リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tumor elimination by clustered microRNAs miR-306 and miR-79 via noncanonical activation of JNK signaling」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tumor elimination by clustered microRNAs miR-306 and miR-79 via noncanonical activation of JNK signaling

Wang, Zhaowei Xia, Xiaoling Li, Jiaqi Igaki, Tatsushi 京都大学 DOI:10.7554/eLife.77340

2022

概要

JNK signaling plays a critical role in both tumor promotion and tumor suppression. Here, we identified clustered microRNAs (miRNAs) miR-306 and miR-79 as novel tumor-suppressor miRNAs that specifically eliminate JNK-activated tumors in Drosophila. While showing only a slight effect on normal tissue growth, miR-306 and miR-79 strongly suppressed growth of multiple tumor models, including malignant tumors caused by Ras activation and cell polarity defects. Mechanistically, these miRNAs commonly target the mRNA of an E3 ubiquitin ligase ring finger protein 146 (RNF146). We found that RNF146 promotes degradation of tankyrase (Tnks), an ADP-ribose polymerase that promotes JNK activation in a noncanonical manner. Thus, downregulation of RNF146 by miR-306 and miR-79 leads to hyper-enhancement of JNK activation. Our data show that, while JNK activity is essential for tumor growth, elevation of miR-306 or miR-79 overactivate JNK signaling to the lethal level via noncanonical JNK pathway and thus eliminate tumors, providing a new miRNA-based strategy against cancer.

この論文で使われている画像

参考文献

Adachi-­Yamada T, Gotoh T, Sugimura I, Tateno M, Nishida Y, Onuki T, Date H. 1999. De novo synthesis of

sphingolipids is required for cell survival by down-­regulating c-­Jun N-­terminal kinase in Drosophila imaginal

discs. Molecular and Cellular Biology 19:7276–7286. DOI: https://doi.org/10.1128/MCB.19.10.7276, PMID:

10490662

Atkins M, Potier D, Romanelli L, Jacobs J, Mach J, Hamaratoglu F, Aerts S, Halder G. 2016. An ectopic network

of transcription factors regulated by Hippo signaling drives growth and invasion of a malignant tumor model.

Current Biology 26:2101–2113. DOI: https://doi.org/10.1016/j.cub.2016.06.035, PMID: 27476594

Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS. 2017.

Phase I study of MRX34, a liposomal miR-­34a mimic, administered twice Weekly in patients with advanced solid

tumors. Investigational New Drugs 35:180–188. DOI: https://doi.org/10.1007/s10637-016-0407-y, PMID:

27917453

Bode AM, Dong Z. 2007. The functional contrariety of JNK. Molecular Carcinogenesis 46:591–598. DOI: https://​

doi.org/10.1002/mc.20348, PMID: 17538955

Brumby AM, Richardson HE. 2003. Scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic

overgrowth in Drosophila. The EMBO Journal 22:5769–5779. DOI: https://doi.org/10.1093/emboj/cdg548,

PMID: 14592975

Bubici C, Papa S. 2014. Jnk signalling in cancer: in need of new, smarter therapeutic targets. British Journal of

Pharmacology 171:24–37. DOI: https://doi.org/10.1111/bph.12432, PMID: 24117156

Chung WJ, Okamura K, Martin R, Lai EC. 2008. Endogenous RNA interference provides a somatic defense

against Drosophila transposons. Current Biology 18:795–802. DOI: https://doi.org/10.1016/j.cub.2008.05.006,

PMID: 18501606

Croce CM. 2008. Oncogenes and cancer. The New England Journal of Medicine 358:502–511. DOI: https://doi.​

org/10.1056/NEJMra072367, PMID: 18234754

Doggett K, Turkel N, Willoughby LF, Ellul J, Murray MJ, Richardson HE, Brumby AM. 2015. Btb-­Zinc finger

oncogenes are required for Ras and Notch-­driven tumorigenesis in Drosophila. PLOS ONE 10:e0132987. DOI:

https://doi.org/10.1371/journal.pone.0132987, PMID: 26207831

Donohoe CD, Csordás G, Correia A, Jindra M, Klein C, Habermann B, Uhlirova M. 2018. Atf3 links loss of

epithelial polarity to defects in cell differentiation and cytoarchitecture. PLOS Genetics 14:e1007241. DOI:

https://doi.org/10.1371/journal.pgen.1007241, PMID: 29494583

Eferl R, Wagner EF. 2003. Ap-­1: a double-­edged sword in tumorigenesis. Nature Reviews. Cancer 3:859–868.

DOI: https://doi.org/10.1038/nrc1209, PMID: 14668816

Enomoto M, Igaki T. 2013. Src controls tumorigenesis via JNK-­dependent regulation of the Hippo pathway in

Drosophila. EMBO Reports 14:65–72. DOI: https://doi.org/10.1038/embor.2012.185, PMID: 23196366

Enomoto M, Siow C, Igaki T. 2018. Drosophila as a cancer model. Advances in Experimental Medicine and

Biology 1076:173–194. DOI: https://doi.org/10.1007/978-981-13-0529-0_10, PMID: 29951820

Feng Y, Li Z, Lv L, Du A, Lin Z, Ye X, Lin Y, Lin X. 2018. Tankyrase regulates apoptosis by activating JNK signaling

in Drosophila. Biochemical and Biophysical Research Communications 503:2234–2239. DOI: https://doi.org/10.​

1016/j.bbrc.2018.06.143, PMID: 29953853

Goode S, Perrimon N. 1997. Inhibition of patterned cell shape change and cell invasion by discs large during

Drosophila oogenesis. Genes & Development 11:2532–2544. DOI: https://doi.org/10.1101/gad.11.19.2532,

PMID: 9334318

Gultekin Y, Steller H. 2019. Axin proteolysis by iduna is required for the regulation of stem cell proliferation and

intestinal homeostasis in Drosophila. Development 146:169284. DOI: https://doi.org/10.1242/dev.169284,

PMID: 30796047

Wang et al. eLife 2022;11:e77340. DOI: https://doi.org/10.7554/eLife.77340

17 of 23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Hong DS, Kang Y-­K, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee J-­L, Kim T-­Y, Shin S,

Becerra CR, Falchook G, Stoudemire J, Martin D, Kelnar K, Peltier H, Bonato V, Bader AG, Smith S, et al. 2020.

Phase 1 study of MRX34, a liposomal miR-­34a mimic, in patients with advanced solid tumours. British Journal

of Cancer 122:1630–1637. DOI: https://doi.org/10.1038/s41416-020-0802-1, PMID: 32238921

Hori K, Fostier M, Ito M, Fuwa TJ, Go MJ, Okano H, Baron M, Matsuno K. 2004. Drosophila deltex mediates

suppressor of hairless-­independent and late-­endosomal activation of notch signaling. Development 131:5527–

5537. DOI: https://doi.org/10.1242/dev.01448, PMID: 15496440

Igaki T, Kanda H, Yamamoto-­Goto Y, Kanuka H, Kuranaga E, Aigaki T, Miura M. 2002. Eiger, a TNF superfamily

ligand that triggers the Drosophila JNK pathway. The EMBO Journal 21:3009–3018. DOI: https://doi.org/10.​

1093/emboj/cdf306, PMID: 12065414

Igaki T, Pagliarini RA, Xu T. 2006. Loss of cell polarity drives tumor growth and invasion through JNK activation in

Drosophila. Current Biology 16:1139–1146. DOI: https://doi.org/10.1016/j.cub.2006.04.042, PMID: 16753569

Igaki T, Pastor-­Pareja JC, Aonuma H, Miura M, Xu T. 2009. Intrinsic tumor suppression and epithelial

maintenance by endocytic activation of eiger/TNF signaling in Drosophila. Developmental Cell 16:458–465.

DOI: https://doi.org/10.1016/j.devcel.2009.01.002, PMID: 19289090

Ishimaru S, Ueda R, Hinohara Y, Ohtani M, Hanafusa H. 2004. Pvr plays a critical role via JNK activation in thorax

closure during Drosophila metamorphosis. The EMBO Journal 23:3984–3994. DOI: https://doi.org/10.1038/sj.​

emboj.7600417, PMID: 15457211

Jiang Y, Seimiya M, Schlumpf TB, Paro R. 2018. An intrinsic tumour eviction mechanism in Drosophila mediated

by steroid hormone signalling. Nature Communications 9:3293. DOI: https://doi.org/10.1038/s41467-018-​

05794-1, PMID: 30120247

Kabekkodu SP, Shukla V, Varghese VK, D’ Souza J, Chakrabarty S, Satyamoorthy K. 2018. Clustered miRNAs and

their role in biological functions and diseases. Biological Reviews of the Cambridge Philosophical Society

93:1955–1986. DOI: https://doi.org/10.1111/brv.12428, PMID: 29797774

Karin M, Gallagher E. 2005. From JNK to pay dirt: Jun kinases, their biochemistry, physiology and clinical

importance. IUBMB Life 57:283–295. DOI: https://doi.org/10.1080/15216540500097111, PMID: 16036612

Kim Y-­K, Yu J, Han TS, Park S-­Y, Namkoong B, Kim DH, Hur K, Yoo M-­W, Lee H-­J, Yang H-­K, Kim VN. 2009.

Functional links between clustered microRNAs: suppression of cell-­cycle inhibitors by microRNA clusters in

gastric cancer. Nucleic Acids Research 37:1672–1681. DOI: https://doi.org/10.1093/nar/gkp002, PMID:

19153141

Li P, Huang P, Li X, Yin D, Ma Z, Wang H, Song H. 2018. Tankyrase mediates K63-­linked ubiquitination of JNK to

confer stress tolerance and influence lifespan in Drosophila. Cell Reports 25:437–448. DOI: https://doi.org/10.​

1016/j.celrep.2018.09.036, PMID: 30304683

Ma X, Yang L, Yang Y, Li M, Li W, Xue L. 2013. DUev1a modulates TNF-­JNK mediated tumor progression and cell

death in Drosophila. Developmental Biology 380:211–221. DOI: https://doi.org/10.1016/j.ydbio.2013.05.013,

PMID: 23726905

Nagata R, Nakamura M, Sanaki Y, Igaki T. 2019. Cell competition is driven by autophagy. Developmental Cell

51:99–112.. DOI: https://doi.org/10.1016/j.devcel.2019.08.018, PMID: 31543447

Pagliarini RA, Xu T. 2003. A genetic screen in Drosophila for metastatic behavior. Science 302:1227–1231. DOI:

https://doi.org/10.1126/science.1088474, PMID: 14551319

Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, Williams M, Wright C, Edelman JJB, Vallely MP,

McCaughan BC, Klebe S, Brahmbhatt H, MacDiarmid JA, van Zandwijk N. 2013. Restoring expression of

miR-­16: a novel approach to therapy for malignant pleural mesothelioma. Annals of Oncology 24:3128–3135.

DOI: https://doi.org/10.1093/annonc/mdt412, PMID: 24148817

Ryazansky SS, Gvozdev VA, Berezikov E. 2011. Evidence for post-­transcriptional regulation of clustered

microRNAs in Drosophila. BMC Genomics 12:371. DOI: https://doi.org/10.1186/1471-2164-12-371, PMID:

21771325

Shu Z, Huang YC, Palmer WH, Tamori Y, Xie G, Wang H, Liu N, Deng WM. 2017. Systematic analysis reveals

tumor-­enhancing and -suppressing microRNAs in Drosophila epithelial tumors. Oncotarget 8:108825–108839.

DOI: https://doi.org/10.18632/oncotarget.22226, PMID: 29312571

Tamori Y, Bialucha CU, Tian AG, Kajita M, Huang YC, Norman M, Harrison N, Poulton J, Ivanovitch K, Disch L,

Liu T, Deng WM, Fujita Y. 2010. Involvement of LGL and mahjong/vprbp in cell competition. PLOS Biology

8:e1000422. DOI: https://doi.org/10.1371/journal.pbio.1000422, PMID: 20644714

Tipping M, Perrimon N. 2014. Drosophila as a model for context-­dependent tumorigenesis. Journal of Cellular

Physiology 229:27–33. DOI: https://doi.org/10.1002/jcp.24427, PMID: 23836429

Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, Willoughby LF, Blanco E, Martin-­Blanco E,

Corominas M, Ellul J, Aigaki T, Richardson HE, Brumby AM. 2013. The BTB-­zinc finger transcription factor

abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-­like cell

state. PLOS Genetics 9:e1003627. DOI: https://doi.org/10.1371/journal.pgen.1003627, PMID: 23874226

Uhlirova M, Bohmann D. 2006. Jnk- and fos-­regulated MMP1 expression cooperates with Ras to induce invasive

tumors in Drosophila. The EMBO Journal 25:5294–5304. DOI: https://doi.org/10.1038/sj.emboj.7601401,

PMID: 17082773

Vallejo DM, Caparros E, Dominguez M. 2011. Targeting Notch signalling by the conserved mir-­8/200 microRNA

family in development and cancer cells. The EMBO Journal 30:756–769. DOI: https://doi.org/10.1038/emboj.​

2010.358, PMID: 21224847

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ,

Bailey DL, Cooper WA, Kritharides L, Ridley L, Pattison ST, MacDiarmid J, Brahmbhatt H, Reid G. 2017. Safety

Wang et al. eLife 2022;11:e77340. DOI: https://doi.org/10.7554/eLife.77340

18 of 23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

and activity of microrna-­loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-­in-­

man, phase 1, open-­label, dose-­escalation study. The Lancet. Oncology 18:1386–1396. DOI: https://doi.org/​

10.1016/S1470-2045(17)30621-6, PMID: 28870611

Wang Y, Luo J, Zhang H, Lu J. 2016a. MicroRNAs in the same clusters evolve to coordinately regulate

functionally related genes. Molecular Biology and Evolution 33:2232–2247. DOI: https://doi.org/10.1093/​

molbev/msw089, PMID: 27189568

Wang CW, Purkayastha A, Jones KT, Thaker SK, Banerjee U. 2016b. In vivo genetic dissection of tumor growth

and the warburg effect. eLife 5:e18126. DOI: https://doi.org/10.7554/eLife.18126, PMID: 27585295

Wang Z, Tacchelly-­Benites O, Noble GP, Johnson MK, Gagné JP, Poirier GG, Ahmed Y. 2019. A context-­

dependent role for the RNF146 ubiquitin ligase in wingless/wnt signaling in Drosophila Genetics 211:913–923.

DOI: https://doi.org/10.1534/genetics.118.301393, PMID: 30593492

Wills Z, Bateman J, Korey CA, Comer A, Van Vactor D. 1999. The tyrosine kinase Abl and its substrate enabled

collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron 22:301–312. DOI:

https://doi.org/10.1016/s0896-6273(00)81091-0, PMID: 10069336

Wu Q, Wu W, Fu B, Shi L, Wang X, Kuca K. 2019. Jnk signaling in cancer cell survival. Medicinal Research

Reviews 39:2082–2104. DOI: https://doi.org/10.1002/med.21574, PMID: 30912203

Xue L, Igaki T, Kuranaga E, Kanda H, Miura M, Xu T. 2007. Tumor suppressor CYLD regulates JNK-­induced cell

death in Drosophila. Developmental Cell 13:446–454. DOI: https://doi.org/10.1016/j.devcel.2007.07.012,

PMID: 17765686

Yuan X, Liu C, Yang P, He S, Liao Q, Kang S, Zhao Y. 2009. Clustered microRNAs’ coordination in regulating

protein-­protein interaction network. BMC Systems Biology 3:65. DOI: https://doi.org/10.1186/1752-0509-3-65,

PMID: 19558649

Zeitlinger J, Bohmann D. 1999. Thorax closure in Drosophila: involvement of fos and the JNK pathway.

Development 126:3947–3956. DOI: https://doi.org/10.1242/dev.126.17.3947, PMID: 10433922

Wang et al. eLife 2022;11:e77340. DOI: https://doi.org/10.7554/eLife.77340

19 of 23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Appendix 1

Appendix 1—key resources table

Reagent type

(species) or

resource

Designation

Source or reference

Identifiers

Genetic reagent

(Drosophila

melanogaster)

dlgm52

PMID:9334318

N/A

Genetic reagent

(D. melanogaster) puc-­lacZ

PMID:16753569

N/A

Genetic reagent

(D. melanogaster) UAS-­Rasv12

PMID:16753569

N/A

Genetic reagent

(D. melanogaster) UAS-­BskDN

PMID:10490662

N/A

Genetic reagent

(D. melanogaster) UAS-­Src64B

PMID:10069336

N/A

Genetic reagent

(D. melanogaster) Hel25Eccp-­8

PMID:31543447

N/A

Genetic reagent

(D. melanogaster) Mahj1

PMID:20644714

N/A

Genetic reagent

(D. melanogaster) UAS-­Nact

PMID:15496440

N/A

Genetic reagent

(D. melanogaster) UAS-­RNF146

PMID:30796047

N/A

Genetic reagent

(D. melanogaster) lgl4

Bloomington Drosophila

Stock Center

BDSC:36289

Genetic reagent

(D. melanogaster) UAS-­p35

Bloomington Drosophila

Stock Center

BDSC:5073

Genetic reagent

(D. melanogaster) UAS-­PVRact

Bloomington Drosophila

Stock Center

BDSC:58496

Genetic reagent

(D. melanogaster) UAS-­YkiS168A

Bloomington Drosophila

Stock Center

BDSC:28836

Genetic reagent

(D. melanogaster) UAS-­Luciferase

Bloomington Drosophila

Stock Center

BDSC:35788

Genetic reagent

(D. melanogaster) UAS-­RFP

Bloomington Drosophila

Stock Center

BDSC:30556

Genetic reagent

(D. melanogaster) UAS-­bantam

Bloomington Drosophila

Stock Center

BDSC:60672

Genetic reagent

(D. melanogaster) UAS-­miR-­9c,306,79,9b

Bloomington Drosophila

Stock Center

BDSC:41156

Genetic reagent

(D. melanogaster) UAS-­miR-­79

Bloomington Drosophila

Stock Center

BDSC:41145

Genetic reagent

UAS-­miR-­2a-­2,2a-­

(D. melanogaster) 1,2b-­2

Bloomington Drosophila

Stock Center

BDSC:59849

Genetic reagent

(D. melanogaster) UAS-­miR-­2b-­1

Bloomington Drosophila

Stock Center

BDSC:41128

Genetic reagent

(D. melanogaster) UAS-­miR-­7

Bloomington Drosophila

Stock Center

BDSC:41137

Genetic reagent

(D. melanogaster) UAS-­miR-­8

Bloomington Drosophila

Stock Center

BDSC:41176

Genetic reagent

(D. melanogaster) UAS-­miR-­9a

Bloomington Drosophila

Stock Center

BDSC:41138

Genetic reagent

(D. melanogaster) UAS-­miR-­9b

Bloomington Drosophila

Stock Center

BDSC:41131

Additional information

Appendix 1 Continued on next page

Wang et al. eLife 2022;11:e77340. DOI: https://doi.org/10.7554/eLife.77340

20 of 23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Appendix 1 Continued

Reagent type

(species) or

resource

Designation

Source or reference

Identifiers

Genetic reagent

(D. melanogaster) UAS-­miR-­9c

Bloomington Drosophila

Stock Center

BDSC:41139

Genetic reagent

(D. melanogaster) UAS-­miR-­11

Bloomington Drosophila

Stock Center

BDSC:59865

Genetic reagent

(D. melanogaster) UAS-­miR-­12

Bloomington Drosophila

Stock Center

BDSC:41140

Genetic reagent

Bloomington Drosophila

(D. melanogaster) UAS-­miR-­13a,13b-­1,2c Stock Center

BDSC:64097

Genetic reagent

(D. melanogaster) UAS-­miR-­13b-­2

Bloomington Drosophila

Stock Center

BDSC:59867

Genetic reagent

(D. melanogaster) UAS-­miR-­14

Bloomington Drosophila

Stock Center

BDSC:41178

Genetic reagent

(D. melanogaster) UAS-­miR-­34

Bloomington Drosophila

Stock Center

BDSC:41158

Genetic reagent

(D. melanogaster) UAS-­miR-­92a

Bloomington Drosophila

Stock Center

BDSC:41153

Genetic reagent

(D. melanogaster) UAS-­miR-­124

Bloomington Drosophila

Stock Center

BDSC:41126

Genetic reagent

(D. melanogaster) UAS-­miR-­184

Bloomington Drosophila

Stock Center

BDSC:41174

Genetic reagent

(D. melanogaster) UAS-­miR-­252

Bloomington Drosophila

Stock Center

BDSC:41127

Genetic reagent

(D. melanogaster) UAS-­miR-­276a

Bloomington Drosophila

Stock Center

BDSC:41143

Genetic reagent

(D. melanogaster) UAS-­miR-­276b

Bloomington Drosophila

Stock Center

BDSC:41162

Genetic reagent

(D. melanogaster) UAS-­miR-­278

Bloomington Drosophila

Stock Center

BDSC:41180

Genetic reagent

(D. melanogaster) UAS-­miR-­279

Bloomington Drosophila

Stock Center

BDSC:41147

Genetic reagent

(D. melanogaster) UAS-­miR-­282

Bloomington Drosophila

Stock Center

BDSC:41165

Genetic reagent

(D. melanogaster) UAS-­miR-­305

Bloomington Drosophila

Stock Center

BDSC:41152

Genetic reagent

(D. melanogaster) UAS-­miR-­310

Bloomington Drosophila

Stock Center

BDSC:41155

Genetic reagent

(D. melanogaster) UAS-­miR-­317

Bloomington Drosophila

Stock Center

BDSC:59913

Genetic reagent

(D. melanogaster) UAS-­miR-­958

Bloomington Drosophila

Stock Center

BDSC:41222

Genetic reagent

(D. melanogaster) UAS-­miR-­975,976,977

Bloomington Drosophila

Stock Center

BDSC:60635

Genetic reagent

(D. melanogaster) UAS-­miR-­981

Bloomington Drosophila

Stock Center

BDSC:60639

Genetic reagent

(D. melanogaster) UAS-­miR-­984

Bloomington Drosophila

Stock Center

BDSC:41224

Genetic reagent

(D. melanogaster) UAS-­miR-­988

Bloomington Drosophila

Stock Center

BDSC:41196

Genetic reagent

(D. melanogaster) UAS-­miR-­995

Bloomington Drosophila

Stock Center

BDSC:41199

Additional information

Appendix 1 Continued on next page

Wang et al. eLife 2022;11:e77340. DOI: https://doi.org/10.7554/eLife.77340

21 of 23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Appendix 1 Continued

Reagent type

(species) or

resource

Designation

Source or reference

Identifiers

Additional information

Genetic reagent

(D. melanogaster) UAS-­miR-­996

Bloomington Drosophila

Stock Center

BDSC:60653

Genetic reagent

(D. melanogaster) UAS-­miR-­998

Bloomington Drosophila

Stock Center

BDSC:63043

Genetic reagent

(D. melanogaster) UAS-­miR-­306-­sponge

Bloomington Drosophila

Stock Center

BDSC:61424

Genetic reagent

(D. melanogaster) UAS-­miR-­79-­sponge

Bloomington Drosophila

Stock Center

BDSC:61387

Genetic reagent

(D. melanogaster) UAS-­Luciferase RNAi

Bloomington Drosophila

Stock Center

BDSC:31603

Genetic reagent

(D. melanogaster) UAS-­aop RNAi

Bloomington Drosophila

Stock Center

BDSC:34909

Genetic reagent

(D. melanogaster) UAS-­pde1c RNAi

Bloomington Drosophila

Stock Center

BDSC:55925

Genetic reagent

(D. melanogaster) UAS-­atf3 RNAi

Bloomington Drosophila

Stock Center

BDSC:26741

Genetic reagent

(D. melanogaster) UAS-­mei-­P26 RNAi

Bloomington Drosophila

Stock Center

BDSC:57268

Genetic reagent

(D. melanogaster) UAS-­chn RNAi

Bloomington Drosophila

Stock Center

BDSC:26779

Genetic reagent

(D. melanogaster) UAS-­chinmo RNAi

Bloomington Drosophila

Stock Center

BDSC:26777

Genetic reagent

(D. melanogaster) UAS-­RNF146 RNAi

Bloomington Drosophila

Stock Center

BDSC:40882

Genetic reagent

(D. melanogaster) UAS-­bcd RNAi

Bloomington Drosophila

Stock Center

BDSC:33886

Genetic reagent

(D. melanogaster) UAS-­CG1358 RNAi

Bloomington Drosophila

Stock Center

BDSC:64848

Genetic reagent

(D. melanogaster) UAS-­miR-­306

FlyORF

FlyORF: F002214

Genetic reagent

(D. melanogaster) UAS-­Tnks

Core Facility of Drosophila

Resource and Technology,

Center for Excellence in

Molecular Cell Science,

Chinese Academy of

Sciences

N/A

Cell line (D.

melanogaster)

S2

ATCC

Antibody

Anti-­phospho-­JNK

(rabbit monoclonal)

Cell Signaling Technology Cat #4668

1:100

Antibody

Anti-β-galactosidase

(chicken polyclonal)

Abcam

1:1000

Antibody

Anti-­cleaved

Drosophila Dcp-­1

(Asp216) (rabbit

polyclonal)

Cell Signaling Technology Cat #9578

1:100

Antibody

Goat anti-­rabbit

secondary antibody,

Alexa Fluor 647

Thermo Fisher Scientific

Cat #A32733

1:250

Antibody

Goat anti-­chicken

secondary antibody,

Alexa Fluor 647

Thermo Fisher Scientific

Cat #A21449

1:250

Cat #CRL-­1963

Cat #ab9361

Appendix 1 Continued on next page

Wang et al. eLife 2022;11:e77340. DOI: https://doi.org/10.7554/eLife.77340

22 of 23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Appendix 1 Continued

Reagent type

(species) or

resource

Designation

Source or reference

Identifiers

Additional information

Antibody

Anti-α-tubulin (mouse

monoclonal)

Sigma-­Aldrich

Cat #T5168

1:5000

Antibody

Anti-­phospho-­JNK

(rabbit polyclonal)

Cell Signaling Technology Cat #9251

1:1000

Antibody

Anti-­JNK (mouse

monoclonal)

Santa Cruz Biotechnology Cat #sc-­7345

1:1000

Antibody

Anti-­RNF146 (rabbit

polyclonal)

GenScript antibody service N/A

Raised in rabbits

against peptide

HSGGGSGEDPAVGSC,1:2000

Antibody

Anti-­V5 tag (mouse

monoclonal)

Thermo Fisher Scientific

Cat #R960-­25

1:5000

Antibody

Anti-­myc tag (rabbit

polyclonal)

MBL

Cat #562

1:1000

Antibody

Horse anti-­mouse IgG,

HRP-­linked antibody

Cell Signaling Technology Cat #7076

1:5000

Antibody

Goat anti-­rabbit IgG,

HRP-­linked antibody

1:5000

Cell Signaling Technology Cat #7074

DAPI-­containing

Commercial assay SlowFade Gold

or kit

Antifade Reagent

Thermo Fisher Scientific

Cat #S36937

Commercial assay FuGene HD

or kit

transfection reagent

Promega

Cat #PRE2311

Other

Santa Cruz Biotechnology Cat #SC-­3508

CHX

Wang et al. eLife 2022;11:e77340. DOI: https://doi.org/10.7554/eLife.77340

50 μg/ml

23 of 23

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る