リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The search for fermionic thermal relic dark matter at future lepton colliders」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The search for fermionic thermal relic dark matter at future lepton colliders

片寄, 泰佑 東京大学 DOI:10.15083/0002006643

2023.03.24

概要

論文審査の結果の要旨
氏名 片寄

泰佑

本論文は10章からなる。第 1 章はイントロダクションであり、本論文の主題である暗
黒物質研究の歴史的背景が書かれている。第2章では暗黒物質が存在すると考える観測的
根拠や、観測からわかる暗黒物質の性質についてまとめられている。第3章は標準的宇宙
進化のシナリオについて解説されている。第4章は熱的生成を起源とする暗黒物質につい
て、暗黒物質量を計算する上で重要となるボルツマン方程式とその解の性質について説明
されている。第5章は暗黒物質検出のための主要な手法についての説明である。
6章からが、本論文で扱う暗黒物質模型についての説明となる。6章では、熱的に生成
される暗黒物質を素粒子標準模型のゲージ量子数で分類している。そして、SU(2)L ゲー
ジ1重項フェルミオン暗黒物質に着目し、ヒッグス粒子の媒介で標準模型粒子と相互作用
する暗黒物質、Z 粒子の媒介で相互作用する暗黒物質(Z-portal 暗黒物質)、そしてレプ
トンのみと相互作用する暗黒物質(Leptophilic 暗黒物質)に着目する理由が議論されて
いる。それぞれに関する議論が7章以下に与えられている。7章では、ヒッグス粒子の媒
介で標準模型粒子と相互作用する暗黒物質について、過去の解析の結果が解説されてい
る。
8章と9章が本論文の主要部分である。8章は Z-portal 暗黒物質についての考察であ
る。Z-portal 暗黒物質は、特に暗黒物質質量が Z 粒子質量の半分程度の場合、実験・観測
的制限を満たしつつ熱的生成量が暗黒物質量の観測値と一致し得る。本博士論文では、そ
のような暗黒物質の将来レプトン加速器(ILC)による検証について研究している。本論

文は、特に暗黒物質と光子とが生成されるプロセスに着目し、どのようなパラメータ領域
に感度を持つかを定量的に調べた。本研究では暗黒物質と光子生成プロセスの断面積を
beam bremsstrahlung や initial state radiation の効果を取り入れて正確に計算し、終状
態光子のエネルギー分布を検出器の効果まで考慮して求めている。そこから計算されるシ
グナル数を背景事象数と比較することで、未だ棄却されていないパラメータ領域に対して
ILC が感度を持つことを明らかにした。9章は、Leptophilic 暗黒物質についての研究で
ある。Leptophilic 暗黒物質はレプトンとの相互作用を媒介する粒子の存在を示唆する。
本論文は、Leptophilic 暗黒物質に対する過去の探査の結果をまとめたのち、暗黒物質と
光子とが生成されるプロセスと媒介粒子生成プロセスとを用いると ILC が未探査のパラメ
ータ領域に感度を持つことを明らかにした。また、Leptophilic 暗黒物質と媒介粒子はμ
粒子の異常磁気能率に対する輻射補正を生じさせるため、現在指摘されているμ粒子の異
常磁気能率のアノマリーの起源である可能性がある。本研究においては、そのようなシナ
リオに対し、ILC が感度を持つことも指摘されている。
本研究は暗黒物質粒子を探査する上での指針を与えるとともに ILC の有用性を明らかに
するもので、重要な成果と言える。なお、本論文第8章は D.K. Ghosh 氏、松本重貴氏、I.
Saha 氏、白井智氏、田邊友彦氏との、第9章は松本重貴氏、堀米俊一氏、I. Saha 氏との
共同研究であるが、論文提出者が主体となって計算を完成したもので、論文提出者の寄与
が十分であると判断する。
したがって、博士(理学)の学位を授与できると認める。

参考文献

[1] Giorgio Arcadi, Abdelhak Djouadi, and Martti Raidal. Dark Matter

through the Higgs portal. 2019.

[2] Serguei Chatrchyan et al. Observation of a New Boson at a Mass of 125

GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61,

2012.

[3] Georges Aad et al. Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC. Phys.

Lett. B, 716:1–29, 2012.

[4] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters.

Astron. Astrophys., 641:A6, 2020.

[5] Stephen P. Martin. A Supersymmetry primer. Adv. Ser. Direct. High

Energy Phys., 21:1–153, 2010.

[6] Gerard Jungman, Marc Kamionkowski, and Kim Griest. Supersymmetric

dark matter. Phys. Rept., 267:195–373, 1996.

[7] Jonathan L. Feng, Konstantin T. Matchev, and Takeo Moroi. Focus points

and naturalness in supersymmetry. Phys. Rev. D, 61:075005, 2000.

[8] The International Linear Collider Technical Design Report - Volume 1:

Executive Summary. 6 2013.

[9] A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report. 10 2012.

[10] CEPC Conceptual Design Report: Volume 1 - Accelerator. 9 2018.

[11] Geraldine Servant and Timothy M.P. Tait. Is the lightest Kaluza-Klein

particle a viable dark matter candidate? Nucl. Phys. B, 650:391–419,

2003.

[12] Andreas Birkedal, Andrew Noble, Maxim Perelstein, and Andrew Spray.

Little Higgs dark matter. Phys. Rev. D, 74:035002, 2006.

[13] Shigeki Matsumoto, Satyanarayan Mukhopadhyay, and Yue-Lin Sming

Tsai. Effective Theory of WIMP Dark Matter supplemented by Simplified

Models: Singlet-like Majorana fermion case. Phys. Rev. D, 94(6):065034,

2016.

91

[14] Gianfranco Bertone and Dan Hooper. History of dark matter. Rev. Mod.

Phys., 90(4):045002, 2018.

[15] Katherine Freese. Review of Observational Evidence for Dark Matter in

the Universe and in upcoming searches for Dark Stars. EAS Publ. Ser.,

36:113–126, 2009.

[16] D. Walsh, R.F. Carswell, and R.J. Weymann. 0957 + 561 A, B - Twin

quasistellar objects or gravitational lens. Nature, 279:381–384, 1979.

[17] Priyamvada Natarajan et al. Mapping substructure in the HST Frontier

Fields cluster lenses and in cosmological simulations. Mon. Not. Roy.

Astron. Soc., 468(2):1962–1980, 2017.

[18] R.H. Dicke, P.J.E. Peebles, P.G. Roll, and D.T. Wilkinson. Cosmic BlackBody Radiation. Astrophys. J., 142:414–419, 1965.

[19] George F. Smoot et al. Structure in the COBE differential microwave

radiometer first year maps. Astrophys. J. Lett., 396:L1–L5, 1992.

[20] G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe

(WMAP) Observations: Cosmological Parameter Results. Astrophys. J.

Suppl., 208:19, 2013.

[21] Volker Springel et al. Simulating the joint evolution of quasars, galaxies

and their large-scale distribution. Nature, 435:629–636, 2005.

[22] Samuel D. McDermott, Hai-Bo Yu, and Kathryn M. Zurek. Turning off

the Lights: How Dark is Dark Matter? Phys. Rev. D, 83:063509, 2011.

[23] H. Georgi and S.L. Glashow. Unity of All Elementary Particle Forces.

Phys. Rev. Lett., 32:438–441, 1974.

[24] Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter:

Evidence, candidates and constraints. Phys. Rept., 405:279–390, 2005.

[25] Edward W. Kolb and Michael S. Turner. The Early Universe, volume 69.

1990.

[26] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.

[27] Mariangela Lisanti. Lectures on Dark Matter Physics. In Theoretical

Advanced Study Institute in Elementary Particle Physics: New Frontiers

in Fields and Strings, pages 399–446, 2017.

[28] D.S. Akerib et al. Results from a search for dark matter in the complete

LUX exposure. Phys. Rev. Lett., 118(2):021303, 2017.

[29] E. Aprile et al. The XENON1T Dark Matter Experiment. Eur. Phys. J.

C, 77(12):881, 2017.

92

[30] R. Bernabei et al. First results from DAMA/LIBRA and the combined

results with DAMA/NaI. Eur. Phys. J. C, 56:333–355, 2008.

[31] E. Aprile et al. First Dark Matter Search Results from the XENON1T

Experiment. Phys. Rev. Lett., 119(18):181301, 2017.

[32] E. Aprile et al. Constraining the spin-dependent WIMP-nucleon cross

sections with XENON1T. Phys. Rev. Lett., 122(14):141301, 2019.

[33] Philip Bett, Vincent Eke, Carlos S. Frenk, Adrian Jenkins, John Helly,

and Julio Navarro. The spin and shape of dark matter haloes in the Millennium simulation of a lambda-CDM universe. Mon. Not. Roy. Astron.

Soc., 376:215–232, 2007.

[34] Julio F. Navarro, Carlos S. Frenk, and Simon D.M. White. The Structure

of cold dark matter halos. Astrophys. J., 462:563–575, 1996.

[35] Toshiyuki Fukushige and Junichiro Makino. Structure of dark matter

halos from hierarchical clustering. Astrophys. J., 557:533, 2001.

[36] Jennifer M. Gaskins. A review of indirect searches for particle dark matter.

Contemp. Phys., 57(4):496–525, 2016.

[37] W.B. Atwood et al. The Large Area Telescope on the Fermi Gamma-ray

Space Telescope Mission. Astrophys. J., 697:1071–1102, 2009.

[38] F. Aharonian et al. The h.e.s.s. survey of the inner galaxy in very highenergy gamma-rays. Astrophys. J., 636:777–797, 2006.

[39] M.G. Aartsen et al. Observation of High-Energy Astrophysical Neutrinos

in Three Years of IceCube Data. Phys. Rev. Lett., 113:101101, 2014.

[40] Oscar Adriani et al. An anomalous positron abundance in cosmic rays

with energies 1.5-100 GeV. Nature, 458:607–609, 2009.

[41] M. Aguilar et al. First Result from the Alpha Magnetic Spectrometer on

the International Space Station: Precision Measurement of the Positron

Fraction in Primary Cosmic Rays of 0.5–350 GeV. Phys. Rev. Lett.,

110:141102, 2013.

[42] S. Schael et al. Precision electroweak measurements on the Z resonance.

Phys. Rept., 427:257–454, 2006.

[43] M. Tanabashi et al.

98(3):030001, 2018.

Review of Particle Physics.

Phys. Rev. D,

[44] Albert M Sirunyan et al. Combined measurements

of Higgs boson cou√

plings in proton–proton collisions at s = 13 TeV. Eur. Phys. J. C,

79(5):421, 2019.

[45] C. Boehm, T. A. Ensslin, and J. Silk. Can Annihilating dark matter be

lighter than a few GeVs? J. Phys., G30:279–286, 2004.

93

[46] Celine Boehm, Dan Hooper, Joseph Silk, Michel Casse, and Jacques Paul.

MeV dark matter: Has it been detected? Phys. Rev. Lett., 92:101301,

2004.

[47] Kim Griest and Marc Kamionkowski. Unitarity Limits on the Mass and

Radius of Dark Matter Particles. Phys. Rev. Lett., 64:615, 1990.

[48] K. Hamaguchi, S. Shirai, and T. T. Yanagida. Composite messenger

baryon as a cold dark matter. Phys. Lett., B654:110–112, 2007.

Koichi Hamaguchi, Eita Nakamura, Satoshi Shirai, and T. T. Yanagida.

Decaying Dark Matter Baryons in a Composite Messenger Model. Phys.

Lett., B674:299–302, 2009.

Koichi Hamaguchi, Eita Nakamura, Satoshi Shirai, and Tsutomu T.

Yanagida. Low-Scale Gauge Mediation and Composite Messenger Dark

Matter. JHEP, 04:119, 2010.

[49] Hitoshi Murayama and Jing Shu. Topological Dark Matter. Phys. Lett.,

B686:162–165, 2010.

[50] Thomas Hambye and Michel H. G. Tytgat. Confined hidden vector dark

matter. Phys. Lett., B683:39–41, 2010.

[51] Oleg Antipin, Michele Redi, and Alessandro Strumia. Dynamical generation of the weak and Dark Matter scales from strong interactions. JHEP,

01:157, 2015.

[52] Oleg Antipin, Michele Redi, Alessandro Strumia, and Elena Vigiani. Accidental Composite Dark Matter. JHEP, 07:039, 2015.

[53] Christian Gross, Andrea Mitridate, Michele Redi, Juri Smirnov, and

Alessandro Strumia. Cosmological Abundance of Colored Relics. Phys.

Rev., D99(1):016024, 2019.

[54] Hajime Fukuda, Feng Luo, and Satoshi Shirai. How Heavy can Neutralino

Dark Matter be? 2018.

[55] Jeremy Bernstein, Lowell S. Brown, and Gerald Feinberg. The Cosmological Heavy Neutrino Problem Revisited. Phys. Rev., D32:3261, 1985.

[56] Mark Srednicki, Richard Watkins, and Keith A. Olive. Calculations of

Relic Densities in the Early Universe. Nucl. Phys., B310:693, 1988.

[57] Laura Lopez-Honorez, Thomas Schwetz, and Jure Zupan. Higgs portal,

fermionic dark matter, and a Standard Model like Higgs at 125 GeV.

Phys. Lett. B, 716:179–185, 2012.

[58] Michael A. Fedderke, Jing-Yuan Chen, Edward W. Kolb, and Lian-Tao

Wang. The Fermionic Dark Matter Higgs Portal: an effective field theory

approach. JHEP, 08:122, 2014.

94

[59] Jing-Yuan Chen, Edward W. Kolb, and Lian-Tao Wang. Dark matter

coupling to electroweak gauge and Higgs bosons: an effective field theory

approach. Phys. Dark Univ., 2:200–218, 2013.

[60] Vardan Khachatryan et al. Constraints on the Higgs boson width from

off-shell production and decay to Z-boson pairs. Phys. Lett. B, 736:64–85,

2014.

[61] Georges Aad et al. Constraints on the off-shell Higgs boson signal strength

in the high-mass ZZ and W W final states with the ATLAS detector. Eur.

Phys. J. C, 75(7):335, 2015.

[62] J. Aalbers et al. DARWIN: towards the ultimate dark matter detector.

JCAP, 11:017, 2016.

[63] Giorgio Arcadi, Yann Mambrini, and Francois Richard. Z-portal dark

matter. JCAP, 1503:018, 2015.

[64] Koichi Hamaguchi and Kazuya Ishikawa. Prospects for Higgs- and Zresonant Neutralino Dark Matter. Phys. Rev., D93(5):055009, 2016.

[65] Shigeki Matsumoto, Satyanarayan Mukhopadhyay, and Yue-Lin Sming

Tsai. Singlet Majorana fermion dark matter: a comprehensive analysis in

effective field theory. JHEP, 10:155, 2014.

[66] Clifford Cheung, Lawrence J. Hall, David Pinner, and Joshua T. Ruderman. Prospects and Blind Spots for Neutralino Dark Matter. JHEP,

05:100, 2013.

[67] Ken’ichi Saikawa and Satoshi Shirai. Primordial gravitational waves,

precisely: The role of thermodynamics in the Standard Model. JCAP,

1805(05):035, 2018.

[68] A. Airapetian et al. Precise determination of the spin structure function

g(1) of the proton, deuteron and neutron. Phys. Rev., D75:012007, 2007.

[69] Genevi`eve B´elanger, Fawzi Boudjema, Andreas Goudelis, Alexander

Pukhov, and Bryan Zaldivar. micrOMEGAs5.0 : Freeze-in. Comput.

Phys. Commun., 231:173–186, 2018.

[70] M. Ackermann et al. Searching for Dark Matter Annihilation from Milky

Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Phys. Rev. Lett., 115(23):231301, 2015.

[71] Morad Aaboud et al. Search for dark matter at s = 13 TeV in final states

containing an energetic photon and large missing transverse momentum

with the ATLAS detector. Eur. Phys. J., C77(6):393, 2017.

[72] Morad Aaboud et al. Search for dark matter and other new phenomena

in events with an energetic jet and large missing transverse momentum

using the ATLAS detector. JHEP, 01:126, 2018.

95

[73] John Ellis, Andrew Fowlie, Luca Marzola, and Martti Raidal. Statistical Analyses of Higgs- and Z-Portal Dark Matter Models. Phys. Rev.,

D97(11):115014, 2018.

[74] Christoph Bartels, Mikael Berggren, and Jenny List. Characterising

WIMPs at a future e+ e− Linear Collider. Eur. Phys. J., C72:2213, 2012.

[75] E. A. Kuraev and Victor S. Fadin. On Radiative Corrections to e+ eSingle Photon Annihilation at High-Energy. Sov. J. Nucl. Phys., 41:466–

472, 1985. [Yad. Fiz.41,733(1985)].

[76] J. Abdallah et al. Search for one large extra dimension with the DELPHI

detector at LEP. Eur. Phys. J., C60:17–23, 2009.

[77] Patrick J. Fox, Roni Harnik, Joachim Kopp, and Yuhsin Tsai. LEP Shines

Light on Dark Matter. Phys. Rev., D84:014028, 2011.

[78] C. Patrignani et al.

C40(10):100001, 2016.

Review of Particle Physics.

Chin. Phys.,

[79] Marcela Carena, Andre de Gouvea, Ayres Freitas, and Michael Schmitt.

Invisible Z boson decays at e+ e- colliders. Phys. Rev., D68:113007, 2003.

[80] Pisin Chen and Kaoru Yokoya. Disruption Effects From the Interaction

of Round e+ e− Beams. Phys. Rev., D38:987, 1988.

[81] Michael E. Peskin. Consistent Yokoya-Chen approximation to beamstrahlung. SLAC-TN-04-032, LCC-0010, 1999.

[82] Asesh K. Datta, Kyoungchul Kong, and Konstantin T. Matchev. The

Impact of beamstrahlung on precision measurements at CLIC. eConf,

C050318:0215, 2005.

[83] J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein, and P. M. Zerwas. Physics

impact of GigaZ. pages 1389–1402, 5 2000.

[84] D. S. Akerib et al. LUX-ZEPLIN (LZ) Conceptual Design Report. 9 2015.

[85] E. Aprile et al. Projected WIMP sensitivity of the XENONnT dark matter

experiment. JCAP, 11:031, 2020.

[86] Kim Griest and David Seckel. Three exceptions in the calculation of relic

abundances. Phys. Rev. D, 43:3191–3203, 1991.

[87] Ken’ichi Saikawa and Satoshi Shirai. Precise WIMP Dark Matter Abundance and Standard Model Thermodynamics. JCAP, 08:011, 2020.

[88] Michael J. Baker and Andrea Thamm. Leptonic WIMP Coannihilation

and the Current Dark Matter Search Strategy. JHEP, 10:187, 2018.

[89] LEPSUSYWG, ALEPH, DELPHI, L3 and OPAL experiments, note

LEPSUSYWG/yy-nn.

96

[90] Particle Data Group 2020. Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020(8), 08 2020. 083C01.

[91] Georges Aad et al. Search for electroweak production of charginos and

sleptons decaying

√ into final states with two leptons and missing transverse

momentum in s = 13 TeV pp collisions using the ATLAS detector. Eur.

Phys. J. C, 80(2):123, 2020.

[92] Georges Aad et al. Searches for electroweak√production of supersymmetric

particles with compressed mass spectra in s = 13 TeV pp collisions with

the ATLAS detector. Phys. Rev. D, 101(5):052005, 2020.

[93] John F. Gunion, Howard E. Haber, Gordon L. Kane, and Sally Dawson.

The Higgs Hunter’s Guide, volume 80. 2000.

[94] Abdelhak Djouadi. The Anatomy of electro-weak symmetry breaking. I:

The Higgs boson in the standard model. Phys. Rept., 457:1–216, 2008.

[95] Abdelhak Djouadi. The Anatomy of electro-weak symmetry breaking. II.

The Higgs bosons in the minimal supersymmetric model. Phys. Rept.,

459:1–241, 2008.

[96] A.M. Sirunyan et al. Measurements of Higgs boson properties

in the dipho√

ton decay channel in proton-proton collisions at s = 13 TeV. JHEP,

11:185, 2018.

[97] A. Djouadi, V. Driesen, W. Hollik, and Jose I. Illana. The Coupling of

the lightest SUSY Higgs boson to two photons in the decoupling regime.

Eur. Phys. J. C, 1:149–162, 1998.

[98] Hong-Jian He, Nir Polonsky, and Shu-fang Su. Extra families, Higgs

spectrum and oblique corrections. Phys. Rev. D, 64:053004, 2001.

[99] W. Grimus, L. Lavoura, O.M. Ogreid, and P. Osland. A Precision constraint on multi-Higgs-doublet models. J. Phys. G, 35:075001, 2008.

[100] W. Grimus, L. Lavoura, O.M. Ogreid, and P. Osland. The Oblique parameters in multi-Higgs-doublet models. Nucl. Phys. B, 801:81–96, 2008.

[101] Riccardo Barbieri, Lawrence J. Hall, and Vyacheslav S. Rychkov. Improved naturalness with a heavy Higgs: An Alternative road to LHC

physics. Phys. Rev. D, 74:015007, 2006.

[102] M. Cepeda et al. Report from Working Group 2: Higgs Physics at the

HL-LHC and HE-LHC, volume 7, pages 221–584. 12 2019.

[103] Prateek Agrawal, Zackaria Chacko, and Christopher B. Verhaaren. Leptophilic Dark Matter and the Anomalous Magnetic Moment of the Muon.

JHEP, 08:147, 2014.

[104] Takeo Moroi. The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model. Phys. Rev. D, 53:6565–6575, 1996.

[Erratum: Phys.Rev.D 56, 4424 (1997)].

97

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る