リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on effects of hot water treatment in red sweet pepper fruit during low temperature storage」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on effects of hot water treatment in red sweet pepper fruit during low temperature storage

Kantakhoo Jirarat 大阪府立大学 DOI:info:doi/10.24729/00017715

2022.07.05

概要

Red sweet pepper (Capsicum annuum L.) is grown in tropical and subtropical regions as an important horticultural product in terms of the global economy. Red sweet pepper fruit has high nutritional value (a good source of vitamin A and C) and contains bioactive materials such as phenolic compounds and carotenoids. However, red sweet pepper fruit is a perishable commodity with fruit ripening when stored at ambient temperature, resulting in short shelf life after harvest. Thus, a suitable storage method is required to ensure the quality of red sweet pepper fruit.

Low temperature storage maintains the quality of horticultural products and extends storage duration. The shelf life of red sweet pepper fruits is limited as a result of decay, loss of water during storage, and sensitivity to cold stress. The optimal storage temperature for red sweet pepper fruit was reported to be 12 °C, with chilling injury (CI) often occurring below this temperature.

Many technologies have been developed to mitigate CI of horticultural products, including physical treatments such as controlled or modified atmosphere, irradiation, and heat treatment, and chemical treatments using plant hormones and natural elicitors. Heat treatment is a safe and environment-friendly method and that is effective postharvest treatment. Horticultural products are treated previous to low temperature storage utilizing hot water, hot air, or vapor heat. Water is a more efficient heat transfer medium than air and is preferred for most heat treatment applications. Thus, hot water treatment is expected the beneficial effect for mitigation of CI, enhancing chilling tolerance by improving antioxidant responses.

However, little information is available concerning oxidative stress and adaptive responses in red sweet pepper fruit to chilling stress under hot water treatment. This study investigated the effects of hot water treatment on the level of oxidative stress and CI incidence during storage at low temperature, and discussed the possible mechanisms leading to the induction of chilling tolerance.

この論文で使われている画像

参考文献

1. Abu-Kpawoh, J. C., Xi, Y. F., Zhang, Y. Z., & Jin, Y. F. (2002). Polyamine accumulation following hot-water dips influences chilling injury and decay in “Friar” plum fruit. Journal of Food Science, 67(7), 2649–2653.

2. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

3. Aghdam, M. S., & Bodbodak, S. (2014). Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food and Bioprocess Technology, 7, 37–53.

4. Aghdam, M. S., Sevillano, L., Flores, F. B., & Bodbodak, S. (2013). Heat shock proteins as biochemical markers for postharvest chilling stress in fruits and vegetables. Scientia Horticulturae, 160, 54–64.

5. Andrade Cuvi, M. J., Vicente, A. R., Concellón, A., & Chaves, A. R. (2011). Changes in red pepper antioxidants as affected by UV-C treatments and storage at chilling temperatures. LWT - Food Science and Technology, 44(7), 1666–1671.

6. Angasu, O. N., Dessalgne, O. G., & Tadesse, T. N. (2014). Effect of hot water treatment on quality and incidence of postharvest disease of mango (Mangifera indicia L.) fruits. Asian Journal of Plant Sciences, 13(2), 87–92.

7. Appiah, C., Yang, Z.-F., He, J., Wang, Y., Zhou, J., Xu, W.-Z., Nie, G., & Zhu, Y.-Q. (2021). Genome-wide identification of Hsp90 gene family in perennial ryegrass and expression analysis under various abiotic stresses. Plants, 10, 2509.

8. Bar-Yosef, A., Alkalai-Tuvia, S., Perzelan, Y., Aharon, Z., Ilic, Z., Lurie, S., & Fallik, E. (2009). Effect of shrink packaging in combination with rinsing and brushing treatment on chilling injury and decay of sweet pepper during storage. Advances in Horticultural Science, 23(4), 225–230.

9. Bassal, M., & El-Hamahmy, M. (2011). Hot water dip and preconditioning treatments to reduce chilling injury and maintain postharvest quality of Navel and Valencia oranges during cold quarantine. Postharvest Biology and Technology, 60, 186–191.

10. Biswas, P., East, A. R., Brecht, J. K., Hewett, E. W., & Heyes, J. A. (2012). Intermittent warming during low temperature storage reduces tomato chilling injury. Postharvest Biology and Technology, 74, 71–78.

11. Boonkorn, P. (2016). Impact of hot water soaking on antioxidant enzyme activities and some qualities of storage tomato fruits. International Food Research Journal, 23(3), 934- 938.

12. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

13. Chen, S., Zimei, L., Cui, J., Jiangang, D., Xia, X., Liu, D., & Yu, J. (2011). Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regulation, 65, 101–108.

14. Collins, G. G., Nie, X., & Saltveit, M. E. (1995). Heat shock proteins and chilling sensitivity of mung bean hypocotyls. Journal of Experimental Botany, 46, 795–802.

15. Constán-Aguilar, C., Leyva, R., Blasco, B., Sánchez-Rodríguez, E., Soriano, T., & Ruiz, J. M. (2014). Biofortification with potassium: antioxidant responses during postharvest of cherry tomato fruits in cold storage. Acta Physiologiae Plantarum, 36, 283–293.

16. Cuadra-Crespo, P., & del Amor, F. M. (2010). Effects of postharvest treatments on fruit quality of sweet pepper at low temperature. Journal of the Science of Food and Agriculture, 90, 2716–2722.

17. Davey, M. W., & Keulemans, J. (2004). Determining the potential to breed for enhanced antioxidant status in malus: mean inter- and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. Journal of Agricultural and Food Chemistry, 52, 8031–8038.

18. Decros, G., Baldet, P., Beauvoit, B., Stevens, R., Flandin, A., Colombié, S., Gibon, Y., & Pétriacq, P. (2019). Get the balance right: ROS homeostasis and redox signalling in fruit. Frontiers in Plant Science, 10, 1091.

19. Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2001). Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Science, 161, 1153–1159.

20. Dipierro, S., & De Leonardis, S. (1997). The ascorbate system and lipid peroxidation in stored potato (Solanum tuberosum L.) tubers. Journal of Experimental Botany, 48, 779– 783.

21. Endo, H., Miyazaki, K., Ose, K., & Imahori, Y. (2019a). Hot water treatment to alleviate chilling injury and enhance ascorbate-glutathione cycle in sweet pepper fruit during postharvest cold storage. Scientia Horticulturae, 257, 108715.

22. Endo, H., Ose, K., Bai, J., & Imahori, Y. (2019b). Effect of hot water treatment on chilling injury incidence and antioxidative responses of mature green mume (Prunus mume) fruit during low temperature storage. Scientia Horticulturae, 246, 550–556.

23. Erkan, M., Pekmezci, M., & Wang, C. Y. (2005). Hot water and curing treatments reduce chilling injury and maintain post-harvest quality of “Valencia” oranges. International Journal of Food Science and Technology, 40, 91–96.

24. Fallik, E. (2004). Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biology and Technology, 32, 125–134.

25. Fallik, E., Bar-Yosef, A., Alkalai-Tuvia, S., Aharon, Z., Perzelan, Y., Ilić, Z., & Lurie, S. (2009). Prevention of chilling injury in sweet bell pepper stored at 1.5 C by heat treatments and individual shrink packaging. Folia Horticulturae, 21(2), 87–97.

26. Fallik, E., Grinberg, S., Alkalai, S., & Lurie, S. (1996). The effectiveness of postharvest hot water dipping on the control of grey and black moulds in sweet red pepper (Capsicum annuum). Plant Pathology, 45, 644–649.

27. Fallik, E., Grinberg, S., Alkalai, S., Yekutieli, O., Wiseblum, A., Regev, R., Beres, H., & Bar-Lev, E. (1999). A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biology and Technology, 15, 25–32.

28. Fallik, E., Perzelan, Y., Alkalai-Tuvia, S., Nemny-Lavy, E., & Nestel, D. (2012). Development of cold quarantine protocols to arrest the development of the Mediterranean fruit fly (Ceratitis capitata) in pepper (Capsicum annuum L.) fruit after harvest. Postharvest Biology and Technology, 70, 7–12.

29. FAO. (2019). Chillies and peppers. http://www.fao.org/faostat/en/#data/QC

30. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

31. Giuffrida, D., Dugo, P., Torre, G., Bignardi, C., Cavazza, A., Corradini, C., & Dugo, G. (2013). Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chemistry, 140, 794–802.

32. Glowacz, M., Colgan, R., & Rees, D. (2015). Influence of continuous exposure to gaseous ozone on the quality of red bell peppers, cucumbers and zucchini. Postharvest Biology and Technology, 99, 1–8.

33. González-Aguilar, G., Cruz, R., & Baez, R. (1999). Storage quality of bell peppers pretreated with hot water and polyethylene packaging. Journal of Food Quality, 22, 287– 299.

34. González-Aguilar, G. A. (2016). Pepper. In K. C. Gross, Y. Wang, & M. Saltveit (Eds.), The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks (Vol. 66). U.S. Department of Agriculture, Agricultural Research Service.

35. González-Aguilar, G. A., Cruz, R., Baez, R., & Wang, C. Y. (1999). Storage quality of bell peppers pretreated with hot water and polyethylene packaging. Journal of Food Quality, 22, 287–299.

36. González-Aguilar, G. A., Gayosso, L., Cruz, R., Fortiz, J., Báez, R., & Wang, C. Y. (2000). Polyamines induced by hot water treatments reduce chilling injury and decay in pepper fruit. Postharvest Biology and Technology, 18, 19–26.

37. Gonzalez-Aguilar, G. A., Villa-Rodriguez, J. A., Ayala-Zavala, J. F., & Yahia, E. M. (2010). Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments. Trends in Food Science & Technology, 21, 475–482.

38. Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106, 207–212.

39. Guo, M., Liu, J. H., Lu, J. P., Zhai, Y. F., Wang, H., Gong, Z. H., Wang, S. Bin, & Lu, M. H. (2015). Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Frontiers in Plant Science, 6, 806.

40. Guo, M., Liu, J. H., Ma, X., Zhai, Y. F., Gong, Z. H., & Lu, M. H. (2016). Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress. Plant Science : An International Journal of Experimental Plant Biology, 252, 246–256.

41. Guo, M., Zhai, Y. F., Lu, J. P., Chai, L., Chai, W. G., Gong, Z. H., & Lu, M. H. (2014). Characterization of CaHsp70-1, a pepper heat-shock protein gene in response to heat stress and some regulation exogenous substances in Capsicum annuum L. International Journal of Molecular Sciences, 15, 19741.

42. Haq, S., Khan, A., Ali, M., Khattak, A. M., Gai, W., Zhang, H., Wei, A., & Gong, Z. (2019). Heat shock proteins : dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20, 5321.

43. Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604– 611.

44. Hodges, D. M., Lester, G. E., Munro, K. D., & Toivonen, P. M. A. (2004). Oxidative stress: importance for postharvest quality. HortScience, 39(5), 924–929.

45. Hossain, M. A., & Asada, K. (1984). Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant and Cell Physiology, 25, 85–92. 73

46. Howard, L. R., Talcott, S. T., Brenes, C. H., & Villalon, B. (2000). Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. Journal of Agricultural and Food Chemistry, 48, 1713–1720.

47. Hu, W., Hu, G., & Han, B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Science, 176, 583–590.

48. Hu, Y., Zhang, T., Liu, Y., Li, Y., Wang, M., Zhu, B., Liao, D., Yun, T., Huang, W., Zhang, W., & Zhou, Y. (2021). Pumpkin (Cucurbita moschata) HSP20 gene family identification and expression under heat stress. Frontiers in Genetics, 12, 753953.

49. Huan, C., Han, S., Jiang, L., An, X., Yu, M., Xu, Y., Ma, R., & Yu, Z. (2017). Postharvest hot air and hot water treatments affect the antioxidant system in peach fruit during refrigerated storage. Postharvest Biology and Technology, 126, 1–14.

50. Iba, K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology, 53, 225– 245.

51. Ilić, Z. S., Trajković, R., Perzelan, Y., Alkalai-Tuvia, S., & Fallik, E. (2012). Influence of 1-methylcyclopropene (1-MCP) on postharvest storage quality in green bell pepper fruit. Food and Bioprocess Technology, 5, 2758–2767.

52. Imahori, Y. (2012). Postharvest stress treatments in fruits and vegetables. In A. Parvaiz and M. N. V. Prasad (Eds.), Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability (pp. 347–358). Springer.

53. Imahori, Y. (2014). Role of ascorbate peroxidase in postharvest treatments of horticultural crops. In P. Ahmad (Ed.), Oxidative Damage to Plants: Antioxidant Networks and Signaling (pp. 425–451). Elsevier.

54. Imahori, Y., Bai, J., & Baldwin, E. (2016). Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Scientia Horticulturae, 198, 398–406.

55. Imahori, Y., Bai, J., Ford, B. L., & Baldwin, E. A. (2021). Effect of storage temperature on chilling injury and activity of antioxidant enzymes in carambola “Arkin” fruit. Journal of Food Processing and Preservation, 45, e15178.

56. Imahori, Y., Takemura, M., & Bai, J. (2008). Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biology and Technology, 49, 54–60.

57. Ishikawa, T., Takeda, T., & Shigeoka, S. (1996). Purification and characterization of cytosolic ascorbate peroxidase from komatsuna (Brassica rapa). Plant Physiology and Biochemistry, 120, 11–18.

58. Jacobi, K. K., MacRae, E. A., & Hetherington, S. E. (2001). Postharvest heat disinfestation treatments of mango fruit. Scientia Horticulturae, 89(3), 171–193.

59. Jin, P., Wang, K., Shang, H., Tong, J., & Zheng, Y. (2009). Low-temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit. Journal of the Science of Food and Agriculture, 89, 1690–1696

60. Jing, W., Tu, K., Shao, X. F., Su, Z. P., Zhao, Y., Wang, S., & Tang, J. (2010). Effect of postharvest short hot-water rinsing and brushing treatment on decay and quality of strawberry fruit. Journal of Food Quality, 33, 262–272.

61. Kadyrzhanova, D. K., Vlachonasios, K. E., Ververidis, P., & Dilley, D. R. (1998). Molecular cloning of a novel heat induced/chilling tolerance related cDNA in tomato fruit by use of mRNA differential display. Plant Molecular Biology, 36(6), 885–895.

62. Kang, G. Z., Li, G. Z., Liu, G. Q., Xu, W., Peng, X. Q., Wang, C. Y., Zhu, Y. J., & Guo, T. C. (2013). Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbate-glutathione cycle. Biologia Plantarum, 57(4), 718–724.

63. Kissinger, M., Tuvia-Alkalai, S., Shalom, Y., Fallik, E., Elkind, Y., Jenks, M. A., & Goodwin, M. S. (2005). Characterization of physiological and biochemical factors associated with postharvest water loss in ripe pepper fruit during storage. Journal of the American Society for Horticultural Science, 130(5), 735–741.

64. Klapheck, S., Zimmer, I., & Cosse, H. (1990). Scavenging of hydrogen proxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant and Cell Physiology, 31, 1005–1013.

65. Lara, I., García, P., & Vendrell, M. (2006). Post-harvest heat treatments modify cell wall composition of strawberry (Fragaria × ananassa Duch.) fruit. Scientia Horticulturae, 109, 48–53.

66. Liu, L., Wei, Y., Shi, F., Liu, C., Liu, X., & Ji, S. (2015). Intermittent warming improves postharvest quality of bell peppers and reduces chilling injury. Postharvest Biology and Technology, 101, 18–25.

67. Liu, D., Zhang, X., Cheng, Y., Takano, T., & Liu, S. (2006). rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 44, 380–386.

68. López-Velázquez, J. G., Delgado-Vargas, F., López-Ángulo, G., García-Armenta, E., López-López, M. E., Ayón-Reyna, L. E., Díaz-Corona, D. A., & Vega-García, M. O. (2020). Phenolic profile associated with chilling tolerance induced by the application of a hot water treatment in bell pepper fruit. Journal of Food Science, 85(7), 2080–2089.

69. Lu, J., Vigneault’, C., Charles, M. T., & Raghavan, G. S. V. (2007). Heat treatment application to increase fruit and vegetable quality. Stewart Postharvest Review, 3(4).

70. Lurie, S. (1998). Postharvest heat treatments. Postharvest Biology and Technology, 14, 257–269.

71. Lydakis, D., & Aked, J. (2003). Vapour heat treatment of Sultanina table grapes. II: effects on postharvest quality. Postharvest Biology and Technology, 27, 117–126.

72. Madani, B., Shekari, A. M., & Imahori, Y. (2019). Physiological responses to stress. In E. M. Yahia (Ed.), Postharvest Physiology and Biochemistry of Fruits and Vegetables (pp. 405–423). Woodhead Publishing.

73. Mirdehghan, S. H., Rahemi, M., Martínez-Romero, D., Guillén, F., Valverde, J. M., Zapata, P. J., Serrano, M., & Valero, D. (2007). Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines. Postharvest Biology and Technology, 44, 19–25.

74. Nakano, Y., & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 28(1), 131–140.

75. Nasef, I. N. (2018). Short hot water as safe treatment induces chilling tolerance and antioxidant enzymes, prevents decay and maintains quality of cold-stored cucumbers. Postharvest Biology and Technology, 138, 1–10.

76. Nian, Y., Wang, N., Li, R., Shao, Y., & Li, W. (2022). Cold shock treatment alleviates chilling injury in papaya fruit during storage by improving antioxidant capacity and related gene expression. Scientia Horticulturae, 294, 110784.

77. Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology, 49, 249–279.

78. Özden, Ç., & Bayindirli, L. (2002). Effects of combinational use of controlled atmosphere, cold storage and edible coating applications on shelf life and quality attributes of green peppers. European Food Research and Technology, 214, 320–326.

79. Park, M.-H., Sangwanangkul, P., & Choi, J.-W. (2018). Reduced chilling injury and delayed fruit ripening in tomatoes with modified atmosphere and humidity packaging. Scientia Horticulturae, 213, 66-72.

80. Paull, R. E., & Jung Chen, N. (2000). Heat treatment and fruit ripening. Postharvest Biology and Technology, 21, 21–37.

81. Polenta, G., Guidi, S., & González, C. B. (2009). The Application of stress treatments to prevent the development of chilling injury. Fresh Produce, 3(special issue 1), 42–48.

82. Pongprasert, N., Sekozawa, Y., Sugaya, S., & Gemma, H. (2011). The role and mode of action of UV-C hormesis in reducing cellular oxidative stress and the consequential chilling injury of banana fruit peel. International Food Research Journal, 18, 741–749.

83. Porat, R., Daus, A., Weiss, B., Cohen, L., Fallik, E., & Droby, S. (2000). Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharvest Biology and Technology, 18, 151–157.

84. Quan, L.-J., Zhang, B., Shi, W.-W., & Li, H.-Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 50(1), 2–18.

85. Rao, T. V. R., Gol, N. B., & Shah, K. K. (2011). Effect of postharvest treatments and storage temperatures on the quality and shelf life of sweet pepper (Capsicum annum L.). Scientia Horticulturae, 132, 18–26.

86. Rehman, R. N. U., Malik, A. U., Khan, A. S., Hasan, M. U., Anwar, R., Ali, S., & Haider, M. W. (2021). Combined application of hot water treatment and methyl salicylate mitigates chilling injury in sweet pepper (Capsicum annuum L.) fruits. Scientia Horticulturae, 283, 110113.

87. Roy, S., Conway, W. S., Watada, A. E., Sams, C. E., Erbe, E. F., & Wergin, W. P. (1994). Heat treatment affects epicuticular wax structure and postharvest calcium uptake in “Golden Delicious” apples. HortScience, 29(9), 1056–1058.

88. Rozenzvieg, D., Elmaci, C., Samach, A., Lurie, S., & Porat, R. (2004). Isolation of four heat shock protein cDNAs from grapefruit peel tissue and characterization of their expression in response to heat and chilling temperature stresses. Physiologia Plantarum, 121, 421–428.

89. Sakaldaş, M., & Kaynaş, K. (2010). Biochemical and quality parameters changes of green sweet bell peppers as affected by different postharvest treatments. African Journal of Biotechnology, 9(48), 8174–8181.

90. Salazar-Salas, N. Y., Valenzuela-Ponce, L., Vega-Garcia, M. O., Pineda-Hidalgo, K. V., Vega-Alvarez, M., Chavez-Ontiveros, J., Delgado-Vargas, F., & Lopez-Valenzuela, J. A. (2017). Protein changes associated with chilling tolerance in tomato fruit with hot water pre-treatment. Postharvest Biology and Technology, 134, 22–30.

91. Saltveit, J. M. E., & Morris, L. L. (1990). Overview on chilling injury of horticultural crops. In Y. W. Chien (Ed.), Chilling Injury of Horticultural Crops (pp. 3–15). CRC Press.

92. Sarkar, N. K., Kim, Y. K., & Grover, A. (2009). Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 10, 393.

93. Sarkar, N. K., Kundnani, P., & Grover, A. (2013). Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress Chaperones, 18, 427–437.

94. Sato, Y., Murakami, T., Funatsuki, H., Matsuba, S., Saruyama, H., & Tanida, M. (2001). Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. Journal of Experimental Botany, 52(354), 145–151.

95. Schirra, M., & D’Hallewin, G. (1997). Storage performance of Fortune mandarins following hot water dips. Postharvest Biology and Technology, 10, 229–238.

96. Schmitz, G., Schmidt, M., & Feierabend, J. (1996). Characterization of a plastid-specific HSP90 homologue: Identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression. Plant Molecular Biology, 30, 479–492.

97. Sevillano, L., Sola, M., & Vargas, A. M. (2010). Induction of small heat-shock proteins in mesocarp of cherimoya fruit (Annona cherimola Mill.) produces chilling tolerance. Journal of Food Biochemistry, 34, 625–638.

98. Shadmani, N., Ahmad, S. H., Saari, N., Ding, P., & Tajidin, N. E. (2015). Chilling injury incidence and antioxidant enzyme activities of Carica papaya L. ‘Frangi’ as influenced by postharvest hot water treatment and storage temperature. Postharvest Biology and Technology, 99, 114–119.

99. Sharom, M., Willemot, C., & Thompson, J. E. (1994). Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiology, 105, 305–308.

100. Shehata, S. A., Ibrahim, M I A, El-Mogy, M. M., & Abd El-Gawad, K. F. (2013). Effect of hot water dips and modified atmosphere packaging on extend the shelf life of bell pepper fruits, Wulfenia, 20(3), 315–328.

101. Singh, R., Giri, S. K., & Kotwaliwale, N. (2014). Shelf-life enhancement of green bell pepper (Capsicum annuum L.) under active modified atmosphere storage. Food Packaging and Shelf Life, 1, 101–112.

102. Stevens, R., Buret, M., Garchery, C., Carretero, Y., & Causse, M. (2006). Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. Journal of Agricultural and Food Chemistry, 54, 6159–6165.

103. Sun, J., Chen, J., Kuang, J., Chen, W. xin, & Lu, W. (2010). Expression of sHSP genes as affected by heat shock and cold acclimation in relation to chilling tolerance in plum fruit. Postharvest Biology and Technology, 55, 91–96.

104. Sun, J. T., Cheng, G. X., Huang, L. J., Liu, S., Ali, M., Khan, A., Yu, Q. H., Yang, S. B., Luo, D. X., & Gong, Z. H. (2019). Modified expression of a heat shock protein gene, CaHSP22.0, results in high sensitivity to heat and salt stress in pepper (Capsicum annuum L.). Scientia Horticulturae, 249, 364–373.

105. Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum, 126, 45–51.

106. Ummarat, N., Matsumoto, T., Wall, M. M., & Seraypheap, K. (2011). Changes in antioxidants and fruit quality in hot water-treated “Hom Thong” banana fruit during storage. Scientia Horticulturae, 130, 801–807.

107. Valero, C., Crisosto, C. H., & Slaughter, D. (2007). Relationship between nondestructive firmness measurements and commercially important ripening fruit stages for peaches, nectarines and plums. Postharvest Biology and Technology, 44, 248–253.

108. Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161(3), 405–414.

109. Veljovic-Jovanovic, S., Noctor, G., & Foyer, C. H. (2002). Are leaf hydrogen peroxide concentrations commonly overestimated? the potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiology and Biochemistry, 40, 501–507.

110. Vicente, A. R., Pineda, C., Lemoine, L., Civello, P. M., Martinez, G. A., & Chaves, A. R. (2005). UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper. Postharvest Biology and Technology, 35(1), 69–78.

111. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199–223.

112. Wang, H., Zhang, Z., Xu, L., Huang, X., & Pang, X. (2012a). The effect of delay between heat treatment and cold storage on alleviation of chilling injury in banana fruit. Journal of the Science of Food and Agriculture, 92, 2624–2629.

113. Wang, K., Shao, X., Gong, Y., Xu, F., & Wang, H. (2014). Effects of postharvest hot air treatment on gene expression associated with ascorbic acid metabolism in peach fruit. Plant Molecular Biology Reporter, 32, 881–887.

114. Wang, Q., Ding, T., Gao, L., Pang, J., & Yang, N. (2012b). Effect of brassinolide on chilling injury of green bell pepper in storage. Scientia Horticulturae, 144, 195–200.

115. Wang, Q., Ding, T., Zuo, J., Gao, L., & Fan, L. (2016). Amelioration of postharvest chilling injury in sweet pepper by glycine betaine. Postharvest Biology and Technology, 112, 114–120.

116. Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252.

117. Wang, Y., Gao, L., Wang, Q., & Zuo, J. (2019). Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper. Scientia Horticulturae, 243(September 2018), 434–439.

118. Watanabe, T., Nakamura, N., Shiina, T., & Nagata, M. (2020). Relationships among expression of six representative genes , bacterial multiplication , color changes of fresh cut cabbages during storage with focus on accumulated storage temperature. Food Control, 113, 107190.

119. Yao, F., Song, C., Wang, H., Song, S., Jiao, J., Wang, M., Zheng, X., & Bai, T. (2020). Citation: genome-wide characterization of the HSP20 gene family identifies potential members involved in temperature stress response in apple. Frontiers in Genetics, 11, 609184.

120. Yao, M., Ge, W., Zhou, Q., Zhou, X., Luo, M., Zhao, Y., Wei, B., & Ji, S. (2021). Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chemistry, 352.

121. Zhang, H., Li, L., Ye, T., Chen, R., Gao, X., & Xu, Z. (2016). Molecular characterization, expression pattern and function analysis of the OsHSP90 family in rice. Biotechnology & Biotechnological Equipment, 30(4), 669–676.

122. Zhang, J., Huang, W., Pan, Q., & Liu, Y. (2005). Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biology and Technology, 38(1), 80–90.

123. Zhang, L., Yu, Z., Jiang, L., Jiang, J., Luo, H., & Fu, L. (2011). Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. Journal of Proteomics, 74(7), 1135-1149.

124. Zhang, M., Liu, W., Li, C., Shao, T., Jiang, X., Zhao, H., & Ai, W. (2019). Postharvest hot water dipping and hot water forced convection treatments alleviate chilling injury for zucchini fruit during cold storage. Scientia Horticulturae, 249, 219–227.

125. Zhou, T., Xu, S., Sun, D. W., & Wang, Z. (2002). Effects of heat treatment on postharvest quality of peaches. Journal of Food Engineering, 54(1), 17–22.

126. Zhang, W., Jiang, H., Cao, J., & Jiang, W. (2021). Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends in Food Science & Technology, 113, 355–365.

127. Zhang, Z., Nakano, K., & Maezawa, S. (2009). Comparison of the antioxidant enzymes of broccoli after cold or heat shock treatment at different storage temperatures. Postharvest Biology and Technology, 54(2), 101–105.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る