リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Theoretical studies on extended Higgs sectors towards future precision measurements」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Theoretical studies on extended Higgs sectors towards future precision measurements

愛甲, 将司 大阪大学 DOI:10.18910/87813

2022.03.24

概要

本論文では、拡張ヒッグス模型について、2012年に発見されたヒッグス粒子の物理、第二第三のヒッグス粒子の物理、およびヒッグスセクターの大局的対称性の三つの観点から理論的研究を行った。

2012年にヒッグス粒子が発見されたことで、素粒子の標準理論(SM)が一応の完成に至った。しかし、宇宙の物質・反物質の非対称性、暗黒物質、ニュートリノの微小質量など、SMでは説明できない諸現象が存在する。これらの問題を解決するために、SMは拡張されなければならない。

一方、ヒッグス粒子が発見されたにもかかわらず、その性質を決める理論のヒッグスセクターの全貌は未だ明らかになっていない。ヒッグスセクターの構造を決める原理は知られておらず、ヒッグス二重項場をひとつだけ導入したSMの単純なヒッグスセクターは暫定的な仮定にすぎない。加えて、SMでは説明できない諸現象を解決する新物理の理論模型では、拡張されたヒッグスセクターがしばしば導入される。将来実験によって、ヒッグスセクターを詳細に検証し、その構造を決定することで、新物理の方向性を決定することができる。

発見されたヒッグス粒子は新物理解明の鍵であり、その詳細な研究は、現在および将来の高エネルギー物理における重要なテーマの一つである。日本で計画されている国際線形加速器(ILC)をはじめとする将来の電子陽電子加速器では、中性の弱ゲージボソンを伴うヒッグス粒子の生成過程の散乱弾面積を数パーセントの精度で測ることができる。本研究では様々な拡張ヒッグス模型において、このヒッグス生成過程を、高次補正を取り入れて系統的に解析した。その結果、SMの予言からのずれのパターンを解析することで、様々な拡張ヒッグス模型を識別できることを明らかにした。

第二第三のヒッグス粒子の直接探索は、拡張ヒッグスセクターを検証する有力な手段であり、現在の大型ハドロン衝突型加速器(LHC)実験および高輝度アップグレード(HL-LHC)における重要なテーマの一つである。本研究では、これらの新しいヒッグス粒子の直接探索と、発見されたヒッグス粒子の精密測定による間接的検証が相補的な役割を果たすことを示した。発見されたヒッグス粒子の結合がSMの予言からずれている場合、新しいヒッグス粒子が発見されたヒッグス粒子へと崩壊する過程は、HL-LHCにおける直接探索で非常に有用である。一方で、ILCにおいて、発見されたヒッグス粒子の結合にずれが測定されれば、理論のユニタリー性などに基づいて、新しいヒッグス粒子の質量スケールに上限が与えられる。直接検索と間接探索は相補的であり、その相乗効果により拡張ヒッグス模型を幅広く検証することができる。また、発見されたヒッグス粒子の結合におけるずれの大きさに応じて、新しいヒッグス粒子の崩壊パターンが大きく変化することに着目し、新しいヒッグス粒子を直接探索する上で高次補正を含めることが重要であることを本研究で示した。

ヒッグスセクターの構造は、これまでの様々な実験データと関連している。本研究では、現在の実験データを高エネルギースケールにおけるヒッグスポテンシャルの対局的対称性の帰結として説明できる新しいシナリオを構築した。このシナリオでは、新しいヒッグス粒子の質量スペクトルと発見されたヒッグス粒子の結合定数に特徴的な予測があり、これらの理論的予言はHL-LHCやILCなどの将来実験によって検証できる。

本研究の成果は、将来実験による拡張ヒッグス模型の多角的な検証を可能にし、ヒッグスセクターの構造決定から新物理の方向性を絞り込むことに貢献するものである。

参考文献

[1] Chen-Ning Yang and Robert L. Mills. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev., Vol. 96, pp. 191–195, 1954.

[2] Ryoyu Utiyama. Invariant theoretical interpretation of interaction. Phys. Rev., Vol. 101,pp. 1597–1607, 1956.

[3] H. Fritzsch, Murray Gell-Mann, and H. Leutwyler. Advantages of the Color Octet Gluon Picture. Phys. Lett. B, Vol. 47, pp. 365–368, 1973.

[4] D. J. Gross and Frank Wilczek. Asymptotically Free Gauge Theories - I. Phys. Rev. D, Vol. 8, pp. 3633–3652, 1973.

[5] D. J. Gross and Frank Wilczek. Asymptotically Free Gauge Theories - II. Phys. Rev. D, Vol. 9, pp. 980–993, 1974.

[6] H. David Politzer. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett., Vol. 30, pp. 1346–1349, 1973.

[7] S. L. Glashow. Partial Symmetries of Weak Interactions. Nucl. Phys., Vol. 22, pp. 579– 588, 1961.

[8] Steven Weinberg. A Model of Leptons. Phys. Rev. Lett., Vol. 19, pp. 1264–1266, 1967.

[9] Abdus Salam. Weak and Electromagnetic Interactions. Conf. Proc. C, Vol. 680519, pp. 367–377, 1968.

[10] F. Englert and R. Brout. Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett., Vol. 13, pp. 321–323, 1964.

[11] Peter W. Higgs. Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett., Vol. 13, pp. 508–509, 1964.

[12] Peter W. Higgs. Broken symmetries, massless particles and gauge fields. Phys. Lett., Vol. 12, pp. 132–133, 1964.

[13] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble. Global Conservation Laws and Massless Particles. Phys. Rev. Lett., Vol. 13, pp. 585–587, 1964.

[14] Peter W. Higgs. Spontaneous Symmetry Breakdown without Massless Bosons. Phys. Rev., Vol. 145, pp. 1156–1163, 1966.

[15] S. Schael, et al. Precision electroweak measurements on the Z resonance. Phys. Rept., Vol. 427, pp. 257–454, 2006.

[16] F. Abe, et al. Observation of top quark production in p¯p collisions. Phys. Rev. Lett., Vol. 74, pp. 2626–2631, 1995.

[17] S. Abachi, et al. Observation of the top quark. Phys. Rev. Lett., Vol. 74, pp. 2632–2637, 1995.

[18] Georges Aad, et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, Vol. 716, pp. 1–29, 2012.

[19] Serguei Chatrchyan, et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, Vol. 716, pp. 30–61, 2012.

[20] Albert M Sirunyan, et al. Combined measurements of Higgs boson couplings in pro- ton–proton collisions at s = 13 TeV. Eur. Phys. J. C, Vol. 79, No. 5, p. 421, 2019.

[21] Georges Aad, et al. Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at s = 13 TeV collected with the ATLAS experiment. Phys. Rev. D, Vol. 101, No. 1, p. 012002, 2020.

[22] N. Aghanim, et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., Vol. 641, p. A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[23] Brian D. Fields, Keith A. Olive, Tsung-Han Yeh, and Charles Young. Big-Bang Nucle- osynthesis after Planck. JCAP, Vol. 03, p. 010, 2020. [Erratum: JCAP 11, E02 (2020)].

[24] Y. Fukuda, et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., Vol. 81, pp. 1562–1567, 1998.

[25] Q. R. Ahmad, et al. Measurement of the rate of νe + d p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett., Vol. 87, p.071301, 2001.

[26] Q. R. Ahmad, et al. Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., Vol. 89, p. 011301, 2002.

[27] Steven Weinberg. Implications of Dynamical Symmetry Breaking. Phys. Rev. D, Vol. 13,pp. 974–996, 1976. [Addendum: Phys.Rev.D 19, 1277–1280 (1979)].

[28] Eldad Gildener. Gauge Symmetry Hierarchies. Phys. Rev. D, Vol. 14, p. 1667, 1976.

[29] Leonard Susskind. Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory. Phys. Rev. D, Vol. 20, pp. 2619–2625, 1979.

[30] R. D. Peccei and Helen R. Quinn. CP Conservation in the Presence of Instantons. Phys. Rev. Lett., Vol. 38, pp. 1440–1443, 1977.

[31] H. Georgi and S. L. Glashow. Unity of All Elementary Particle Forces. Phys. Rev. Lett., Vol. 32, pp. 438–441, 1974.

[32] C. D. Froggatt and Holger Bech Nielsen. Hierarchy of Quark Masses, Cabibbo Angles and CP Violation. Nucl. Phys. B, Vol. 147, pp. 277–298, 1979.

[33] John F. Gunion and Howard E. Haber. The CP conserving two Higgs doublet model: The Approach to the decoupling limit. Phys. Rev. D, Vol. 67, p. 075019, 2003.

[34] Thomas Appelquist and J. Carazzone. Infrared Singularities and Massive Fields. Phys. Rev. D, Vol. 11, p. 2856, 1975.

[35] The International Linear Collider Technical Design Report - Volume 2: Physics. 6 2013.

[36] Keisuke Fujii, et al. Physics Case for the 250 GeV Stage of the International Linear Collider. 10 2017.

[37] Shoji Asai, Junichi Tanaka, Yutaka Ushiroda, Mikihiko Nakao, Junping Tian, Shinya Kanemura, Shigeki Matsumoto, Satoshi Shirai, Motoi Endo, and Mitsuru Kakizaki. Re- port by the Committee on the Scientific Case of the ILC Operating at 250 GeV as a Higgs Factory. 10 2017.

[38] Keisuke Fujii, et al. Tests of the Standard Model at the International Linear Collider. 8 2019.

[39] M. Bicer, et al. First Look at the Physics Case of TLEP. JHEP, Vol. 01, p. 164, 2014.

[40] Muhammd Ahmad, et al. CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector. 3 2015.

[41] Masashi Aiko, Shinya Kanemura, and Kentarou Mawatari. Next-to-leading-order correc- tions to the Higgs strahlung process from electron–positron collisions in extended Higgs models. Eur. Phys. J. C, Vol. 81, No. 11, p. 1000, 2021.

[42] Masashi Aiko, Shinya Kanemura, Mariko Kikuchi, Kentarou Mawatari, Kodai Sakurai, and Kei Yagyu. Probing extended Higgs sectors by the synergy between direct searches at the LHC and precision tests at future lepton colliders. Nucl. Phys. B, Vol. 966, p. 115375, 2021.

[43] Masashi Aiko, Shinya Kanemura, and Kodai Sakurai. Radiative corrections to decays of charged Higgs bosons in two Higgs doublet models. Nucl. Phys. B, Vol. 973, p. 115581, 2021.

[44] Masashi Aiko and Shinya Kanemura. New scenario for aligned Higgs couplings originated from the twisted custodial symmetry at high energies. JHEP, Vol. 02, p. 046, 2021.

[45] Shinya Kanemura, Mariko Kikuchi, Kodai Sakurai, and Kei Yagyu. H-COUP: a program for one-loop corrected Higgs boson couplings in non-minimal Higgs sectors. Comput. Phys. Commun., Vol. 233, pp. 134–144, 2018.

[46] Shinya Kanemura, Mariko Kikuchi, Kentarou Mawatari, Kodai Sakurai, and Kei Yagyu. H-COUP Version 2: a program for one-loop corrected Higgs boson decays in non-minimal Higgs sectors. Comput. Phys. Commun., Vol. 257, p. 107512, 2020.

[47] Jorge C. Romao and Joao P. Silva. A resource for signs and Feynman diagrams of the Standard Model. Int. J. Mod. Phys. A, Vol. 27, p. 1230025, 2012.

[48] Yoichiro Nambu. Quasiparticles and Gauge Invariance in the Theory of Superconductiv- ity. Phys. Rev., Vol. 117, pp. 648–663, 1960.

[49] J. Goldstone. Field Theories with Superconductor Solutions. Nuovo Cim., Vol. 19, pp. 154–164, 1961.

[50] T. Nakano and K. Nishijima. Charge Independence for V-particles. Prog. Theor. Phys., Vol. 10, pp. 581–582, 1953.

[51] Kazuhiko Nishijima. Charge Independence Theory of V Particles. Prog. Theor. Phys., Vol. 13, No. 3, pp. 285–304, 1955.

[52] M. Gell-Mann. Isotopic Spin and New Unstable Particles. Phys. Rev., Vol. 92, pp. 833–834, 1953.

[53] Nicola Cabibbo. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett., Vol. 10, pp. 531–533, 1963.

[54] Makoto Kobayashi and Toshihide Maskawa. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys., Vol. 49, pp. 652–657, 1973.

[55] S. L. Glashow, J. Iliopoulos, and L. Maiani. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D, Vol. 2, pp. 1285–1292, 1970.

[56] L. D. Faddeev and V. N. Popov. Feynman Diagrams for the Yang-Mills Field. Phys. Lett. B, Vol. 25, pp. 29–30, 1967.

[57] K. Fujikawa, B. W. Lee, and A. I. Sanda. Generalized Renormalizable Gauge Formulation of Spontaneously Broken Gauge Theories. Phys. Rev. D, Vol. 6, pp. 2923–2943, 1972.

[58] Gerard ’t Hooft. Renormalizable Lagrangians for Massive Yang-Mills Fields. Nucl. Phys. B, Vol. 35, pp. 167–188, 1971.

[59] P. Sikivie, Leonard Susskind, Mikhail B. Voloshin, and Valentin I. Zakharov. Isospin Breaking in Technicolor Models. Nucl. Phys. B, Vol. 173, pp. 189–207, 1980.

[60] Benjamin W. Lee, C. Quigg, and H. B. Thacker. The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass. Phys. Rev. Lett., Vol. 38, pp. 883–885, 1977.

[61] Benjamin W. Lee, C. Quigg, and H. B. Thacker. Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass. Phys. Rev. D, Vol. 16, p. 1519, 1977.

[62] Giuseppe Degrassi, Stefano Di Vita, Joan Elias-Miro, Jose R. Espinosa, Gian F. Giudice, Gino Isidori, and Alessandro Strumia. Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP, Vol. 08, p. 098, 2012.

[63] Michael E. Peskin and Tatsu Takeuchi. A New constraint on a strongly interacting Higgs sector. Phys. Rev. Lett., Vol. 65, pp. 964–967, 1990.

[64] Michael E. Peskin and Tatsu Takeuchi. Estimation of oblique electroweak corrections.Phys. Rev. D, Vol. 46, pp. 381–409, 1992.

[65] Johannes Haller, Andreas Hoecker, Roman Kogler, Klaus M¨onig, Thomas Peiffer, and J¨org Stelzer. Update of the global electroweak fit and constraints on two-Higgs-doublet models. Eur. Phys. J. C, Vol. 78, No. 8, p. 675, 2018.

[66] D. de Florian, et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. Vol. 2/2017, , 10 2016.

[67] A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi, and M. Spira. Standard Model Higgs- Boson Branching Ratios with Uncertainties. Eur. Phys. J. C, Vol. 71, p. 1753, 2011.

[68] A. Djouadi, J. Kalinowski, and M. Spira. HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun., Vol. 108, pp. 56–74, 1998.

[69] Abdelhak Djouadi, Jan Kalinowski, Margarete Muehlleitner, and Michael Spira. HDE- CAY: Twenty++ years after. Comput. Phys. Commun., Vol. 238, pp. 214–231, 2019.

[70] Ansgar Denner, Stefan Dittmaier, and Alexander Mu¨ck. PROPHECY4F 3.0: A Monte Carlo program for Higgs-boson decays into four-fermion final states in and beyond the Standard Model. Comput. Phys. Commun., Vol. 254, p. 107336, 2020.

[71] Howard Georgi and Marie Machacek. DOUBLY CHARGED HIGGS BOSONS. Nucl. Phys. B, Vol. 262, pp. 463–477, 1985.

[72] Chien-Yi Chen, S. Dawson, and I. M. Lewis. Exploring resonant di-Higgs boson produc- tion in the Higgs singlet model. Phys. Rev. D, Vol. 91, No. 3, p. 035015, 2015.

[73] G. Cynolter, E. Lendvai, and G. Pocsik. Note on unitarity constraints in a model for a singlet scalar dark matter candidate. Acta Phys. Polon. B, Vol. 36, pp. 827–832, 2005.

[74] Shinya Kanemura, Mariko Kikuchi, and Kei Yagyu. One-loop corrections to the Higgs self-couplings in the singlet extension. Nucl. Phys. B, Vol. 917, pp. 154–177, 2017.

[75] Giovanni Marco Pruna and Tania Robens. Higgs singlet extension parameter space in the light of the LHC discovery. Phys. Rev. D, Vol. 88, No. 11, p. 115012, 2013.

[76] Jose R. Espinosa, Thomas Konstandin, and Francesco Riva. Strong Electroweak Phase Transitions in the Standard Model with a Singlet. Nucl. Phys. B, Vol. 854, pp. 592–630, 2012.

[77] Ian M. Lewis and Matthew Sullivan. Benchmarks for Double Higgs Production in the Singlet Extended Standard Model at the LHC. Phys. Rev. D, Vol. 96, No. 3, p. 035037, 2017.

[78] Sheldon L. Glashow and Steven Weinberg. Natural Conservation Laws for Neutral Cur- rents. Phys. Rev. D, Vol. 15, p. 1958, 1977.

[79] E. A. Paschos. Diagonal Neutral Currents. Phys. Rev. D, Vol. 15, p. 1966, 1977.

[80] Sacha Davidson and Howard E. Haber. Basis-independent methods for the two-Higgs- doublet model. Phys. Rev. D, Vol. 72, p. 035004, 2005. [Erratum: Phys.Rev.D 72, 099902(2005)].

[81] J´er´emy Bernon, John F. Gunion, Howard E. Haber, Yun Jiang, and Sabine Kraml. Scru- tinizing the alignment limit in two-Higgs-doublet models: mh=125 GeV. Phys. Rev. D, Vol. 92, No. 7, p. 075004, 2015.

[82] Vernon D. Barger, J. L. Hewett, and R. J. N. Phillips. New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models. Phys. Rev. D, Vol. 41, pp. 3421–3441, 1990.

[83] Mayumi Aoki, Shinya Kanemura, Koji Tsumura, and Kei Yagyu. Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology. Phys. Rev. D, Vol. 80, p. 015017, 2009.

[84] Shinya Kanemura, Takahiro Kubota, and Eiichi Takasugi. Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model. Phys. Lett. B, Vol. 313, pp. 155–160, 1993.

[85] Andrew G. Akeroyd, Abdesslam Arhrib, and El-Mokhtar Naimi. Note on tree level unitarity in the general two Higgs doublet model. Phys. Lett. B, Vol. 490, pp. 119–124, 2000.

[86] I. F. Ginzburg and I. P. Ivanov. Tree-level unitarity constraints in the most general 2HDM. Phys. Rev. D, Vol. 72, p. 115010, 2005.

[87] Shinya Kanemura and Kei Yagyu. Unitarity bound in the most general two Higgs doublet model. Phys. Lett. B, Vol. 751, pp. 289–296, 2015.

[88] Nilendra G. Deshpande and Ernest Ma. Pattern of Symmetry Breaking with Two Higgs Doublets. Phys. Rev. D, Vol. 18, p. 2574, 1978.

[89] K. G. Klimenko. On Necessary and Sufficient Conditions for Some Higgs Potentials to Be Bounded From Below. Theor. Math. Phys., Vol. 62, pp. 58–65, 1985.

[90] Marc Sher. Electroweak Higgs Potentials and Vacuum Stability. Phys. Rept., Vol. 179,pp. 273–418, 1989.

[91] Shuquan Nie and Marc Sher. Vacuum stability bounds in the two Higgs doublet model.Phys. Lett. B, Vol. 449, pp. 89–92, 1999.

[92] Shinya Kanemura, Takashi Kasai, and Yasuhiro Okada. Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model. Phys. Lett. B, Vol. 471, pp. 182–190, 1999.

[93] A. Barroso, P. M. Ferreira, I. P. Ivanov, and Rui Santos. Metastability bounds on the two Higgs doublet model. JHEP, Vol. 06, p. 045, 2013.

[94] I. F. Ginzburg, K. A. Kanishev, M. Krawczyk, and D. Sokolowska. Evolution of Universe to the present inert phase. Phys. Rev. D, Vol. 82, p. 123533, 2010.

[95] M. Bohm, H. Spiesberger, and W. Hollik. On the One Loop Renormalization of the Electroweak Standard Model and Its Application to Leptonic Processes. Fortsch. Phys., Vol. 34, pp. 687–751, 1986.

[96] W. F. L. Hollik. Radiative Corrections in the Standard Model and their Role for Precision Tests of the Electroweak Theory. Fortsch. Phys., Vol. 38, pp. 165–260, 1990.

[97] Shinya Kanemura, Mariko Kikuchi, Kentarou Mawatari, Kodai Sakurai, and Kei Yagyu. Loop effects on the Higgs decay widths in extended Higgs models. Phys. Lett. B, Vol. 783, pp. 140–149, 2018.

[98] Shinya Kanemura, Mariko Kikuchi, Kentarou Mawatari, Kodai Sakurai, and Kei Yagyu. Full next-to-leading-order calculations of Higgs boson decay rates in models with non- minimal scalar sectors. Nucl. Phys. B, Vol. 949, p. 114791, 2019.

[99] Shinya Kanemura, Mariko Kikuchi, and Kei Yagyu. Radiative corrections to the Yukawa coupling constants in two Higgs doublet models. Phys. Lett. B, Vol. 731, pp. 27–35, 2014.

[100] Shinya Kanemura, Mariko Kikuchi, and Kei Yagyu. Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements. Nucl. Phys. B, Vol. 896, pp. 80–137, 2015.

[101] Shinya Kanemura, Mariko Kikuchi, and Kodai Sakurai. Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings. Phys. Rev. D, Vol. 94, No. 11, p. 115011, 2016.

[102] Shinya Kanemura, Kentarou Mawatari, and Kodai Sakurai. Single Higgs production in association with a photon at electron-positron colliders in extended Higgs models. Phys. Rev. D, Vol. 99, No. 3, p. 035023, 2019.

[103] Bernd A. Kniehl. Radiative corrections for H f anti-f (γ) in the standard model. Nucl. Phys. B, Vol. 376, pp. 3–28, 1992.

[104] A. Dabelstein and W. Hollik. Electroweak corrections to the fermionic decay width of the standard Higgs boson. Z. Phys. C, Vol. 53, pp. 507–516, 1992.

[105] D. Yu. Bardin, B. M. Vilensky, and P. Kh. Khristova. Calculation of the Higgs boson decay width into fermion pairs. Sov. J. Nucl. Phys., Vol. 53, pp. 152–158, 1991.

[106] Luminita Mihaila, Barbara Schmidt, and Matthias Steinhauser. Γ(H b¯b) to order ααs.Phys. Lett. B, Vol. 751, pp. 442–447, 2015.

[107] Bernd A. Kniehl. Higgs phenomenology at one loop in the standard model. Phys. Rept., Vol. 240, pp. 211–300, 1994.

[108] Ansgar Denner. Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200. Fortsch. Phys., Vol. 41, pp. 307–420, 1993.

[109] Abdelhak Djouadi. The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model. Phys. Rept., Vol. 457, pp. 1–216, 2008.

[110] Shinya Kanemura, Koji Tsumura, Kei Yagyu, and Hiroshi Yokoya. Fingerprinting non- minimal Higgs sectors. Phys. Rev. D, Vol. 90, p. 075001, 2014.

[111] Shinya Kanemura, Mariko Kikuchi, and Kei Yagyu. Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field. Nucl. Phys. B, Vol. 907, pp. 286–322, 2016.

[112] Shinya Kanemura, Mariko Kikuchi, Kodai Sakurai, and Kei Yagyu. Gauge invariant one- loop corrections to Higgs boson couplings in non-minimal Higgs models. Phys. Rev. D, Vol. 96, No. 3, p. 035014, 2017.

[113] Agnieszka Ilnicka, Tania Robens, and Tim Stefaniak. Constraining Extended Scalar Sectors at the LHC and beyond. Mod. Phys. Lett. A, Vol. 33, No. 10n11, p. 1830007, 2018.

[114] A. Belyaev, T. R. Fernandez Perez Tomei, P. G. Mercadante, C. S. Moon, S. Moretti,S. F. Novaes, L. Panizzi, F. Rojas, and M. Thomas. Advancing LHC probes of dark matter from the inert two-Higgs-doublet model with the monojet signal. Phys. Rev. D, Vol. 99, No. 1, p. 015011, 2019.

[115] Ansgar Denner, J. Kublbeck, R. Mertig, and M. Bohm. Electroweak radiative corrections to e+ e- —> H Z. Z. Phys. C, Vol. 56, pp. 261–272, 1992.

[116] Keisuke Fujii, et al. The role of positron polarization for the inital 250 GeV stage of the International Linear Collider. 1 2018.

[117] Bernd A. Kniehl. Radiative corrections for associated ZH production at future e+e−colliders. Z. Phys. C, Vol. 55, pp. 605–618, 1992.

[118] F. Bojarski, G. Chalons, D. Lopez-Val, and T. Robens. Heavy to light Higgs boson decays at NLO in the Singlet Extension of the Standard Model. JHEP, Vol. 02, p. 147, 2016.

[119] Marcel Krause, Robin Lorenz, Margarete Muhlleitner, Rui Santos, and Hanna Ziesche. Gauge-independent Renormalization of the 2-Higgs-Doublet Model. JHEP, Vol. 09, p. 143, 2016.

[120] J. Fleischer and F. Jegerlehner. Radiative Corrections to Higgs Production by e+e− →ZH in the {Weinberg-Salam} Model. Nucl. Phys. B, Vol. 216, pp. 469–492, 1983.

[121] Wenhai Xie, R. Benbrik, Abdeljalil Habjia, Souad Taj, Bin Gong, and Qi-Shu Yan. Signature of 2HDM at Higgs Factories. Phys. Rev. D, Vol. 103, No. 9, p. 095030, 2021.

[122] G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, and Y. Shimizu. Automatic calculations in high energy physics and Grace at one-loop. Phys. Rept., Vol. 430, pp. 117–209, 2006.

[123] Qing-Feng Sun, Feng Feng, Yu Jia, and Wen-Long Sang. Mixed electroweak-QCD cor- rections to e+e-→HZ at Higgs factories. Phys. Rev. D, Vol. 96, No. 5, p. 051301, 2017.

[124] Yinqiang Gong, Zhao Li, Xiaofeng Xu, Li Lin Yang, and Xiaoran Zhao. Mixed QCD-EW corrections for Higgs boson production at e+e− colliders. Phys. Rev. D, Vol. 95, No. 9,p. 093003, 2017.

[125] Jacqueline Yan, Shun Watanuki, Keisuke Fujii, Akimasa Ishikawa, Daniel Jeans, Jan Strube, Junping Tian, and Hitoshi Yamamoto. Measurement of the Higgs boson mass and e+e− ZH cross section using Z µ+µ− and Z e+e− at the ILC. Phys. Rev.D, Vol. 94, No. 11, p. 113002, 2016. [Erratum: Phys.Rev.D 103, 099903 (2021)].

[126] M. Misiak, Abdur Rehman, and Matthias Steinhauser. Towards B → Xsγ at the NNLO in QCD without interpolation in mc. JHEP, Vol. 06, p. 175, 2020.

[127] Georges Aad, et al. Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at s = 13 TeV collected with the ATLAS experiment. Phys. Rev. D, Vol. 101, No. 1, p. 012002, 2020.

[128] J. de Blas, et al. Higgs Boson Studies at Future Particle Colliders. JHEP, Vol. 01, p. 139, 2020.

[129] S. G. Gorishnii, A. L. Kataev, S. A. Larin, and L. R. Surguladze. Corrected Three Loop QCD Correction to the Correlator of the Quark Scalar Currents and Γtot(H0 Hadrons). Mod. Phys. Lett. A, Vol. 5, pp. 2703–2712, 1990.

[130] S. G. Gorishnii, A. L. Kataev, S. A. Larin, and L. R. Surguladze. Scheme dependence of the next to next-to-leading QCD corrections to Gamma(tot) (H0 —> hadrons) and the spurious QCD infrared fixed point. Phys. Rev. D, Vol. 43, pp. 1633–1640, 1991.

[131] K. G. Chetyrkin and A. Kwiatkowski. Second order QCD corrections to scalar and pseudoscalar Higgs decays into massive bottom quarks. Nucl. Phys. B, Vol. 461, pp. 3–18, 1996.

[132] S. A. Larin, T. van Ritbergen, and J. A. M. Vermaseren. The Large top quark mass expansion for Higgs boson decays into bottom quarks and into gluons. Phys. Lett. B, Vol. 362, pp. 134–140, 1995.

[133] E. Braaten and J. P. Leveille. Higgs Boson Decay and the Running Mass. Phys. Rev. D, Vol. 22, p. 715, 1980.

[134] Manuel Drees and Ken-ichi Hikasa. Heavy Quark Thresholds in Higgs Physics. Phys. Rev. D, Vol. 41, p. 1547, 1990.

[135] Abdelhak Djouadi. The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept., Vol. 459, pp. 1–241, 2008.

[136] David Albert, William J. Marciano, Daniel Wyler, and Zohreh Parsa. Decays of Inter- mediate Vector Bosons, Radiative Corrections and QCD Jets. Nucl. Phys. B, Vol. 166,pp. 460–492, 1980.

[137] S. Dawson and R. Kauffman. QCD corrections to Higgs boson production: nonleading terms in the heavy quark limit. Phys. Rev. D, Vol. 49, pp. 2298–2309, 1994.

[138] M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas. Higgs boson production at the LHC. Nucl. Phys. B, Vol. 453, pp. 17–82, 1995.

[139] Robert Harlander and Philipp Kant. Higgs production and decay: Analytic results at next-to-leading order QCD. JHEP, Vol. 12, p. 015, 2005.

[140] Matthias Steinhauser. Corrections of O (α2) to the decay of an intermediate mass Higgs boson into two photons. In Ringberg Workshop: The Higgs Puzzle - What can We Learn from LEP2, LHC, NLC, and FMC?, pp. 177–185, 12 1996.

[141] K. G. Chetyrkin, Bernd A. Kniehl, and M. Steinhauser. Hadronic Higgs decay to order α4. Phys. Rev. Lett., Vol. 79, pp. 353–356, 1997.

[142] K. G. Chetyrkin, Bernd A. Kniehl, M. Steinhauser, and William A. Bardeen. Effective QCD interactions of CP odd Higgs bosons at three loops. Nucl. Phys. B, Vol. 535, pp. 3–18, 1998.

[143] A. Djouadi and P. Gambino. QCD corrections to Higgs boson selfenergies and fermionic decay widths. Phys. Rev. D, Vol. 51, pp. 218–228, 1995. [Erratum: Phys.Rev.D 53, 4111(1996)].

[144] Michel Capdequi Peyranere, Howard E. Haber, and Paulo Irulegui. H+- —> W+- gamma and H+- —> W+- Z in two Higgs doublet models. 1. The Large fermion mass limit. Phys. Rev. D, Vol. 44, pp. 191–201, 1991.

[145] Shinya Kanemura. Enhancement of loop induced H±W ∓Z0 vertex in two Higgs doublet model. Phys. Rev. D, Vol. 61, p. 095001, 2000.

[146] Shinya Kanemura. Possible enhancement of the e+ e- —> H+- W-+ cross-section in the two Higgs doublet model. Eur. Phys. J. C, Vol. 17, pp. 473–486, 2000.

[147] Abdesslam Arhrib, Rachid Benbrik, and Mohamed Chabab. Charged Higgs bosons decays H± → W ± (γ, Z) revisited. J. Phys. G, Vol. 34, pp. 907–928, 2007.

[148] Stephan Buehler and Claude Duhr. CHAPLIN - Complex Harmonic Polylogarithms in Fortran. Comput. Phys. Commun., Vol. 185, pp. 2703–2713, 2014.

[149] David Eriksson, Johan Rathsman, and Oscar Stal. 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual. Comput. Phys. Commun., Vol. 181, pp. 189–205, 2010.

[150] Mikolaj Misiak and Matthias Steinhauser. Weak radiative decays of the B meson and bounds on MH± in the Two-Higgs-Doublet Model. Eur. Phys. J. C, Vol. 77, No. 3, p. 201, 2017.

[151] P. A. Zyla, et al. Review of Particle Physics. PTEP, Vol. 2020, No. 8, p. 083C01, 2020.

[152] S. Alekhin, J. Blumlein, and S. Moch. The ABM parton distributions tuned to LHC data. Phys. Rev. D, Vol. 89, No. 5, p. 054028, 2014.

[153] Joyce Garden, Jochen Heitger, Rainer Sommer, and Hartmut Wittig. Precision computa- tion of the strange quark’s mass in quenched QCD. Nucl. Phys. B, Vol. 571, pp. 237–256, 2000.

[154] A. Arhrib, M. Capdequi Peyranere, W. Hollik, and S. Penaranda. Higgs decays in the two Higgs doublet model: Large quantum effects in the decoupling regime. Phys. Lett. B, Vol. 579, pp. 361–370, 2004.

[155] A. Arhrib, R. Benbrik, J. El Falaki, and W. Hollik. Triple Higgs coupling effect on h0 → b¯band h0 → τ +τ − in the 2HDM. Phys. Lett. B, Vol. 774, pp. 195–204, 2017.

[156] Shinya Kanemura, Yasuhiro Okada, Eibun Senaha, and C. P. Yuan. Higgs coupling constants as a probe of new physics. Phys. Rev. D, Vol. 70, p. 115002, 2004.

[157] Ning Chen, Tao Han, Shufang Su, Wei Su, and Yongcheng Wu. Type-II 2HDM under the Precision Measurements at the Z-pole and a Higgs Factory. JHEP, Vol. 03, p. 023, 2019.

[158] Jiayin Gu, Honglei Li, Zhen Liu, Shufang Su, and Wei Su. Learning from Higgs Physics at Future Higgs Factories. JHEP, Vol. 12, p. 153, 2017.

[159] H. Castilla-Valdez, A. Moyotl, M. A. Perez, and C. G. Honorato. Sensitivity of the decay h ZZ∗ Zl + l to the Higgs self-coupling through radiative corrections. Phys. Rev. D, Vol. 93, No. 5, p. 055001, 2016.

[160] Lukas Altenkamp, Stefan Dittmaier, and Heidi Rzehak. Renormalization schemes for the Two-Higgs-Doublet Model and applications to h → WW/ZZ → 4 fermions. JHEP, Vol. 09, p. 134, 2017.

[161] Lukas Altenkamp, Stefan Dittmaier, and Heidi Rzehak. Precision calculations for h WW/ZZ 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f. JHEP, Vol. 03,p. 110, 2018.

[162] Marcel Krause, Margarete Muhlleitner, Rui Santos, and Hanna Ziesche. Higgs-to-Higgs boson decays in a 2HDM at next-to-leading order. Phys. Rev. D, Vol. 95, No. 7, p. 075019, 2017.

[163] Marcel Krause and Margarete Mu¨hlleitner. Impact of Electroweak Corrections on Neutral Higgs Boson Decays in Extended Higgs Sectors. JHEP, Vol. 04, p. 083, 2020.

[164] Ansgar Denner, Stefan Dittmaier, and Jean-Nicolas Lang. Renormalization of mixing angles. JHEP, Vol. 11, p. 104, 2018.

[165] Marcel Krause, Margarete Mu¨hlleitner, and Michael Spira. 2HDECAY —A program for the calculation of electroweak one-loop corrections to Higgs decays in the Two-Higgs- Doublet Model including state-of-the-art QCD corrections. Comput. Phys. Commun., Vol. 246, p. 106852, 2020.

[166] Robert V. Harlander, Stefan Liebler, and Hendrik Mantler. SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM. Comput. Phys. Commun., Vol. 184, pp. 1605–1617, 2013.

[167] Robert V. Harlander, Stefan Liebler, and Hendrik Mantler. SusHi Bento: Beyond NNLO and the heavy-top limit. Comput. Phys. Commun., Vol. 212, pp. 239–257, 2017.

[168] Edmond L. Berger, Tao Han, Jing Jiang, and Tilman Plehn. Associated production of a top quark and a charged Higgs boson. Phys. Rev. D, Vol. 71, p. 115012, 2005.

[169] Stefan Dittmaier, Michael Kramer, Michael Spira, and Manuel Walser. Charged-Higgs- boson production at the LHC: NLO supersymmetric QCD corrections. Phys. Rev. D, Vol. 83, p. 055005, 2011.

[170] Martin Flechl, Richard Klees, Michael Kramer, Michael Spira, and Maria Ubiali. Im- proved cross-section predictions for heavy charged Higgs boson production at the LHC. Phys. Rev. D, Vol. 91, No. 7, p. 075015, 2015.

[171] Celine Degrande, Maria Ubiali, Marius Wiesemann, and Marco Zaro. Heavy charged Higgs boson production at the LHC. JHEP, Vol. 10, p. 145, 2015.

[172] Morad Aaboud, et al. Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1 of pp collisions at s = 13 TeV with the ATLAS detector. JHEP, Vol. 01, p. 055, 2018.

[173] Georges Aad, et al. Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying into b-quarks at s = 13 TeV with the ATLAS detector. Phys. Rev. D, Vol. 102, No. 3, p. 032004, 2020.

[174] Morad Aaboud, et al. Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at s = 13 TeV with the ATLAS detector. Eur. Phys. J. C, Vol. 78, No. 7, p. 565, 2018.

[175] Morad Aaboud, et al. Search for pair production of Higgs bosons in the b¯bb¯b final state using proton-proton collisions at √s = 13 TeV with the ATLAS detector. JHEP, Vol. 01,p. 030, 2019.

[176] Morad Aaboud, et al. Search for heavy resonances decaying into WW in the eνµν final state in pp collisions at s = 13 TeV with the ATLAS detector. Eur. Phys. J. C, Vol. 78, No. 1, p. 24, 2018.

[177] M. Aaboud, et al. Search for heavy ZZ resonances in the ℓ+ℓ−ℓ+ℓ− and ℓ+ℓ−νν¯ final states using proton–proton collisions at √s = 13 TeV with the ATLAS detector. Eur.Phys. J. C, Vol. 78, No. 4, p. 293, 2018.

[178] Morad Aaboud, et al. Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb−1 of s = 13 TeV pp collisions with the ATLAS detector. JHEP, Vol. 03, p. 174, 2018. [Erratum: JHEP 11, 051 (2018)].

[179] Morad Aaboud, et al. Search for charged Higgs bosons decaying into top and bottom quarks at s = 13 TeV with the ATLAS detector. JHEP, Vol. 11, p. 085, 2018.

[180] Morad Aaboud, et al. Search for charged Higgs bosons decaying via H± → τ ±ν√τ in the τ +jets and τ +lepton final states with 36 fb−1 of pp collision data recorded at s = 13 TeV with the ATLAS experiment. JHEP, Vol. 09, p. 139, 2018.

[181] Vardan Khachatryan, et al. Search for heavy resonances decaying to tau lepton pairs in proton-proton collisions at s = 13 TeV. JHEP, Vol. 02, p. 048, 2017.

[182] Albert M Sirunyan, et al. Search for beyond the standard model Higgs bosons decaying into a bb pair in pp collisions at s = 13 TeV. JHEP, Vol. 08, p. 113, 2018.

[183] Albert M Sirunyan, et al. Search for tt resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at s = 13 TeV. JHEP, Vol. 07, p. 001, 2017.

[184] A. M. Sirunyan, et al. Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at s = 13 TeV. Phys. Lett. B, Vol. 781, pp. 244–269, 2018.

[185] Vardan Khachatryan, et al. Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks. Phys. Lett. B, Vol. 768, pp. 137–162, 2017.

[186] Albert M Sirunyan, et al. Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at s = 13 TeV. Eur. Phys. J. C, Vol. 79, No. 7, p. 564, 2019.

[187] Georges Aad, et al. Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at s = 13 TeV. Phys. Rev. Lett., Vol. 125, No. 5,p. 051801, 2020.

[188] A. Arbey, F. Mahmoudi, O. Stal, and T. Stefaniak. Status of the Charged Higgs Boson in Two Higgs Doublet Models. Eur. Phys. J. C, Vol. 78, No. 3, p. 182, 2018.

[189] Abdesslam Arhrib, Rachid Benbrik, Hicham Harouiz, Stefano Moretti, and Abdessamad Rouchad. A Guidebook to Hunting Charged Higgs Bosons at the LHC. Front. in Phys., Vol. 8, p. 39, 2020.

[190] D. A. Dicus, J. L. Hewett, C. Kao, and T. G. Rizzo. W+- H-+ PRODUCTION AT HADRON COLLIDERS. Phys. Rev. D, Vol. 40, p. 787, 1989.

[191] A. A. Barrientos Bendezu and Bernd A. Kniehl. W+- H-+ associated production at the large hadron collider. Phys. Rev. D, Vol. 59, p. 015009, 1999.

[192] Stefano Moretti and Kosuke Odagiri. The Phenomenology of W+- H-+ production at the large hadron collider. Phys. Rev. D, Vol. 59, p. 055008, 1999.

[193] A. G. Akeroyd, et al. Prospects for charged Higgs searches at the LHC. Eur. Phys. J. C, Vol. 77, No. 5, p. 276, 2017.

[194] S. Moretti. Pair production of charged Higgs scalars from electroweak gauge boson fusion.J. Phys. G, Vol. 28, pp. 2567–2582, 2002.

[195] Alexandre Alves and Tilman Plehn. Charged Higgs boson pairs at the CERN LHC. Phys. Rev. D, Vol. 71, p. 115014, 2005.

[196] Oliver Brein, Wolfgang Hollik, and Shinya Kanemura. The MSSM prediction for W+- H-+ production by gluon fusion. Phys. Rev. D, Vol. 63, p. 095001, 2001.

[197] O. Brein and W. Hollik. Pair production of charged MSSM Higgs bosons by gluon fusion.Eur. Phys. J. C, Vol. 13, pp. 175–184, 2000.

[198] Shinya Kanemura, Koji Tsumura, and Hiroshi Yokoya. Multi-tau-lepton signatures at the LHC in the two Higgs doublet model. Phys. Rev. D, Vol. 85, p. 095001, 2012.

[199] Georges Aad, et al. A search for tt resonances using lepton-plus-jets events in proton- proton collisions at s = 8 TeV with the ATLAS detector. JHEP, Vol. 08, p. 148, 2015.

[200] Shinya Kanemura, Hiroshi Yokoya, and Ya-Juan Zheng. Complementarity in direct searches for additional Higgs bosons at the LHC and the International Linear Collider. Nucl. Phys. B, Vol. 886, pp. 524–553, 2014.

[201] M. Cepeda, et al. Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr., Vol. 7, pp. 221–584, 2019.

[202] Youichi Yamada. Gauge dependence of the on-shell renormalized mixing matrices. Phys. Rev. D, Vol. 64, p. 036008, 2001.

[203] A. Sirlin. Radiative Corrections in the SU(2)-L x U(1) Theory: A Simple Renormalization Framework. Phys. Rev. D, Vol. 22, pp. 971–981, 1980.

[204] Karina E. Williams, Heidi Rzehak, and Georg Weiglein. Higher order corrections to Higgs boson decays in the MSSM with complex parameters. Eur. Phys. J. C, Vol. 71, p. 1669, 2011.

[205] N. Sakai. Perturbative QCD Corrections to the Hadronic Decay Width of the Higgs Boson. Phys. Rev. D, Vol. 22, p. 2220, 1980.

[206] Takeo Inami and Takahiro Kubota. Renormalization Group Estimate of the Hadronic Decay Width of the Higgs Boson. Nucl. Phys. B, Vol. 179, pp. 171–188, 1981.

[207] Manuel Drees and Ken-ichi Hikasa. NOTE ON QCD CORRECTIONS TO HADRONIC HIGGS DECAY. Phys. Lett. B, Vol. 240, p. 455, 1990. [Erratum: Phys.Lett.B 262, 497(1991)].

[208] Andrew G. Akeroyd, Abdesslam Arhrib, and El-Mokhtar Naimi. Yukawa coupling correc- tions to the decay H+ W + A0. Eur. Phys. J. C, Vol. 12, pp. 451–460, 2000. [Erratum: Eur.Phys.J.C 14, 371 (2000)].

[209] A. G. Akeroyd, A. Arhrib, and E. Naimi. Radiative corrections to the decay H+ W +A0. Eur. Phys. J. C, Vol. 20, pp. 51–62, 2001.

[210] R. Santos, A. Barroso, and L. Brucher. Top quark loop corrections to the decay H+ —> h0 W+ in the two Higgs doublet model. Phys. Lett. B, Vol. 391, pp. 429–433, 1997.

[211] Alex Pomarol and Roberto Vega. Constraints on CP violation in the Higgs sector from the rho parameter. Nucl. Phys. B, Vol. 413, pp. 3–15, 1994.

[212] Shinya Kanemura and Hide-Aki Tohyama. Nondecoupling effects of Higgs bosons on e+ e- —> W(L)+ W(L)- in the two doublet model. Phys. Rev. D, Vol. 57, pp. 2949–2956, 1998.

[213] P. S. Bhupal Dev and Apostolos Pilaftsis. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment. JHEP, Vol. 12, p. 024, 2014. [Erratum: JHEP 11, 147 (2015)].

[214] J. M. Gerard and M. Herquet. A Twisted custodial symmetry in the two-Higgs-doublet model. Phys. Rev. Lett., Vol. 98, p. 251802, 2007.

[215] D. Toussaint. Renormalization Effects From Superheavy Higgs Particles. Phys. Rev. D, Vol. 18, p. 1626, 1978.

[216] Stefano Bertolini. Quantum Effects in a Two Higgs Doublet Model of the Electroweak Interactions. Nucl. Phys. B, Vol. 272, pp. 77–98, 1986.

[217] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland. The Oblique parameters in multi- Higgs-doublet models. Nucl. Phys. B, Vol. 801, pp. 81–96, 2008.

[218] Shinya Kanemura, Yasuhiro Okada, Hiroyuki Taniguchi, and Koji Tsumura. Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches. Phys. Lett. B, Vol. 704, pp. 303–307, 2011.

[219] M. Tanabashi, et al. Review of Particle Physics. Phys. Rev. D, Vol. 98, No. 3, p. 030001, 2018.

[220] Howard E. Haber and Deva O’Neil. Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U. Phys. Rev. D, Vol. 83, p. 055017, 2011.

[221] P. M. Ferreira and D. R. T. Jones. Bounds on scalar masses in two Higgs doublet models.JHEP, Vol. 08, p. 069, 2009.

[222] Nabarun Chakrabarty, Ujjal Kumar Dey, and Biswarup Mukhopadhyaya. High-scale validity of a two-Higgs doublet scenario: a study including LHC data. JHEP, Vol. 12, p. 166, 2014.

[223] Dipankar Das and Ipsita Saha. Search for a stable alignment limit in two-Higgs-doublet models. Phys. Rev. D, Vol. 91, No. 9, p. 095024, 2015.

[224] Phillipp Basler, Pedro M. Ferreira, Margarete Mu¨hlleitner, and Rui Santos. High scale impact in alignment and decoupling in two-Higgs doublet models. Phys. Rev. D, Vol. 97, No. 9, p. 095024, 2018.

[225] I. P. Ivanov. Minkowski space structure of the Higgs potential in 2HDM. Phys. Rev. D, Vol. 75, p. 035001, 2007. [Erratum: Phys.Rev.D 76, 039902 (2007)].

[226] A. Barroso, P. M. Ferreira, I. P. Ivanov, Rui Santos, and Joao P. Silva. Evading death by vacuum. Eur. Phys. J. C, Vol. 73, p. 2537, 2013.

[227] Pier Paolo Giardino, Kristjan Kannike, Isabella Masina, Martti Raidal, and Alessandro Strumia. The universal Higgs fit. JHEP, Vol. 05, p. 046, 2014.

[228] Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at √s = 13 TeV collected with the ATLAS experiment. 32019.

[229] G. Passarino and M. J. G. Veltman. One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model. Nucl. Phys. B, Vol. 160, pp. 151–207, 1979.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る