リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Feasibility of the detection of heavy supersymmetric dark matter」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Feasibility of the detection of heavy supersymmetric dark matter

福田, 朝 東京大学 DOI:10.15083/0002001872

2021.10.04

概要

Supersymmetry is one of the most motivated candidate of physics beyond the standard model. Under the reasonable assumption that $R$-parity is conserved and the Universe is once sufficiently hot, the lightest supersymmetric particle becomes the cosmic dark matter in the current Universe by the thermal freeze-out mechanism. In the thermal freeze-out mechanism, the smaller the annihilation cross section of the dark matter is, the larger the abundance is. Since the unitarity bound gives the upper bound of the annihilation cross section for given dark matter mass, there is an upper bound for the thermally frozen-out dark matter mass. Using this properties of the cosmic dark matter, we can impose an upper bound for the supersymmetric particle mass.

 In this thesis, we have proposed to search supersymmetry using this upper bound. Concretely speaking, we have clarified two points. First, depending on the mass spectrum, how efficient the annihilation process differs. We investigate two scenarios, the Higgs funnel scenario and the coannhilation scenario, which are, as far as we know, the only ways to enhance the dark matter mass to the TeV scale in addition to the pure neutralino scenarios, and clarify the mass upper bound for the LSP. Then, we discuss how to reach that mass experimentally. We have found that for all the scenario, the interplay between collider and direct detection experiments can sweep almost all parameter region.

参考文献

[1] Steven Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett. 19 (1967), pp. 1264– 1266. DOI: 10.1103/PhysRevLett.19.1264.

[2] Sidney R. Coleman and J. Mandula. “All Possible Symmetries of the S Ma- trix”. In: Phys. Rev. 159 (1967), pp. 1251–1256. DOI: 10.1103/PhysRev.159. 1251.

[3] M. Shifman. Advanced topics in quantum field theory. Cambridge, UK: Cam- bridge Univ. Press, 2012. ISBN: 9781139210362, 9780521190848. URL: http :// www . cambridge . org / mw / academic / subjects / physics / theoretical - physics-and-mathematical-physics/advanced-topics-quantum-field- theory-lecture-course?format=AR.

[4] Rudolf Haag, Jan T. Lopuszanski, and Martin Sohnius. “All Possible Genera- tors of Supersymmetries of the s Matrix”. In: Nucl. Phys. B88 (1975). [,257(1974)], p. 257. DOI: 10.1016/0550-3213(75)90279-5.

[5] M. Tanabashi et al. “Review of Particle Physics”. In: Phys. Rev. D98.3 (2018), p. 030001. DOI: 10.1103/PhysRevD.98.030001.

[6] Yasuhiro Okada, Masahiro Yamaguchi, and Tsutomu Yanagida. “Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model”. In: Prog. Theor. Phys. 85 (1991), pp. 1–6. DOI: 10.1143/ptp/85.1.1.

[7] Howard E. Haber and Ralf Hempfling. “Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?” In: Phys. Rev. Lett. 66 (1991), pp. 1815–1818. DOI: 10.1103/PhysRevLett.66.1815.

[8] John R. Ellis, Giovanni Ridolfi, and Fabio Zwirner. “Radiative corrections to the masses of supersymmetric Higgs bosons”. In: Phys. Lett. B257 (1991), pp. 83–91. DOI: 10.1016/0370-2693(91)90863-L.

[9] Patrick Draper and Heidi Rzehak. “A Review of Higgs Mass Calculations in Supersymmetric Models”. In: Phys. Rept. 619 (2016), pp. 1–24. DOI: 10.1016/ j.physrep.2016.01.001. arXiv: 1601.01890 [hep-ph].

[10] Steven Weinberg. The quantum theory of fields. Vol. 2: Modern applications. Cam- bridge University Press, 2013. ISBN: 9781139632478, 9780521670548, 9780521550024.

[11] Charles W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. San Francisco: W. H. Freeman, 1973. ISBN: 9780716703440, 9780691177793.

[12] N. Aghanim et al. “Planck 2018 results. VI. Cosmological parameters”. In: (2018). arXiv: 1807.06209 [astro-ph.CO].

[13] Steven Weinberg. Cosmology. 2008. ISBN: 9780198526827. URL: http://www. oup.com/uk/catalogue/?ci=9780198526827.

[14] Alexey Boyarsky et al. “Lyman-alpha constraints on warm and on warm- plus-cold dark matter models”. In: JCAP 0905 (2009), p. 012. DOI: 10.1088/ 1475-7516/2009/05/012. arXiv: 0812.0010 [astro-ph].

[15] Alexey Boyarsky, Oleg Ruchayskiy, and Dmytro Iakubovskyi. “A Lower bound on the mass of Dark Matter particles”. In: JCAP 0903 (2009), p. 005. DOI: 10. 1088/1475-7516/2009/03/005. arXiv: 0808.3902 [hep-ph].

[16] K. Abe et al. “Search for proton decay via p e+ π0 and p µ+π0 in 0.31 megaton years exposure of the Super-Kamiokande water Cherenkov detec- tor”. In: Phys. Rev. D95.1 (2017), p. 012004. DOI: 10 . 1103 / PhysRevD . 95 . 012004. arXiv: 1610.03597 [hep-ex].

[17] Hitoshi Murayama and Aaron Pierce. “Not even decoupling can save min- imal supersymmetric SU(5)”. In: Phys. Rev. D65 (2002), p. 055009. DOI: 10 . 1103/PhysRevD.65.055009. arXiv: hep-ph/0108104 [hep-ph].

[18] R. Barbier et al. “R-parity violating supersymmetry”. In: Phys. Rept. 420 (2005), pp. 1–202. DOI: 10.1016/j.physrep.2005.08.006. arXiv: hep-ph/0406039 [hep-ph].

[19] Stephen P. Martin. “A Supersymmetry primer”. In: (1997). [Adv. Ser. Direct. High Energy Phys.18,1(1998)], pp. 1–98. DOI: 10.1142/9789812839657_0001,10.1142/9789814307505_0001. arXiv: hep-ph/9709356 [hep-ph].

[20] Michael Dine et al. “New tools for low-energy dynamical supersymmetry breaking”. In: Phys. Rev. D53 (1996), pp. 2658–2669. DOI: 10.1103/PhysRevD. 53.2658. arXiv: hep-ph/9507378 [hep-ph].

[21] Gino Isidori, Yosef Nir, and Gilad Perez. “Flavor Physics Constraints for Physics Beyond the Standard Model”. In: Ann. Rev. Nucl. Part. Sci. 60 (2010), p. 355. DOI: 10 . 1146 / annurev . nucl . 012809 . 104534. arXiv: 1002 . 0900 [hep-ph].

[22] T. Moroi, H. Murayama, and Masahiro Yamaguchi. “Cosmological constraints on the light stable gravitino”. In: Phys. Lett. B303 (1993), pp. 289–294. DOI: 10.1016/0370-2693(93)91434-O.

[23] L. O’Raifeartaigh. “Spontaneous Symmetry Breaking for Chiral Scalar Super- fields”. In: Nucl. Phys. B96 (1975), pp. 331–352. DOI: 10.1016/0550-3213(75) 90585-4.

[24] Ian Affleck, Michael Dine, and Nathan Seiberg. “Dynamical Supersymmetry Breaking in Chiral Theories”. In: Phys. Lett. 137B (1984), p. 187. DOI: 10.1016/ 0370-2693(84)90227-2.

[25] Ken-Iti Izawa and Tsutomu Yanagida. “Dynamical supersymmetry breaking in vector - like gauge theories”. In: Prog. Theor. Phys. 95 (1996), pp. 829–830. DOI: 10.1143/PTP.95.829. arXiv: hep-th/9602180 [hep-th].

[26] Kenneth A. Intriligator and Scott D. Thomas. “Dynamical supersymmetry breaking on quantum moduli spaces”. In: Nucl. Phys. B473 (1996), pp. 121– 142. DOI: 10.1016/0550-3213(96)00261-1. arXiv: hep-th/9603158 [hep-th].

[27] Junji Hisano et al. “Upperbound on Squark Masses in Gauge-Mediation Model with Light Gravitino”. In: Phys. Lett. B665 (2008), pp. 237–241. DOI: 10.1016/ j.physletb.2008.06.045. arXiv: 0804.2957 [hep-ph].

[28] Daniel Z. Freedman and Antoine Van Proeyen. Supergravity. Cambridge, UK: Cambridge Univ. Press, 2012. ISBN: 9781139368063, 9780521194013. URL: http:// www . cambridge . org / mw / academic / subjects / physics / theoretical - physics-and-mathematical-physics/supergravity?format=AR.

[29] G. D. Coughlan et al. “Cosmological Problems for the Polonyi Potential”. In: Phys. Lett. 131B (1983), pp. 59–64. DOI: 10.1016/0370-2693(83)91091-2.

[30] Lisa Randall and Raman Sundrum. “Out of this world supersymmetry break- ing”. In: Nucl. Phys. B557 (1999), pp. 79–118. DOI: 10.1016/S0550-3213(99)00359-4. arXiv: hep-th/9810155 [hep-th].

[31] Gian F. Giudice et al. “Gaugino mass without singlets”. In: JHEP 12 (1998), p. 027. DOI: 10 . 1088 / 1126 - 6708 / 1998 / 12 / 027. arXiv: hep - ph / 9810442 [hep-ph].

[32] Daniel Butter. “N=1 Conformal Superspace in Four Dimensions”. In: Annals Phys. 325 (2010), pp. 1026–1080. DOI: 10.1016/j.aop.2009.09.010. arXiv: 0906.4399 [hep-th].

[33] J. Terning. Modern supersymmetry: Dynamics and duality. 2006. DOI: 10.1093/ acprof:oso/9780198567639.001.0001.

[34] Masahiro Kawasaki, Kazunori Kohri, and Takeo Moroi. “Big-Bang nucleosyn- thesis and hadronic decay of long-lived massive particles”. In: Phys. Rev. D71 (2005), p. 083502. DOI: 10 . 1103 / PhysRevD . 71 . 083502. arXiv: astro - ph / 0408426 [astro-ph].

[35] Morad Aaboud et al. “Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with miss- ing transverse momentum in √s = 13 TeV pp collisions with the ATLAS de-tector”. In: Eur. Phys. J. C78.8 (2018), p. 625. DOI: 10.1140/epjc/s10052-018-6081-9. arXiv: 1805.11381 [hep-ex].

[36] Morad Aaboud et al. “Search for squarks and gluinos in final states with hadronically decaying τ-leptons, jets, and missing transverse momentum us-ing pp collisions at √s = 13 TeV with the ATLAS detector”. In: Submitted to: Phys. Rev. (2018). arXiv: 1808.06358 [hep-ex].

[37] M. Aaboud et al. “Search for electroweak production of supersymmetric par- ticles in final states with two or three leptons at √s = 13 TeV with the ATLAS detector”. In: Eur. Phys. J. C78.12 (2018), p. 995. DOI: 10.1140/epjc/s10052-018-6423-7. arXiv: 1803.02762 [hep-ex].

[38] Hajime Fukuda et al. “Higgsino Dark Matter or Not: Role of Disappearing Track Searches at the LHC and Future Colliders”. In: Phys. Lett. B781 (2018), pp. 306–311. DOI: 10 .1016 / j.physletb.2018 .03 .088. arXiv: 1703 .09675 [hep-ph].

[39] Hajime Fukuda, Matsumoto Shigeki, and Satoshi Shirai. In: To appear ().

[40] Hajime Fukuda, Feng Luo, and Satoshi Shirai. “How Heavy can Neutralino Dark Matter be?” In: (2018). arXiv: 1812.02066 [hep-ph].

[41] Heinz Andernach et al. “The Cluster M/L and the value of Omega(m)”. In: ASP Conf. Ser. 329 (2005), p. 289. arXiv: astro-ph/0407098 [astro-ph].

[42] F. Zwicky. “Die Rotverschiebung von extragalaktischen Nebeln”. In: Helv. Phys. Acta 6 (1933). [Gen. Rel. Grav.41,207(2009)], pp. 110–127. DOI: 10.1007/ s10714-008-0707-4.

[43] Sabine Schindler. “Ωm - different ways to determine the matter density of the universe”. In: Space Sci. Rev. 100 (2002), p. 299. DOI: 10.1023/A:1015842817085. arXiv: astro-ph/0107028 [astro-ph].

[44] Richard Massey, Thomas Kitching, and Johan Richard. “The dark matter of gravitational lensing”. In: Rept. Prog. Phys. 73 (2010), p. 086901. DOI: 10.1088/ 0034-4885/73/8/086901. arXiv: 1001.1739 [astro-ph.CO].

[45] Michael Kuhlen, Mark Vogelsberger, and Raul Angulo. “Numerical Simula- tions of the Dark Universe: State of the Art and the Next Decade”. In: Phys. Dark Univ. 1 (2012), pp. 50–93. DOI: 10.1016/j.dark.2012.10.002. arXiv: 1209.5745 [astro-ph.CO].

[46] Richard H. Cyburt et al. “Big Bang Nucleosynthesis: 2015”. In: Rev. Mod. Phys. 88 (2016), p. 015004. DOI: 10 . 1103 / RevModPhys . 88 . 015004. arXiv: 1505 . 01076 [astro-ph.CO].

[47] V. N. Aseev et al. “An upper limit on electron antineutrino mass from Troitsk experiment”. In: Phys. Rev. D84 (2011), p. 112003. DOI: 10.1103/PhysRevD. 84.112003. arXiv: 1108.5034 [hep-ex].

[48] P. J. E. Peebles. “Large scale background temperature and mass fluctuations due to scale invariant primeval perturbations”. In: Astrophys. J. 263 (1982). [,85(1982)], pp. L1–L5. DOI: 10.1086/183911.

[49] Julien Baur et al. “Lyman-alpha Forests cool Warm Dark Matter”. In: JCAP 1608.08 (2016), p. 012. DOI: 10.1088/1475-7516/2016/08/012. arXiv: 1512. 01981 [astro-ph.CO].

[50] Stephen Hawking. “Gravitationally collapsed objects of very low mass”. In: Mon. Not. Roy. Astron. Soc. 152 (1971), p. 75.

[51] Keisuke Inomata et al. “Inflationary Primordial Black Holes as All Dark Mat- ter”. In: Phys. Rev. D96.4 (2017), p. 043504. DOI: 10 . 1103 / PhysRevD . 96 . 043504. arXiv: 1701.02544 [astro-ph.CO].

[52] P. Verkerk et al. “Search for superheavy hydrogen in sea water”. In: Phys. Rev. Lett. 68 (1992), pp. 1116–1119. DOI: 10.1103/PhysRevLett.68.1116.

[53] Kenji Kadota, Toyokazu Sekiguchi, and Hiroyuki Tashiro. “A new constraint on millicharged dark matter from galaxy clusters”. In: (2016). arXiv: 1602 . 04009 [astro-ph.CO].

[54] Prateek Agrawal et al. “Make Dark Matter Charged Again”. In: JCAP 1705.05 (2017), p. 022. DOI: 10.1088/1475- 7516/2017/05/022. arXiv: 1610.04611 [hep-ph].

[55] Maxim Markevitch et al. “Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56”. In: Astrophys. J. 606 (2004), pp. 819–824. DOI: 10 . 1086 / 383178. arXiv: astro - ph / 0309303 [astro-ph].

[56] Sean Tulin and Hai-Bo Yu. “Dark Matter Self-interactions and Small Scale Structure”. In: Phys. Rept. 730 (2018), pp. 1–57. DOI: 10 . 1016 / j. physrep . 2017.11.004. arXiv: 1705.02358 [hep-ph].

[57] Benjamin W. Lee and Steven Weinberg. “Cosmological Lower Bound on Heavy Neutrino Masses”. In: Phys. Rev. Lett. 39 (1977). [,183(1977)], pp. 165–168. DOI: 10.1103/PhysRevLett.39.165.

[58] Gary Steigman, Basudeb Dasgupta, and John F. Beacom. “Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation”. In: Phys. Rev. D86 (2012), p. 023506. DOI: 10.1103/PhysRevD.86.023506. arXiv: 1204.3622 [hep-ph].

[59] J. J. Sakurai. Modern Quantum Mechanics, Revised Edition. 1st ed. Addison Wes- ley, Sept. 1993. ISBN: 9780201539295.

[60] Mark W. Goodman and Edward Witten. “Detectability of Certain Dark Mat- ter Candidates”. In: Phys. Rev. D31 (1985). [,325(1984)], p. 3059. DOI: 10.1103/ PhysRevD.31.3059.

[61] E. Aprile et al. “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T”. In: Phys. Rev. Lett. 121.11 (2018), p. 111302. DOI: 10 . 1103 / PhysRevLett.121.111302. arXiv: 1805.12562 [astro-ph.CO].

[62] D. S. Akerib et al. “Results from a search for dark matter in the complete LUX exposure”. In: Phys. Rev. Lett. 118.2 (2017), p. 021303. DOI: 10 . 1103 / PhysRevLett.118.021303. arXiv: 1608.07648 [astro-ph.CO].

[63] Xiangyi Cui et al. “Dark Matter Results From 54-Ton-Day Exposure of PandaX- II Experiment”. In: Phys. Rev. Lett. 119.18 (2017), p. 181302. DOI: 10 . 1103 / PhysRevLett.119.181302. arXiv: 1708.06917 [astro-ph.CO].

[64] J. D. Lewin and P. F. Smith. “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil”. In: Astropart. Phys. 6 (1996), pp. 87–112. DOI: 10.1016/S0927-6505(96)00047-3.

[65] Gerard Jungman, Marc Kamionkowski, and Kim Griest. “Supersymmetric dark matter”. In: Phys. Rept. 267 (1996), pp. 195–373. DOI: 10 . 1016 / 0370 - 1573(95)00058-5. arXiv: hep-ph/9506380 [hep-ph].

[66] A. Abdel-Rehim et al. “Direct Evaluation of the Quark Content of Nucleons from Lattice QCD at the Physical Point”. In: Phys. Rev. Lett. 116.25 (2016), p. 252001. DOI: 10 . 1103 / PhysRevLett . 116 . 252001. arXiv: 1601 . 01624 [hep-lat].

[67] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. “Remarks on Higgs Boson Interactions with Nucleons”. In: Phys. Lett. 78B (1978), pp. 443–446. DOI: 10.1016/0370-2693(78)90481-1.

[68] Junji Hisano, Koji Ishiwata, and Natsumi Nagata. “Gluon contribution to the dark matter direct detection”. In: Phys. Rev. D82 (2010), p. 115007. DOI: 10. 1103/PhysRevD.82.115007. arXiv: 1007.2601 [hep-ph].

[69] J. Billard, L. Strigari, and E. Figueroa-Feliciano. “Implication of neutrino back- grounds on the reach of next generation dark matter direct detection exper- iments”. In: Phys. Rev. D89.2 (2014), p. 023524. DOI: 10.1103/PhysRevD.89. 023524. arXiv: 1307.5458 [hep-ph].

[70] Tracy R. Slatyer. “Indirect Detection of Dark Matter”. In: Proceedings, Theoreti- cal Advanced Study Institute in Elementary Particle Physics : Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boulder, CO, USA, June 6-July 1, 2016. 2018, pp. 297–353. DOI: 10 .1142 / 9789813233348 _0005. arXiv: 1710 .05137 [hep-ph].

[71] Koji Ichikawa et al. “Foreground effect on the J-factor estimation of ultra- faint dwarf spheroidal galaxies”. In: Mon. Not. Roy. Astron. Soc. 479.1 (2018), pp. 64–74. DOI: 10.1093/mnras/sty1387. arXiv: 1706.05481 [astro-ph.GA].

[72] Carmelo Evoli et al. “Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties”. In: Phys. Rev. D85 (2012), p. 123511. DOI: 10 . 1103/PhysRevD.85.123511. arXiv: 1108.0664 [astro-ph.HE].

[73] Masahiro Ibe et al. “Wino Dark Matter in light of the AMS-02 2015 Data”. In: Phys. Rev. D91.11 (2015), p. 111701. DOI: 10.1103/PhysRevD.91.111701. arXiv: 1504.05554 [hep-ph].

[74] Morad Aaboud et al. “Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector”. In: JHEP 01 (2018), p. 126. DOI: 10.1007/JHEP01(2018) 126. arXiv: 1711.03301 [hep-ex].

[75] Marco Cirelli, Nicolao Fornengo, and Alessandro Strumia. “Minimal dark matter”. In: Nucl. Phys. B753 (2006), pp. 178–194. DOI: 10.1016/j.nuclphysb. 2006.07.012. arXiv: hep-ph/0512090 [hep-ph].

[76] John Ellis, Feng Luo, and Keith A. Olive. “Gluino Coannihilation Revisited”. In: JHEP 09 (2015), p. 127. DOI: 10.1007/JHEP09(2015)127. arXiv: 1503.07142 [hep-ph].

[77] Seng Pei Liew and Feng Luo. “Effects of QCD bound states on dark matter relic abundance”. In: JHEP 02 (2017), p. 091. DOI: 10.1007/JHEP02(2017)091. arXiv: 1611.08133 [hep-ph].

[78] Junji Hisano et al. “Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level”. In: Phys. Rev. D71 (2005), p. 015007. DOI: 10. 1103/PhysRevD.71.015007. arXiv: hep-ph/0407168 [hep-ph].

[79] Junji Hisano, Koji Ishiwata, and Natsumi Nagata. “QCD Effects on Direct Detection of Wino Dark Matter”. In: JHEP 06 (2015), p. 097. DOI: 10.1007/ JHEP06(2015)097. arXiv: 1504.00915 [hep-ph].

[80] Natsumi Nagata and Satoshi Shirai. “Higgsino Dark Matter in High-Scale Supersymmetry”. In: JHEP 01 (2015), p. 029. DOI: 10.1007/JHEP01(2015)029. arXiv: 1410.4549 [hep-ph].

[81] Valentin Lefranc et al. “Dark Matter in γ lines: Galactic Center vs dwarf galaxies”. In: JCAP 1609.09 (2016), p. 043. DOI: 10.1088/1475- 7516/2016/09/043. arXiv: 1608.00786 [astro-ph.HE].

[82] M. Ackermann et al. “Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope”. In: Phys. Rev. D91.12 (2015), p. 122002. DOI: 10.1103/PhysRevD.91.122002. arXiv: 1506.00013 [astro-ph.HE].

[83] H. Abdallah et al. “Search for γ-Ray Line Signals from Dark Matter Annihila- tions in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.” In: Phys. Rev. Lett. 120.20 (2018), p. 201101. DOI: 10.1103/PhysRevLett.120. 201101. arXiv: 1805.05741 [astro-ph.HE].

[84] J. Aleksic´ et al. “Optimized dark matter searches in deep observations of Segue 1 with MAGIC”. In: JCAP 1402 (2014), p. 008. DOI: 10 . 1088 / 1475 - 7516/2014/02/008. arXiv: 1312.1535 [hep-ph].

[85] M. Actis et al. “Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy”. In: Exper. Astron. 32 (2011), pp. 193–316. DOI: 10 . 1007 / s10686 - 011 - 9247 - 0. arXiv: 1008.3703 [astro-ph.IM].

[86] Marco Cirelli, Alessandro Strumia, and Matteo Tamburini. “Cosmology and Astrophysics of Minimal Dark Matter”. In: Nucl. Phys. B787 (2007), pp. 152–175. DOI: 10.1016/j.nuclphysb.2007.07.023. arXiv: 0706.4071 [hep-ph].

[87] Nima Arkani-Hamed et al. “Physics opportunities of a 100 TeV proton–proton collider”. In: Phys. Rept. 652 (2016), pp. 1–49. DOI: 10.1016/j.physrep.2016.07.004. arXiv: 1511.06495 [hep-ph].

[88] Junji Hisano et al. “Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center”. In: Phys. Rev. D71 (2005), p. 063528. DOI: 10.1103/PhysRevD.71.063528. arXiv: hep-ph/0412403 [hep-ph].

[89] A. Sommerfeld. “Über die Beugung und Bremsung der Elektronen”. In: An- nalen der Physik 403.3 (), pp. 257–330. DOI: 10 . 1002 / andp . 19314030302. eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / andp . 19314030302. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/ andp.19314030302.

[90] Jonathan L. Feng, Manoj Kaplinghat, and Hai-Bo Yu. “Sommerfeld Enhance- ments for Thermal Relic Dark Matter”. In: Phys. Rev. D82 (2010), p. 083525. DOI: 10.1103/PhysRevD.82.083525. arXiv: 1005.4678 [hep-ph].

[91] Stefano Profumo. “TeV gamma-rays and the largest masses and annihilation cross sections of neutralino dark matter”. In: Phys. Rev. D72 (2005), p. 103521. DOI: 10.1103/PhysRevD.72.103521. arXiv: astro-ph/0508628 [astro-ph].

[92] Rudy C. Gilmore. “Mass limits on neutralino dark matter”. In: Phys. Rev. D76 (2007), p. 043520. DOI: 10 . 1103 / PhysRevD . 76 . 043520. arXiv: 0705 . 2610 [hep-ph].

[93] Geneviève Bélanger et al. “micrOMEGAs5.0 : Freeze-in”. In: Comput. Phys. Commun. 231 (2018), pp. 173–186. DOI: 10.1016/j.cpc.2018.04.027. arXiv: 1801.03509 [hep-ph].

[94] Adam Alloul et al. “FeynRules 2.0 - A complete toolbox for tree-level phe- nomenology”. In: Comput. Phys. Commun. 185 (2014), pp. 2250–2300. DOI: 10. 1016/j.cpc.2014.04.012. arXiv: 1310.1921 [hep-ph].

[95] Peter Z. Skands et al. “SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators”. In: JHEP 07 (2004), p. 036. DOI: 10.1088/1126-6708/2004/07/036. arXiv: hep-ph/0311123 [hep-ph].

[96] Michela D’Onofrio and Kari Rummukainen. “Standard model cross-over on the lattice”. In: Phys. Rev. D93.2 (2016), p. 025003. DOI: 10.1103/PhysRevD. 93.025003. arXiv: 1508.07161 [hep-ph].

[97] Paolo Gondolo and Graciela Gelmini. “Cosmic abundances of stable parti- cles: Improved analysis”. In: Nucl. Phys. B360 (1991), pp. 145–179. DOI: 10 . 1016/0550-3213(91)90438-4.

[98] John Ellis et al. “Scenarios for Gluino Coannihilation”. In: JHEP 02 (2016), p. 071. DOI: 10.1007/JHEP02(2016)071. arXiv: 1510.03498 [hep-ph].

[99] Keisuke Harigaya, Kunio Kaneta, and Shigeki Matsumoto. “Gaugino coan- nihilations”. In: Phys. Rev. D89.11 (2014), p. 115021. DOI: 10.1103/PhysRevD. 89.115021. arXiv: 1403.0715 [hep-ph].

[100] Natsumi Nagata, Hidetoshi Otono, and Satoshi Shirai. “Probing bino–gluino coannihilation at the LHC”. In: Phys. Lett. B748 (2015), pp. 24–29. DOI: 10 . 1016/j.physletb.2015.06.044. arXiv: 1504.00504 [hep-ph].

[101] Natsumi Nagata, Hidetoshi Otono, and Satoshi Shirai. “Cornering Compressed Gluino at the LHC”. In: JHEP 03 (2017), p. 025. DOI: 10.1007/JHEP03(2017) 025. arXiv: 1701.07664 [hep-ph].

[102] Sebastian A. R. Ellis and Bob Zheng. “Reaching for squarks and gauginos at a 100 TeV p-p collider”. In: Phys. Rev. D92.7 (2015), p. 075034. DOI: 10.1103/ PhysRevD.92.075034. arXiv: 1506.02644 [hep-ph].

[103] Kim Griest and Marc Kamionkowski. “Unitarity Limits on the Mass and Ra- dius of Dark Matter Particles”. In: Phys. Rev. Lett. 64 (1990), p. 615. DOI: 10. 1103/PhysRevLett.64.615.

[104] Howard Baer, King-man Cheung, and John F. Gunion. “A Heavy gluino as the lightest supersymmetric particle”. In: Phys. Rev. D59 (1999), p. 075002. DOI: 10.1103/PhysRevD.59.075002. arXiv: hep-ph/9806361 [hep-ph].

[105] Junhai Kang, Markus A. Luty, and Salah Nasri. “The Relic abundance of long-lived heavy colored particles”. In: JHEP 09 (2008), p. 086. DOI: 10.1088/ 1126-6708/2008/09/086. arXiv: hep-ph/0611322 [hep-ph].

[106] Keisuke Harigaya et al. “Thermal Relic Dark Matter Beyond the Unitarity Limit”. In: JHEP 08 (2016), p. 151. DOI: 10 . 1007 / JHEP08(2016 ) 151. arXiv: 1606.00159 [hep-ph].

[107] John Ellis et al. “Stop Coannihilation in the CMSSM and SubGUT Models”. In: Eur. Phys. J. C78.5 (2018), p. 425. DOI: 10.1140/epjc/s10052-018-5831-z. arXiv: 1801.09855 [hep-ph].

[108] Chen Jacoby and Shmuel Nussinov. “The Relic Abundance of Massive Col- ored Particles after a Late Hadronic Annihilation Stage”. In: (2007). arXiv: 0712.2681 [hep-ph].

[109] Mikhail A. Shifman and M. B. Voloshin. “On Annihilation of Mesons Built from Heavy and Light Quark and anti-B0 <—> B0 Oscillations”. In: Sov. J. Nucl. Phys. 45 (1987). [Yad. Fiz.45,463(1987)], p. 292.

[110] H. David Politzer and Mark B. Wise. “Leading Logarithms of Heavy Quark Masses in Processes with Light and Heavy Quarks”. In: Phys. Lett. B206 (1988), pp. 681–684. DOI: 10.1016/0370-2693(88)90718-6.

[111] H. David Politzer and Mark B. Wise. “Effective Field Theory Approach to Processes Involving Both Light and Heavy Fields”. In: Phys. Lett. B208 (1988), pp. 504–507. DOI: 10.1016/0370-2693(88)90656-9.

[112] A.E. Cox, S.A.R. Wynchank, and C.H. Collie. “The proton-thermal neutron capture cross section”. In: Nuclear Physics 74.3 (1965), pp. 497 –507. ISSN: 0029- 5582. DOI: https://doi.org/10.1016/0029-5582(65)90197-5. URL: http://www.sciencedirect.com/science/article/pii/0029558265901975.

[113] Aneesh Manohar and Howard Georgi. “Chiral Quarks and the Nonrelativis- tic Quark Model”. In: Nucl. Phys. B234 (1984), pp. 189–212. DOI: 10 . 1016 / 0550-3213(84)90231-1.

[114] Motohiko Kusakabe and Tomohiro Takesako. “Resonant annihilation of long- lived massive colored particles through hadronic collisions”. In: Phys. Rev. D85 (2012), p. 015005. DOI: 10.1103/PhysRevD.85.015005. arXiv: 1112.0860 [hep-ph].

[115] Junji Hisano, Shigeki Matsumoto, and Mihoko M. Nojiri. “Explosive dark matter annihilation”. In: Phys. Rev. Lett. 92 (2004), p. 031303. DOI: 10.1103/ PhysRevLett.92.031303. arXiv: hep-ph/0307216 [hep-ph].

[116] S. S. M. Wong. Introductory nuclear physics. 1998.

[117] Manuel Toharia and James D. Wells. “Gluino decays with heavier scalar su- perpartners”. In: JHEP 02 (2006), p. 015. DOI: 10.1088/1126-6708/2006/02/015. arXiv: hep-ph/0503175 [hep-ph].

[118] P. Gambino, G. F. Giudice, and P. Slavich. “Gluino decays in split supersym- metry”. In: Nucl. Phys. B726 (2005), pp. 35–52. DOI: 10.1016/j.nuclphysb. 2005.08.011. arXiv: hep-ph/0506214 [hep-ph].

[119] Ryosuke Sato, Satoshi Shirai, and Kohsaku Tobioka. “Gluino Decay as a Probe of High Scale Supersymmetry Breaking”. In: JHEP 11 (2012), p. 041. DOI: 10. 1007/JHEP11(2012)041. arXiv: 1207.3608 [hep-ph].

[120] Ryosuke Sato, Satoshi Shirai, and Kohsaku Tobioka. “Flavor of Gluino Decay in High-Scale Supersymmetry”. In: JHEP 10 (2013), p. 157. DOI: 10 . 1007 / JHEP10(2013)157. arXiv: 1307.7144 [hep-ph].

[121] Hajime Fukuda, Feng Luo, and Satoshi Shirai. In: In preparation ().

[122] Ken’ichi Saikawa and Satoshi Shirai. “Primordial gravitational waves, pre- cisely: The role of thermodynamics in the Standard Model”. In: JCAP 1805.05 (2018), p. 035. DOI: 10.1088/1475- 7516/2018/05/035. arXiv: 1803.01038 [hep-ph].

[123] Valerio De Luca et al. “Colored Dark Matter”. In: Phys. Rev. D97.11 (2018), p. 115024. DOI: 10.1103/PhysRevD.97.115024. arXiv: 1801.01135 [hep-ph].

[124] Motohiko Kusakabe et al. “Effect of Long-lived Strongly Interacting Relic Particles on Big Bang Nucleosynthesis”. In: Phys. Rev. D80 (2009), p. 103501. DOI: 10.1103/PhysRevD.80.103501. arXiv: 0906.3516 [hep-ph].

[125] Karsten Jedamzik and Maxim Pospelov. “Big Bang Nucleosynthesis and Par- ticle Dark Matter”. In: New J. Phys. 11 (2009), p. 105028. DOI: 10.1088/1367- 2630/11/10/105028. arXiv: 0906.2087 [hep-ph].

[126] Manuel Drees and Mihoko Nojiri. “Neutralino - nucleon scattering revis- ited”. In: Phys. Rev. D48 (1993), pp. 3483–3501. DOI: 10.1103/PhysRevD.48. 3483. arXiv: hep-ph/9307208 [hep-ph].

[127] Paolo Gondolo and Stefano Scopel. “On the sbottom resonance in dark matter scattering”. In: JCAP 1310 (2013), p. 032. DOI: 10.1088/1475-7516/2013/10/032. arXiv: 1307.4481 [hep-ph].

[128] Junji Hisano, Koji Ishiwata, and Natsumi Nagata. “Direct Detection of Dark Matter Degenerate with Colored Particles in Mass”. In: Phys. Lett. B706 (2011), pp. 208–212. DOI: 10 . 1016 / j. physletb . 2011 . 11 . 017. arXiv: 1110 . 3719 [hep-ph].

[129] K. Kovarik et al. “nCTEQ15 - Global analysis of nuclear parton distribu- tions with uncertainties in the CTEQ framework”. In: Phys. Rev. D93.8 (2016), p. 085037. DOI: 10.1103/PhysRevD.93.085037. arXiv: 1509.00792 [hep-ph].

[130] Yi-Bo Yang et al. “Proton Mass Decomposition from the QCD Energy Mo- mentum Tensor”. In: Phys. Rev. Lett. 121.21 (2018), p. 212001. DOI: 10.1103/ PhysRevLett.121.212001. arXiv: 1808.08677 [hep-lat].

[131] Edward Witten. “An SU(2) Anomaly”. In: Phys. Lett. B117 (1982). [,230(1982)], pp. 324–328. DOI: 10.1016/0370-2693(82)90728-6.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る