating Copolymacromonomers: A Computer Simulation Study. Macromol Theory

Simul. 2004;13(4):318-327.

22.

Kinose Y, Sakakibara K, Ogawa H, Tsujii Y. Main-Chain Stiffness of Cellulosic

Bottlebrushes with Polystyrene Side Chains Introduced Regioselectively at the O-6

Position. Macromolecules. 2019;52(22):8733-8740.

23.

Sakakibara K, Ishida H, Kinose Y, Tsujii Y. Regioselective synthesis of cellulosic janus

bottlebrushes with polystyrene and poly (ε-caprolactone) side chains and their solid-state

microphase separation. Cellulose. 2021;28(11):6857-6868.

24.

Sheiko SS, Borisov OV, Prokhorova SA, Moller M. Cylindrical Molecular Brushes under

Poor Solvent Conditions: Microscopic Observation and Scaling Analysis. Eur Phys J E.

2004;13(2):125-131.

25.

Grulke EA. Solubility Parameter Values. In: Brandrup J, Immergut EH, Grulke EA,

editors. Polymer Handbook. 4th ed. New York: Wiley; 1999:VI-675 - VI-714.

26.

Sakakibara K, Kinose Y, Tsujii Y. Synthesis of Cellulosic Bottlebrushes with

Regioselectively Substituted Side Chains and Their Self-assembly. In: Rosenau T,

Potthast A, Hell J, editors. Cellulose Science and Technology: Chemistry, Analysis, and

Applications. New York: Wiley; 2019:49-65.

27.

Glatter O, Kratky O. Small Angle X-ray Scattering. London: Academic Press; 1982.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

28.

Benoit H, Doty P. Light Scattering from Non-Gaussian Chains. J Phys Chem.

1953;57(9):958-963.

29.

Benoit H, Froelich D. Application of Light Scattering to Copolymers. In: Huglin MB,

editor. Huglin MB, trans. Light Scattering from Polymer Solutions. London and New

York: Academic Press; 1972:467-501.

30.

Gömez JAC, Erler UW, Klemm DO. 4-Methoxy Substituted Trityl Groups in 6-O

Protection of Cellulose: Homogeneous Synthesis, Characterization, Detritylation.

Macromol Chem Phys. 1996;197(3):953-964.

31.

Yue Z, Cowie JMG. Preparation and Chiroptical Properties of a Regioselectively

Substituted Cellulose Ether with PEO Side Chains. Macromolecules. 2002;35(17):65726577.

32.

Matyjaszewski K, Nakagawa Y, Gaynor SG. Synthesis of Well-Defined Azido and Amino

End-Functionalized Polystyrene by Atom Transfer Radical Polymerization. Macromol

Rapid Commun. 1997;18(12):1057-1066 (Article).

33.

Wataoka I, Kobayashi K, Kajiwara K. Effect of the Carbohydrate Side-Chain on the

Conformation of a Glycoconjugate Polystyrene in Aqueous Solution. Carbohydr Res.

2005;340(5):989-995.

34.

Walther A, Drechsler M, Rosenfeldt S, et al. Self-Assembly of Janus Cylinders into

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Hierarchical Superstructures. J Am Chem Soc. 2009;131(13):4720-4728.

35.

Yamakawa H, Yoshizaki T. Helical Wormlike Chains in Polymer Solutions. 2nd ed. Berlin:

Springer, Berlin Heidelberg; 2016.

36.

Sugiyama J, Vuong R, Chanzy H. Electron Diffraction Study on the Two Crystalline

Phases Occurring in Native Cellulose from an Algal Cell Wall. Macromolecules.

1991;24(14):4168-4175.

37.

Nakamura Y, Norisuye T. Backbone Stiffness of Comb-Branched Polymers. Polym J.

2001;33(11):874-878.

Figure legends

Graphical abstract. Cellulosic bottlebrush regioselectively possessing poly(ethylene glycol)

(PEG) and polystyrene (PS) side chains (PEG-PS-cellulose) was synthesized, and its secondary

structure in dilute solution was investigated with SAXS and SEC-MALS. The relationship

between the cross-sectional mean squared radius of gyration (〈Sc2〉) and molecular weight of PS

chain (MWPS) showed that PEG-PS-cellulose has a core-shell-corona structure in cross section.

The dependency of main-chain stiffness (λ-1) on MWPS was discussed on the basis of the

interactions of the PS and PEG side chains as well as the restricted rotation of the cellulosic main

chain.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure. 1. Chemical structures of heteroBBs (PEG-PS-cellulose 1) and homoBBs (PEG-cellulose

2 and PS-cellulose 3).

Scheme 1. Synthesis of PEG-PS-cellulose 1 and its precursor, PEG-cellulose 2.a

Reagents, conditions and yields: (a) PEG-I, NaOH, DMSO, 50 °C, 4 d, 75%; (b) HCl, H2O, THF,

rt, 5 h, 88%; (c) pentynoic acid, EDC•HCl, DMF, rt, 1 d→50 °C, 2 d, 98%; (d) PS-N3 (DPn = 60

(for 1a), 30 (for 1b), 20 (for 1c)), CuSO4•5H2O, ascorbic acid, DMF, 60 °C, 2 d, 75% (1a), 76%

(1b), 75% (1c).

Figure 2. Cross-sectional Guinier plots for bottlebrushes; 1a, 1b and 1c (red, blue and green

circles); 2 (purple circle); 3a, 3b and 3c (red, blue and green squares). The solid lines represent

the increment of the cross-sectional Guinier approximation. Adapted with permission from Ref.

No.22. Copyright 2011. American Chemical Society.

Figure 3. Schematic illustration and radial density diagram of the cross-sectional structure for the

core-shell model (a) and core-shell-corona model (b) for PEG-PS-cellulose 1. Gray: cellulosic

backbone; orange: PS domain; blue: PEG domain.

Figure 4. The relationship between 〈Sc,SAXS2〉 and MWAGU,PS for PEG-PS-cellulose (1a–c) and

PEG-cellulose (2). The red curve represents the theoretical curve for the core-shell-corona model

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

for PEG-PS-cellulose illustrated in Figure 3b (ρcellulose = 1.2 g·cm⁻3, ρsolve,PS = 0.22 g·cm⁻3 and

ρsolve,PEG = 0.30 g·cm⁻3).

Figure 5. Elution-volume dependence of the weight-average molecular weight Mw (blue circles),

mean-square radius of gyration 〈S2〉 (red circles) and polymer mass concentration c (solid line)

(a), and DPM chain dependence of 〈S2〉M in DMF/LiBr for PEG-PS-cellulose (b) for 1a–c. The red

lines in (b) represent the theoretical curves for the unperturbed KP chain.

Figure 6. The dependence of λ⁻1 on the DPn of the side chains (m) for 1 and 3 in DMF/LiBr (red

and blue circles, respectively). The red and blue solid lines represent theoretical curves for 1 and

3, respectively.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Graphical abstract

Cellulosic Bottlebrush

Regioselectively Possessing PEG and PS Side Chains

PEG

PEG

PS

Stiffness of

Main Chain

Cross-Sectional

Structure

SAXS

〈Sc2〉

N N

SEC-MALS

λ⁻1

MW of PS

MW of PS

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure. 1

Ph

16

N N

(m = 60)

1a (m = 30)

1b (m = 20)

1c

Me

Me

16

16

MeO

Me

16

N N

OMe

Me

Ph

(m = 60)

3a (m = 30)

3b (m = 20)

3c

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Scheme 1

OMe

HO

OMe

OH

16

Me

16

16

Me

16

Me

Me

16

16

Me

16

OH

Ph

N N

Me

Me

16

Me

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

ln[q I(q) / nm ]

Figure 2

q2 / nm⁻2

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 3

(b)

density

density

(a)

Radius

Radius

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

〈Sc,SAXS2〉 / nm2

Figure 4

MWAGU,PSt / 103 g·mol⁻1

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

log

Figure 5

1c

Mw

1c

〈S2〉

Elution volume / mL

log[DPM]

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

λ⁻1 / nm

Figure 6

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 1. Characteristics of cellulosic bottlebrushes 1, 2 and 3.

PEG-

heteroB

PS-

cellulos

Sampl

DSPE

DSP

Mn,PS/g·mol

M0a/g·mol

wbackbone

wPEG

wPS

dn/dcc/g·mol

Mwd/g·mol

⁻1

⁻1

⁻1

⁻1

1a

1.6

1.0

6.4×103

8.1×103

0.03

0.14

0.139

9.7×105

1b

1.6

1.0

3.3×103

4.7×103

0.05

0.24

0.126

6.1×105

1c

1.6

1.1

2.2×103

3.8×103

0.06

0.31

0.117

4.8×105

1.6

1.4×103

6.2×104e

3ag

1.1

6.4×103

7.4×103

0.04

0.154

8.1×105

3bg

1.1

3.3×103

3.8×103

0.07

0.150

4.6×105

3cg

1.2

2.2×103

2.9×103

0.10

0.148

3.2×105

0.8

0.7

0.6

PEGcellulos

DPMd

1.2×10

1.3×10

1.3×10

Đd

〈Sc,SAXS2〉f/n

m2

2.3

12

2.4

5.4

2.4

3.6

4.4×10

1.5

1.8

homoB

PScellulos

ee

0.9

0.9

0.9

1.1×10

1.2×10

1.1×10

1.6

13

1.7

6.4

1.7

4.3

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Average molecular weight per AGU. Weight fraction of the main chain and PEG and PS side chains. Refractive index increment calculated from

equation 1. Determined by SEC-MALS in DMF/LiBr. Determined by SEC with PMMA standard with the cross-sectional Guinier approximation.

Mean-square radius of gyration determined from the SAXS profile. Adapted with permission from Ref. No.22. Copyright 2011. American Chemical

Society.

Table 2. Model parameters for cellulosic bottlebrushes 1, 2 and 3.

Homogeneous

Core-shell model

model

Core-shell-corona model

ρcellulose ρsolve,PS ρsolve,PEG Rcore

Rshell ρcellulose ρsolve,PS ρsolve,PEG Rcore

Rshell

Rcorona

/nm

/ g∙cm / g∙cm

/nm / g∙cm / g∙cm / g∙cm

/ nm

/nm

1a

4.9

0.28c

0.048c

2.0f

5.6f

PEG-PS-cellulose 1b

3.3

0.30c

0.10c

2.0f

4.0f

1c

2.7

0.32c

0.16c

2.0f

3.4f

1.9

0.29c

2.0

2.0f

3a

5.1a

5.3e

3b

3.6

3.8

2.9

3.2

PEG-cellulose

PS-cellulose

3c

–3

1.2b

1.2

–3

0.26

/ g∙cm

–3

/ nm

–3

–3

–3

/ nm

5.0

0.46d

0.50

3.4

2.7

1.2b

0.22

0.30

0.46d

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Data in ref. 22. b Constant parameter. c Depending on Rshell. d Depending on ρcellulose. e Depending on ρcellulose and ρsolve,PS. f Depending on ρcellulose, solve,PS

and ρsolve,PEG

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 3. Stiffness parameters for PEO-PS-cellulose 1 and PS-cellulose 3.

DPn of PS-side chain (m)

λ–1/nm

1a

60

22

1b

30

18

1c

20

17

3a

60

16

3b

30

12

3c

20

12

Sample

PEG-PS-cellulose

PS-cellulosea

From reanalysis of the data in ref. 22 using the core-shell model.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る