リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pre- and Post-Harvest Conditions Affect Polyphenol Content in Strawberry (Fragaria × ananassa)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pre- and Post-Harvest Conditions Affect Polyphenol Content in Strawberry (Fragaria × ananassa)

Koyama, Ryohei Ishibashi, Misaki Fukuda, Itsuko Okino, Akitoshi Osawa, Ro Uno, Yuichi 神戸大学

2022.09

概要

The strawberry fruit contains abundant polyphenols, such as anthocyanins, flavan-3-ol, and ellagitannin. Polyphenol enrichment improves the quality of strawberries and leads to a better understanding of the polyphenol induction process. We measured the total polyphenol content of strawberry fruits under different growth conditions, developmental stages, and treatment conditions during pre-harvest and post-harvest periods. High fruit polyphenol content was observed in cold treatment, which was selected for further analysis and optimization. A transcriptome analysis of cold-treated fruits suggested that the candidate components of polyphenols may exist in the phenylpropanoid pathway. Coverage with a porous film bag excluded the effects of drought stress and produced polyphenol-rich strawberry fruits without affecting quality or quantity. The degree of stress was assessed using known stress indicators. A rapid accumulation of abscisic acid was followed by an increase in superoxide dismutase and DPPH (2,2-Diphenyl-1-picrylhydrazyl) activity, suggesting that the strawberry fruits responded to cold stress immediately, reaching the climax at around 6 days, a trend consistent with that of polyphenol content. These findings enhance our understanding of the mechanism of post-harvest polyphenol accumulation and the value of strawberries as a functional food

参考文献

1. Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Weber, N.; Veberic, R.; Stampar, F.; Munda, A.; Koron, D. Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection. J. Agric Food Chem. 2013, 61, 5987–5995. [CrossRef] [PubMed]

2. Cardeñosa, V.; Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Cuevas, F.; Pradas, I.; Moreno-Rojas, J.M. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris). J. Sci. Food Agric. 2015, 95, 2924–2930. [CrossRef] [PubMed]

3. Wang, Y.; Moidu, H.; Charles, M.T.; Dubé, C.; Khanizadeh, S. Differential regulation of superoxide dismutase activity in selected strawberry lines exposed to Mycosphaerella fragariae. J. Plant Stud. 2015, 4, 30–41. [CrossRef]

4. Rugienius, R.; Bendokas, V.; Siksnianas, T.; Stanys, V.; Sasnauskas, A.; Kazanaviciute, V. Characteristics of Fragaria vesca yield parameters and anthocyanin accumulation under water deficit stress. Plants 2021, 10, 557. [CrossRef]

5. Šamec, D.; Karalija, E.; Šola, I.; Vujcˇic´ Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [CrossRef] [PubMed]

6. Petriccione, M.; Mastrobuoni, F.; Pasquariello, M.S.; Zampella, L.; Nobis, E.; Capriolo, G.; Scortichini, M. Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods 2015, 4, 501–523. [CrossRef]

7. Huang, D.; Wang, Y.; Zhang, D.; Dong, Y.; Meng, Q.; Zhu, S.; Zhang, L. Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S metabolism during storage. Postharvest Biol. Technol. 2021, 178, 111546. [CrossRef]

8. Shulaev, V.; Sargent, D.J.; Crowhurst, R.N.; Mockler, T.C.; Folkerts, O.; Delcher, A.L.; Jaiswal, P.; Mockaitis, K.; Liston, A.; Mane, S.P.; et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 2011, 43, 109–116. [CrossRef]

9. Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015, 6, 1386–1398. [CrossRef]

10. Giampieri, F.; Alvarez-Suarez, J.M.; Battino, M. Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 2014, 62, 3867–3876. [CrossRef]

11. Uno, Y.; Nitta, Y.; Ishibashi, M.; Noguchi, Y.; Kikuzaki, H. Inhibition of recombinant human histidine decarboxylase activity in different strawberry cultivars. Acta Physiol. Plant. 2017, 39, 134. [CrossRef]

12. Urün, I.; Attar, S.H.; Sönmez, D.A.; Gündes¸li, M.A.; Ercis¸li, S.; Kafkas, N.E.; Bandic´, L.M.; Duralija, B. Comparison of polyphenol, sugar, organic acid, volatile compounds, and antioxidant capacity of commercially grown strawberry cultivars in Turkey. Plants 2021, 10, 1654. [CrossRef] [PubMed]

13. Baldi, P.; Orsucci, S.; Moser, M.; Brilli, M.; Giongo, L.; Si-Ammour, A. Gene expression and metabolite accumulation during strawberry (Fragaria × ananassa) fruit development and ripening. Planta 2018, 248, 1143–1157. [CrossRef] [PubMed]

14. Moctezuma, C.; Hammerbacher, A.; Heil, M.; Gershenzon, J.; Méndez-Alonzo, R.; Oyama, K. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. J. Chem. Ecol 2014, 40, 458–467. [CrossRef] [PubMed]

15. Fujita, T.; Sato-Furukawa, M.; Sone, K.; Oki, T. Effect of harvest time on changes in hydrophilic oxygen radical absorbance capacity of fruits from different strawberry cultivars (Fragaria × ananassa Duch.). Nippon. Shokuhin Kagaku Kogaku Kaishi 2020, 67, 109–114. [CrossRef]

16. Jaakola, L.; Hohtola, A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ. 2010, 33, 1239–1247. [CrossRef]

17. Palmieri, L.; Masuero, D.; Martinatti, P.; Baratto, G.; Martens, S.; Vrhovsek, U. Genotype-by-environment effect on bioactive compounds in strawberry (Fragaria × ananassa Duch.). J. Sci. Food Agric. 2017, 97, 4180–4189. [CrossRef]

18. Ishibashi, M.; Yoshikawa, H.; Uno, Y. Expression profiling of strawberry allergen Fra a during fruit ripening controlled by exogenous auxin. Int. J. Mol. Sci. 2017, 18, 1186. [CrossRef]

19. Okochi, S.; Ishibashi, M.; Yoshikawa, H.; Uno, Y. Response of the major allergen Fra a 1.01 in strawberry to cold. Hortic. J. 2020, 89, 182–190. [CrossRef]

20. Gross, K.C.; Wang, C.Y.; Saltveit, M. The commercial storage of fruits, vegetables, and florist and nursery stocks. In Agriculture Handbook; United States Department of Agriculture: Beltsville, MD, USA, 2016.

21. Wang, H.-G.; Gemma, H.; Oogaki, C. Physiological characteristics and keeping qualities on the strawberry and kiwifruits during chilled storage. J. Jpn. Soc. Cold Preserv. Food 1988, 14, 8–14. [CrossRef]

22. Yamagishi, A. Cold adaptation and molecular evolution of enzyme. Netsu Sokutei 2006, 33, 2–9.

23. Rivero, R.M.; Ruiz, J.M.; García, P.C.; López-Lefebre, L.R.; Sánchez, E.; Romero, L. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321. [CrossRef]

24. Boo, H.O.; Heo, B.G.; Gorinstein, S.; Chon, S.U. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 2011, 181, 479–484. [CrossRef]

25. Kobayashi, T.; Kurata, R.; Kai, Y. Seasonal Variation in the yield and polyphenol content of sweet potato (Ipomoea batatas L.) Foliage. Hortic. J. 2019, 88, 270–275. [CrossRef]

26. Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [CrossRef] [PubMed]

27. Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [CrossRef] [PubMed]

28. Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [CrossRef]

29. Singh, R.; Rastogi, S.; Dwivedi, U.N. Phenylpropanoid metabolism in ripening fruits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 398–416. [CrossRef]

30. Wang, J.; Dong, S.; Jiang, Y.; He, H.; Liu, T.; Lv, M.; Ji, S. Influence of long-term cold storage on phenylpropanoid and soluble sugar metabolisms accompanied with peel browning of ‘Nanguo’ pears during subsequent shelf life. Sci. Hortic. 2020, 260, 108888. [CrossRef]

31. Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, D.; Yang, D.; Aghdam, M.S.; Li, L. The effect of the layer-by-layer (LBL) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 2019, 147, 29–38. [CrossRef]

32. Pott, D.M.; de Abreu E Lima, F.; Soria, C.; Willmitzer, L.; Fernie, A.R.; Nikoloski, Z.; Osorio, S.; Vallarino, J.G. Metabolic reconfiguration of strawberry physiology in response to postharvest practices. Food Chem. 2020, 321, 126747. [CrossRef] [PubMed]

33. Sanz Cervera, S.; Olarte, C.; Echávarri, J.F.; Ayala, F. Influence of exposure to light on the sensorial quality of minimally processed cauliflower. J. Food Sci. 2007, 72, S012–S018. [CrossRef] [PubMed]

34. Takayama, Y.; Inamasu, K.; Yokoyama, A.; Nishida, Y.; Furuichi, Y. Nutrient composition and nutritional functions of Nigaichigo (Rubus microphyllus) Fruits. Nippon. Shokuhin Kagaku Kogaku Kaishi 2010, 57, 483–488. [CrossRef]

35. Rohloff, J.; Kopka, J.; Erban, A.; Winge, P.; Wilson, R.C.; Bones, A.M.; Davik, J.; Randall, S.K.; Alsheikh, M.K. Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry). Phytochemistry 2012, 77, 99–109. [CrossRef] [PubMed]

36. Koehler, G.; Rohloff, J.; Wilson, R.C.; Kopka, J.; Erban, A.; Winge, P.; Bones, A.M.; Davik, J.; Alsheikh, M.K.; Randall, S.K. Integrative “omic” analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa ‘Korona’. Front. Plant Sci. 2015, 6, 826. [CrossRef] [PubMed]

37. Zeng, K.; Deng, Y.; Ming, J.; Deng, L. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci. Hortic. 2010, 126, 223–228. [CrossRef]

38. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends. Plant Sci. 2002, 7, 405–410. [CrossRef]

39. Zhang, H.; Li, K.; Zhang, X.; Dong, C.; Ji, H.; Ke, R.; Ban, Z.; Hu, Y.; Lin, S.; Chen, C. Effects of ozone treatment on the antioxidant capacity of postharvest strawberry. RSC Adv. 2020, 10, 38142–38157. [CrossRef]

40. Zhang, Y.; Long, Y.; Liu, Y.; Yang, M.; Wang, L.; Liu, X.; Chen, Q.; Li, M.; Lin, Y.; Tang, H.; et al. MAPK5 and MAPK10 overexpression influences strawberry fruit ripening, antioxidant capacity and resistance to Botrytis cinerea. Planta 2021, 255, 19. [CrossRef]

41. Ishibashi, M.; Okochi, S.; Sone, K.; Noguchi, Y.; Uno, Y. Seasonal variation of the major allergen Fra a 1 in Strawberry Fruit. Hortic. J. 2019, 88, 354–363. [CrossRef]

42. Magalhães, L.M.; Santos, F.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta 2010, 83, 441–447. [CrossRef] [PubMed]

43. Ishibashi, M.; Nabe, T.; Nitta, Y.; Uno, Y. Efficient isolation of high-quality total RNA from strawberry. Hortscience 2019, 54, 380–384. [CrossRef]

44. Edger, P.P.; VanBuren, R.; Colle, M.; Poorten, T.J.; Wai, C.M.; Niederhuth, C.E.; Alger, E.I.; Ou, S.; Acharya, C.B.; Wang, J.; et al. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. Gigascience 2018, 7, gix124. [CrossRef] [PubMed]

45. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef] [PubMed]

46. Vicente, A.R.; Martínez, G.A.; Chaves, A.R.; Civello, P.M. Effect of heat treatment on strawberry fruit damage and oxidative metabolism during storage. Postharvest Biol. Technol. 2006, 40, 116–122. [CrossRef]

47. Koyama, R.; Yoshimoto, A.; Ishibashi, M.; Itoh, H.; Uno, Y. Enzymatic activities and gene transcript levels associated with the augmentation of antioxidant constituents during drought stress in lettuce. Horticulturae 2021, 7, 444. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る