リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on single-shot ultrafast burst imaging utilizing frequency-to-time encoding of an ultrashort kaser pulse (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on single-shot ultrafast burst imaging utilizing frequency-to-time encoding of an ultrashort kaser pulse (本文)

鈴木, 敬和 慶應義塾大学

2020.03.23

概要

Single-shot ultrafast imaging is expected to pave a way to measure transient phenomena in femtoseconds to nanoseconds domain in real-time. Among them, a frequency-to-time encoding of Sequentially Timed All-optical Mapping Photography (STAMP) is the only method capable of direct 2D-burst imaging with both high temporal and spatial resolution on a single-shot basis. However, to realize diverse applications of STAMP, there are requirements to solve the problem of freedom in the number of snapshots and expansion of the time window to the nanoseconds regime.

This study aims to reveal various ultrafast nonrepetitive phenomena in real-time by developing and applying the modified version of STAMP utilizing Spectral Filtering (SF-STAMP). The first half of this thesis focuses on the establishment of a comprehensive SF-STAMP methodology with a simple but widely applicable to single-shot imaging. The second half addresses the single-shot measurements of photo- and THz-induced irreversible ultrafast phase transition that can be observed for the first time by virtue of SF-STAMP’s notable features of a single shot and ps-temporal and μm-spatial resolution. Moreover, a real-time in-situ measurement application has been demonstrated by combining a conventional high-speed camera and SF-STAMP. These results highlight that the STAMP method has advantages over other single-shot ultrafast imaging methods.

Chapter 1 outlines the background and purpose of this study.

Chapter 2 describes the fundamentals of the ultrafast laser used in this study, the principle of SF-STAMP, scaling to 25 burst frames, and an extension approach to the nanoseconds time window with spectrally sweeping burst delayed pulses.

Chapter 3 addresses a single-shot measurement of THz-driven irreversible phase transition in multilayer MoTe2 by observing transient reflectivity change of a chirped probe by SF-STAMP, together with 1D-optical streak imaging (1D-OSI) spectroscopy. Insights of THz-induced phase transition dynamics are summarized.

In Chapter 4, the real-time application of SF-STAMP combining with a kHz high-speed camera is demonstrated. Real-time in-situ measurement of laser processing evaluates the precursor process of each pulse and its effect on femtosecond laser processing of glass under multiple pulses accumulated conditions with sub-nanosecond time resolution using a chirp pulse probe or spectrally sweeping burst probes.

Chapter 5 discusses the outlook for the future applications of SF-STAMP, especially laser processing and THz wave region.

In Chapter 6, the experimental results and knowledge obtained in each chapter are summarized.

この論文で使われている画像

参考文献

1. T. H. Maiman, "Stimulated Optical Radiation in Ruby," Nature 187, 493–494 (1960).

2. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125 (1986).

3. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 42 (1991).

4. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56, 219–221 (1985).

5. M. C. Downer, R. L. Fork, and C. V. Shank, "Femtosecond imaging of melting and evaporation at a photoexcited silicon surface," J. Opt. Soc. Am. B 2, 595 (1985).

6. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, "Invited Review Article: Pump-probe microscopy," Rev. Sci. Instrum. 87, 031101 (2016).

7. B. Guo, J. Sun, Y. Lu, and L. Jiang, "Ultrafast dynamics observation during femtosecond laser-material interaction," Int. J. Extrem. Manuf. 1, 032004 (2019).

8. T. Yasui, K. Minoshima, E. Abraham, and H. Matsumoto, "Microscopic time-resolved two-dimensional imaging with a femtosecond amplifying optical Kerr gate," Appl. Opt. 41, 5191 (2002).

9. A. Barty, S. Boutet, M. J. Bogan, S. Hau-Riege, S. Marchesini, K. Sokolowski-Tinten, N. Stojanovic, R. Tobey, H. Ehrke, A. Cavalleri, S. Düsterer, M. Frank, S. Bajt, B. W. Woods, M. M. Seibert, J. Hajdu, R. Treusch, and H. N. Chapman, "Ultrafast single-shot diffraction imaging of nanoscale dynamics," Nat. Photon. 2, 415–419 (2008).

10. T. Pezeril, G. Saini, D. Veysset, S. Kooi, P. Fidkowski, R. Radovitzky, and K. A. Nelson, "Direct Visualization of Laser-Driven Focusing Shock Waves," Phys. Rev. Lett. 106, 214503 (2011).

11. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, "Ultrafast pump-probe microscopy with high temporal dynamic range," Opt. Express 20, 10330 (2012).

12. T. Pezeril, C. Klieber, V. Shalagatskyi, G. Vaudel, V. Temnov, O. G. Schmidt, and D. Makarov, "Femtosecond imaging of nonlinear acoustics in gold," Opt. Express 22, 4590 (2014).

13. Z. Wang, F. Su, and F. A. Hegmann, "Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO3," Opt. Express 23, 8073 (2015).

14. D. Veysset, A. A. Мaznev, T. Pezeril, S. Kooi, and K. A. Nelson, "Interferometric analysis of laser-driven cylindrically focusing shock waves in a thin liquid layer," Sci. Rep. 6, 24 (2016).

15. D. Veysset, A. A. Maznev, I. A. Veres, T. Pezeril, S. E. Kooi, A. M. Lomonosov, and K. A. Nelson, "Acoustical breakdown of materials by focusing of laser-generated Rayleigh surface waves," Appl. Phys. Lett. 111, 031901 (2017).

16. Y.-C. Lin, C.-J. Cheng, and L.-C. Lin, "Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events," Opt. Lett. 42, 2082 (2017).

17. D. Veysset, S. E. Kooi, R. Haferssas, M. Hassani-Gangaraj, M. Islam, A. A. Maznev, Y. Chernukha, X. Zhao, K. Nakagawa, D. Martynowych, X. Zhang, A. M. Lomonosov, C. A. Schuh, R. Radovitzky, T. Pezeril, and K. A. Nelson, "Glass fracture by focusing of laser-generated nanosecond surface acoustic waves," Scr. Mater. 158, 42–45 (2019).

18. T. G. Etoh, C. Vo Le, Y. Hashishin, N. Otsuka, K. Takehara, H. Ohtake, T. Hayashida, and H. Maruyama, "Evolution of Ultra-High-Speed CCD Imagers," Plasma Fusion Res. 2, S1021 (2007).

19. P. R. Poulin and K. A. Nelson, "Irreversible Organic Crystalline Chemistry Monitored in Real Time," Science 313, 1756–1760 (2006).

20. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054–1057 (2007).

21. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, "Instabilities, breathers and rogue waves in optics," Nat. Photon. 8, 755–764 (2014).

22. T. C. Wong, M. Rhodes, and R. Trebino, "Single-shot measurement of the complete temporal intensity and phase of supercontinuum," Optica 1, 119 (2014).

23. R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature 412, 798–802 (2001).

24. H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, and I. Fujimura, "Completely Erasable Phase Change Optical Disk," Jpn. J. Appl. Phys. 31, 461–465 (1992).

25. M. Konishi, H. Santo, Y. Hongo, K. Tajima, M. Hosoi, and T. Saiki, "Ultrafast amorphization in Ge10Sb2Te13 thin film induced by single femtosecond laser pulse," Appl. Opt. 49, 3470 (2010).

26. J. Takeda, W. Oba, Y. Minami, T. Saiki, and I. Katayama, "Ultrafast crystalline-to-amorphous phase transition in Ge2Sb2Te5 chalcogenide alloy thin film using single-shot imaging spectroscopy," Appl. Phys. Lett. 104, 261903 (2014).

27. Y. Katsumata, T. Morita, Y. Morimoto, T. Shintani, and T. Saiki, "Self-organization of a periodic structure between amorphous and crystalline phases in a GeTe thin film induced by femtosecond laser pulse amorphization," Appl. Phys. Lett. 105, 031907 (2014).

28. R. Akimoto, H. Handa, S. Shindo, Y. Sutou, M. Kuwahara, M. Naruse, and T. Saiki, "Implementation of pulse timing discriminator functionality into a GeSbTe/GeCuTe double layer structure," Opt. Express 25, 26825 (2017).

29. H. Yamakawa, T. Miyamoto, T. Morimoto, T. Terashige, H. Yada, N. Kida, M. Suda, H. M. Yamamoto, R. Kato, K. Miyagawa, K. Kanoda, and H. Okamoto, "Mott transition by an impulsive dielectric breakdown," Nat. Mater. 16, 1100–1105 (2017).

30. Y. Sanari, T. Tachizaki, Y. Saito, K. Makino, P. Fons, A. V. Kolobov, J. Tominaga, K. Tanaka, Y. Kanemitsu, M. Hase, and H. Hirori, "Zener Tunneling Breakdown in Phase-Change Materials Revealed by Intense Terahertz Pulses," Phys. Rev. Lett. 121, 165702 (2018).

31. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat. Photon. 2, 219–225 (2008).

32. M. Sakakura and M. Terazima, "Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass," Phys. Rev. B (2005).

33. N. Šiaulys, A. Melninkaitis, and A. Dubietis, "In situ study of two interacting femtosecond filaments in sapphire," Opt. Lett. 40, 2285–2288 (2015).

34. H. Mikami, C. Lei, N. Nitta, T. Sugimura, T. Ito, Y. Ozeki, and K. Goda, "High-Speed Imaging Meets Single-Cell Analysis," Chem 4, 2278–2300 (2018).

35. Z. Jiang and X.-C. Zhang, "Electro-optic measurement of THz field pulses with a chirped optical beam," Appl. Phys. Lett. 72, 1945–1947 (1998).

36. Z. Jiang and X.-C. Zhang, "Single-shot spatiotemporal terahertz field imaging," Opt. Lett. 23, 1114–1116 (1998).

37. J. Shan, A. S. Weling, E. Knoesel, L. Bartels, M. Bonn, A. Nahata, G. A. Reider, and T. F. Heinz, "Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling," Opt. Lett. 25, 426 (2000).

38. G. P. Wakeham and K. A. Nelson, "Dual-echelon single-shot femtosecond spectroscopy," Opt. Lett. 25, 505 (2000).

39. T. Shin, J. W. Wolfson, S. W. Teitelbaum, M. Kandyla, and K. A. Nelson, "Dual echelon femtosecond single-shot spectroscopy," Rev. Sci. Instrum. 85, 083115 (2014).

40. C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pépin, F. Vidal, and H. P. Mercure, "Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air," Opt. Lett. 25, 578 (2000).

41. S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, "Single-shot measurement of temporal phase shifts by frequency-domain holography," Opt. Lett. 25, 764 (2000).

42. Y.-H. Cheng, F. Y. Gao, S. W. Teitelbaum, and K. A. Nelson, "Coherent control of optical phonons in bismuth," Phys. Rev. B 96, 134302 (2017).

43. Y.-H. Cheng, S. W. Teitelbaum, F. Y. Gao, and K. A. Nelson, "Femtosecond laser amorphization of tellurium," Phys. Rev. B 98, 134112 (2018).

44. A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, "Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography," Nat. Photon. 12, 228–234 (2018).

45. M. Kobayashi, Y. Arashida, G. Yamashita, E. Matsubara, M. Ashida, J. A. Johnson, and I. Katayama, "Fast-frame single-shot pump-probe spectroscopy with chirped-fiber Bragg gratings," Opt. Lett. 44, 163 (2019).

46. G. Mead, I. Katayama, J. Takeda, and G. A. Blake, "An echelon-based single shot optical and terahertz Kerr effect spectrometer," Rev. Sci. Instrum. 90, 053107 (2019).

47. J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Gauthier, "Single-shot spectral interferometry with chirped pulses," Opt. Lett. 26, 1612 (2001).

48. J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, "Attosecond Streak Camera," Phys. Rev. Lett. 88, 173903 (2002).

49. N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintchenko, T. Matsuoka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, G. Shvets, and M. C. Downer, "Snapshots of laser wakefields," Nat. Phys. 2, 749–753 (2006).

50. U. Frühling, M. Wieland, M. Gensch, T. Gebert, B. Schütte, M. Krikunova, R. Kalms, F. Budzyn, O. Grimm, J. Rossbach, E. Plönjes, and M. Drescher, "Single-shot terahertz-field-driven X-ray streak camera," Nat. Photon. 3, 523–528 (2009).

51. Y. Minami, K. Horiuchi, K. Masuda, J. Takeda, and I. Katayama, "Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy," Appl. Phys. Lett. 107, 171104 (2015).

52. J. Zhang, S. Liu, T. Yi, X. Wu, Y. Song, B. Zhang, and Q. Zhong, "Ultrafast single-shot measurement of optical Kerr effect based on supercontinuum pulse," Rev. Sci. Instrum. 87, 043114 (2016).

53. M. Kobayashi, Y. Minami, C. L. Johnson, P. D. Salmans, N. R. Ellsworth, J. Takeda, J. A. Johnson, and I. Katayama, "High-Acquisition-Rate Single-Shot Pump-Probe Measurements Using Time-Stretching Method," Sci. Rep. 6, 37614 (2016).

54. M. Buzzi, M. Makita, L. Howald, A. Kleibert, B. Vodungbo, P. Maldonado, J. Raabe, N. Jaouen, H. Redlin, K. Tiedtke, P. M. Oppeneer, C. David, F. Nolting, and J. Lüning, "Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser," Sci. Rep. 7, 7253 (2017).

55. H. Mikami, L. Gao, and K. Goda, "Ultrafast optical imaging technology: principles and applications of emerging methods," Nanophotonics 5, 98–110 (2016).

56. J. Liang and L. V. Wang, "Single-shot ultrafast optical imaging," Optica 5, 1113–1127 (2018).

57. K. Goda, K. K. Tsia, and B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature 458, 1145–1149 (2009).

58. K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, "Sequentially timed all-optical mapping photography (STAMP)," Nat. Photon. 8, 695–700 (2014).

59. K. Nakagawa, T. Suzuki, and F. Kannari, "Sequentially Timed All-Optical Mapping Photography for Real- Time Monitoring of Laser Ablation: Breakdown and Filamentation in Picosecond and Femtosecond Regimes," in Laser Ablation - From Fundamentals to Applications, T. Itina, ed. (InTech, 2017), p. 105−121.

60. T. Suzuki, F. Isa, L. Fujii, K. Hirosawa, K. Nakagawa, K. Goda, I. Sakuma, and F. Kannari, "Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering," Opt. Express 23, 30512–30522 (2015).

61. T. Suzuki, R. Hida, Y. Yamaguchi, K. Nakagawa, T. Saiki, and F. Kannari, "Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution," Appl. Phys. Express 10, 092502 (2017).

62. T. Suzuki, H. Nemoto, K. Takasawa, and F. Kannari, "1000-fps consecutive ultrafast 2D-burst imaging with a sub-nanosecond temporal resolution by a frequency ‑ time encoding of SF-STAMP," Appl. Phys. A 126, 135 (2020).

63. L. Gao, J. Liang, C. Li, and L. V. Wang, "Single-shot compressed ultrafast photography at one hundred billion frames per second," Nature 516, 74–77 (2014).

64. J. Liang, L. Gao, P. Hai, C. Li, and L. V. Wang, "Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography," Sci. Rep. 5, 15504 (2015).

65. L. Zhu, Y. Chen, J. Liang, Q. Xu, L. Gao, C. Ma, and L. V. Wang, "Space- and intensity-constrained reconstruction for compressed ultrafast photography," Optica 3, 694 (2016).

66. J. Liang, C. Ma, L. Zhu, Y. Chen, L. Gao, and L. V. Wang, "Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse," Sci. Adv. 3, e1601814 (2017).

67. J. Liang, L. Zhu, and L. V. Wang, "Single-shot real-time femtosecond imaging of temporal focusing," Light Sci. Appl. 7, 42 (2018).

68. X. Liu, J. Liu, C. Jiang, F. Vetrone, and J. Liang, "Single-shot compressed optical-streaking ultra-high-speed photography," Opt. Lett. 44, 1387 (2019).

69. T. Kim, J. Liang, L. Zhu, and L. V Wang, "Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot," Sci. Adv. 6, eaay6200 (2020).

70. A. Ehn, J. Bood, Z. Li, E. Berrocal, M. Aldén, and E. Kristensson, "FRAME: femtosecond videography for atomic and molecular dynamics," Light Sci. Appl. 6, e17045 (2017).

71. M. Fujimoto, S. Aoshima, and Y. Tsuchiya, "Multiframe observation of an intense femtosecond optical pulse propagating in air," Opt. Lett. 27, 309 (2002).

72. N. H. Matlis, A. Axley, and W. P. Leemans, "Single-shot ultrafast tomographic imaging by spectral multiplexing," Nat. Commun. 3, 1111 (2012).

73. Z. Li, C.-H. Pai, Y.-Y. Chang, R. Zgadzaj, X. Wang, and M. C. Downer, "Single-shot visualization of evolving, light-speed structures by multiobject-plane phase-contrast imaging," Opt. Lett. 38, 5157 (2013).

74. T. Kakue, J. Yuasa, M. Fujii, P. Xia, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, "Light-in-Flight Recording by Parallel Phase-Shifting Digital Holography," Appl. Phys. Express 6, 092501 (2013).

75. B. Heshmat, G. Satat, C. Barsi, and R. Raskar, "Single-shot ultrafast imaging using parallax-free alignment with a tilted lenslet array," in CLEO: 2014 (OSA, 2014), p. STu3E.7.

76. Z. Li, R. Zgadzaj, X. Wang, Y.-Y. Chang, and M. C. Downer, "Single-shot tomographic movies of evolving light-velocity objects," Nat. Commun. 5, 3085 (2014).

77. X. Wang, L. Yan, J. Si, S. Matsuo, H. Xu, and X. Hou, "High-frame-rate observation of single femtosecond laser pulse propagation in fused silica using an echelon and optical polarigraphy technique," Appl. Opt. 53, 8395–8399 (2014).

78. Q.-Y. Yue, Z.-J. Cheng, L. Han, Y. Yang, and C.-S. Guo, "One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena," Opt. Express 25, 14182 (2017).

79. G. Gao, K. He, J. Tian, C. Zhang, J. Zhang, T. Wang, S. Chen, H. Jia, F. Yuan, L. Liang, X. Yan, S. Li, C. Wang, and F. Yin, "Ultrafast all-optical solid-state framing camera with picosecond temporal resolution," Opt. Express 25, 8721 (2017).

80. G. Gao, J. Tian, T. Wang, K. He, C. Zhang, J. Zhang, S. Chen, H. Jia, F. Yuan, L. Liang, X. Yan, S. Li, C. Wang, and F. Yin, "Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1−xAs multiple-quantum-well semiconductor," Phys. Lett. A 381, 3594–3598 (2017).

81. C. Guanghua, L. Jianfeng, P. Qixian, L. Shouxian, and L. Jun, "All-optical coaxial framing photography using parallel coherence shutters," Opt. Lett. 42, 415 (2017).

82. P. Sidorenko, O. Lahav, and O. Cohen, "Ptychographic ultrahigh-speed imaging," Opt. Express 25, 10997 (2017).

83. B. K. Chen, P. Sidorenko, O. Lahav, O. Peleg, and O. Cohen, "Multiplexed single-shot ptychography," Opt. Lett. 43, 5379 (2018).

84. D. Veysset, U. Gutiérrez-Hernández, L. Dresselhaus-Cooper, F. De Colle, S. Kooi, K. A. Nelson, P. A. Quinto-Su, and T. Pezeril, "Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves," Phys. Rev. E 97, 053112 (2018).

85. S. Yeola, D. Kuk, and K.-Y. Kim, "Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses," J. Opt. Soc. Am. B 35, 2822 (2018).

86. B. Heshmat, M. Tancik, G. Satat, and R. Raskar, "Photography optics in the time dimension," Nat. Photon. 12, 560–566 (2018).

87. N. Karasawa, "Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts," Opt. Commun. 413, 19–23 (2018).

88. M. Gragston, C. Smith, D. Kartashov, M. N. Shneider, and Z. Zhang, "Single-shot nanosecond-resolution multiframe passive imaging by multiplexed structured image capture," Opt. Express 26, 28441 (2018).

89. O. Wengrowicz, O. Peleg, B. Loevsky, B. K. Chen, G. I. Haham, U. S. Sainadh, and O. Cohen, "Experimental time-resolved imaging by multiplexed ptychography," Opt. Express 27, 24568 (2019).

90. L. Dresselhaus-Cooper, J. E. Gorfain, C. T. Key, B. K. Ofori-Okai, S. J. Ali, D. J. Martynowych, A. Gleason, S. Kooi, and K. A. Nelson, "Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves in a Multi-Layered Assembly," Sci. Rep. 9, 1–12 (2019).

91. Y. Lu, T. T. W. Wong, F. Chen, and L. Wang, "Compressed Ultrafast Spectral-Temporal Photography," Phys. Rev. Lett. 122, 193904 (2019).

92. Z. E. Davidson, B. Gonzalez-Izquierdo, A. Higginson, K. L. Lancaster, S. D. R. Williamson, M. King, D. Farley, D. Neely, P. McKenna, and R. J. Gray, "An optically multiplexed single-shot time-resolved probe of laser–plasma dynamics," Opt. Express 27, 4416 (2019).

93. C. Hu, Z. Du, M. Chen, S. Yang, and H. Chen, "Single-shot ultrafast phase retrieval photography," Opt. Lett. 44, 4419 (2019).

94. H.-Y. Huang, Z.-J. Cheng, Y. Yang, Q.-Y. Yue, and C.-S. Guo, "Single-shot ultrafast sequential holographic imaging with high temporal resolution and a large field of view," Opt. Lett. 44, 4885 (2019).

95. D. Haffa, J. Bin, M. Speicher, K. Allinger, J. Hartmann, C. Kreuzer, E. Ridente, T. M. Ostermayr, and J. Schreiber, "Temporally Resolved Intensity Contouring (TRIC) for characterization of the absolute spatio-temporal intensity distribution of a relativistic, femtosecond laser pulse," Sci. Rep. 9, 7697 (2019).

96. X. Zeng, S. Zheng, Y. Cai, Q. Lin, H. Wang, X. Lu, J. Li, W. Xie, and S. Xu, "Ultrafast Framing Imaging utilizing Multiple Optical-parametric-amplification with High Spatial Resolution and Imaging Rate," arXiv:1907.00518 (2019).

97. J. Moon, S. Yoon, Y. Lim, and W. Choi, "Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing," Opt. Express 28, 4463 (2020).

98. C. Yang, F. Cao, D. Qi, Y. He, P. Ding, J. Yao, T. Jia, Z. Sun, and S. Zhang, "Hyperspectrally Compressed Ultrafast Photography," Phys. Rev. Lett. 124, 023902 (2020).

99. "The Edgerton Digital Collections projectle," http://edgerton-digital-collections.org/.

100. C. Lei, B. Guo, Z. Cheng, and K. Goda, "Optical time-stretch imaging: Principles and applications," Appl. Phys. Rev. 3, 011102 (2016).

101. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81–84 (2008).

102. K. Goda and B. Jalali, "Dispersive Fourier transformation for fast continuous single-shot measurements," Nat. Photon. 7, 102–112 (2013).

103. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, "Time stretch and its applications," Nat. Photon. 11, 341–351 (2017).

104. F. Mochizuki, K. Kagawa, S. Okihara, M. Seo, B. Zhang, T. Takasawa, K. Yasutomi, and S. Kawahito, "Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor," Opt. Express 24, 4155 (2016).

105. T. Etoh, A. Nguyen, Y. Kamakura, K. Shimonomura, T. Le, and N. Mori, "The Theoretical Highest Frame Rate of Silicon Image Sensors," Sensors 17, 483 (2017).

106. R. Kuroda, S. Sugawa, and M. Suzuki, "Over 100 million frames per second high speed global shutter CMOS image sensor," in 32nd International Congress on High-Speed Imaging and Photonics, M. Versluis and E. Stride, eds. (SPIE, 2019), Vol. 11051, p. 12.

107. S. Dillavou, S. M. Rubinstein, and J. M. Kolinski, "Virtual frame technique: ultrafast imaging with any camera," Opt. Express 27, 8112 (2019).

108. A. Farina, A. Candeo, A. Dalla Mora, A. Bassi, R. Lussana, F. Villa, G. Valentini, S. Arridge, and C. D’Andrea, "Novel time-resolved camera based on compressed sensing," Opt. Express 27, 31889 (2019).

109. L. Cester, A. Lyons, M. Braidotti, and D. Faccio, "Time-of-Flight Imaging at 10 ps Resolution with an ICCD Camera," Sensors 19, 180 (2019).

110. T. K. Cheng, S. D. Brorson, A. S. Kazeroonian, J. S. Moodera, G. Dresselhaus, M. S. Dresselhaus, and E. P. Ippen, "Impulsive excitation of coherent phonons observed in reflection in bismuth and antimony," Appl. Phys. Lett. 57, 1004–1006 (1990).

111. H. J. Zeiger, J. Vidal, T. K. Cheng, E. P. Ippen, G. Dresselhaus, and M. S. Dresselhaus, "Theory for displacive excitation of coherent phonons," Phys. Rev. B 45, 768–778 (1992).

112. C. Lefebvre, T. T. Nguyen-Dang, F. Dion, M. J. J. Vrakking, V. N. Serov, and O. Atabek, "Attosecond pump-probe transition-state spectroscopy of laser-induced molecular dissociative ionization: Adiabatic versus nonadiabatic dressed-state dynamics," Phys. Rev. A 88, 053416 (2013).

113. M. Lara-Astiaso, M. Galli, A. Trabattoni, A. Palacios, D. Ayuso, F. Frassetto, L. Poletto, S. De Camillis, J. Greenwood, P. Decleva, I. Tavernelli, F. Calegari, M. Nisoli, and F. Martín, "Attosecond Pump–Probe Spectroscopy of Charge Dynamics in Tryptophan," J. Phys. Chem. Lett. 9, 4570–4577 (2018).

114. Y. Yamaguchi, R. Hida, T. Suzuki, F. Isa, K. Yoshikiyo, L. Fujii, H. Nemoto, and F. Kannari, "Shaping and amplification of wavelength-tunable mid-infrared femtosecond pulses generated by intra-pulse difference-frequency mixing with spectral focusing," J. Opt. Soc. Am. B 35, C1–C7 (2018).

115. M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, "Control of the electronic phase of a manganite by mode-selective vibrational excitation," Nature 449, 72–74 (2007).

116. A. J. DeMaria, D. A. Stetser, and H. Heynau, "SELF MODE‐LOCKING OF LASERS WITH SATURABLE ABSORBERS," Appl. Phys. Lett. 8, 174–176 (1966).

117. F. O’Neill, "Picosecond pulses from a passively mode-locked cw dye laser," Opt. Commun. 6, 360– 363 (1972).

118. H. P. Weber, "Generation and Measurement of Ultrashort Light Pulses," J. Appl. Phys. 39, 6041– 6044 (1968).

119. E. P. Ippen and C. V. Shank, "Dynamic spectroscopy and subpicosecond pulse compression," Appl. Phys. Lett. 27, 488–490 (1975).

120. M. A. Duguay and J. W. Hansen, "AN ULTRAFAST LIGHT GATE," Appl. Phys. Lett. 15, 192– 194 (1969).

121. C. V. Shank and E. P. Ippen, "Anisotropic absorption saturation with picosecond pulses," Appl. Phys. Lett. 26, 62–63 (1975).

122. P. P. Ho and R. R. Alfano, "Optical Kerr effect in liquids," Phys. Rev. A 20, 2170–2187 (1979).

123. Hamamatsu Photonics K.K., "Guide to Streak Cameras," https://www.hamamatsu.com/resources/pdf/sys/SHSS0006E_STREAK.pdf.

124. Hamamatsu Photonics K.K., "FESCA-100 femtosecond streak camera C11853-01," https://www.hamamatsu.com/resources/pdf/sys/SHSS0022E_FESCA-100.pdf.

125. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vamos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D.-E. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, "Third-generation femtosecond technology," Optica 1, 45–63 (2014).

126. C. Manzoni, O. D. Mücke, G. Cirmi, S. Fang, J. Moses, S.-W. Huang, K.-H. Hong, G. Cerullo, and F. X. Kärtner, "Coherent pulse synthesis: towards sub-cycle optical waveforms," Laser Photon. Rev. 9, 129–171 (2015).

127. D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

128. G. Satat, M. Tancik, and R. Raskar, "Lensless Imaging With Compressive Ultrafast Sensing," IEEE Trans. Comput. Imaging 3, 398–407 (2017).

129. M. P. Edgar, G. M. Gibson, and M. J. Padgett, "Principles and prospects for single-pixel imaging," Nat. Photon. 13, 13–20 (2019).

130. W. Zhao, H. Chen, Y. Yuan, H. Zheng, J. Liu, Z. Xu, and Y. Zhou, "Ultrahigh-Speed Color Imaging with Single-Pixel Detectors at Low Light Level," Phys. Rev. Appl. 12, 034049 (2019).

131. Y. Ohki, "News from Japan," IEEE Electr. Insul. Mag. 35, 41–43 (2019).

132. F. Xing, H. Chen, C. Lei, M. Chen, S. Yang, and S. Xie, "A 2-GHz discrete-spectrum waveband-division microscopic imaging system," Opt. Commun. 338, 22–26 (2015).

133. T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, and K. K. Tsia, "Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow," Sci. Rep. 4, 3656 (2015).

134. C. L. Chen, A. Mahjoubfar, and B. Jalali, "Optical data compression in time stretch imaging," PLoS One 10, 1–11 (2015).

135. C. Lei, Y. Wu, A. C. Sankaranarayanan, S.-M. Chang, B. Guo, N. Sasaki, H. Kobayashi, C.-W. Sun, Y. Ozeki, and K. Goda, "GHz Optical Time-Stretch Microscopy by Compressive Sensing," IEEE Photonics J. 9, 1–8 (2017).

136. C. Kim, A. Mahjoubfar, J. C. K. Chan, A. Yazaki, Y.-C. Noh, and B. Jalali, "Matrix Analysis of Warped Stretch Imaging," Sci. Rep. 7, 11150 (2017).

137. S. Tan, X. Wei, B. Li, Q. T. K. Lai, K. K. Tsia, and K. K. Y. Wong, "Ultrafast optical imaging at 2.0 μm through second-harmonic-generation-based time-stretch at 1.0 μm," Opt. Lett. 43, 3822 (2018).

138. C. Kong, X. Wei, J. Kang, S. Tan, K. Tsia, and K. K. Y. Wong, "Ultra-broadband spatiotemporal sweeping device for high-speed optical imaging," Opt. Lett. 43, 3546 (2018).

139. C. Lei, H. Kobayashi, Y. Wu, M. Li, A. Isozaki, A. Yasumoto, H. Mikami, T. Ito, N. Nitta, T. Sugimura, M. Yamada, Y. Yatomi, D. Di Carlo, Y. Ozeki, and K. Goda, "High-throughput imaging flow cytometry by optofluidic time-stretch microscopy," Nat. Protoc. 13, 1603–1631 (2018).

140. Y. Duan, X. Dong, N. Yang, C. Zhang, K. K. Y. Wong, and X. Zhang, "Temporally structured illumination for ultrafast time-stretch microscopy," Opt. Lett. 44, 4634 (2019).

141. E. D. Diebold, B. W. Buckley, D. R. Gossett, and B. Jalali, "Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy," Nat. Photon. 7, 806–810 (2013).

142. H. Mikami, J. Harmon, H. Kobayashi, S. Hamad, Y. Wang, O. Iwata, K. Suzuki, T. Ito, Y. Aisaka, N. Kutsuna, K. Nagasawa, H. Watarai, Y. Ozeki, and K. Goda, "Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit," Optica 5, 117 (2018).

143. H. Kanno, H. Mikami, Y. Kaya, Y. Ozeki, and K. Goda, "Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry," Opt. Lett. 44, 467 (2019).

144. J. Wu, Y.-Q. Xu, J. Xu, X. Wei, A. C. Chan, A. H. Tang, A. K. Lau, B. M. Chung, H. Cheung Shum, E. Y. Lam, K. K. Wong, and K. K. Tsia, "Ultrafast laser-scanning time-stretch imaging at visible wavelengths," Light Sci. Appl. 6, e16196 (2017).

145. J. Wu, A. H. L. Tang, A. T. Y. Mok, W. Yan, G. C. F. Chan, K. K. Y. Wong, and K. K. Tsia, "Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array," Biomed. Opt. Express 8, 4160 (2017).

146. W. Yan, J. Wu, K. K. Y. Wong, and K. K. Tsia, "A high-throughput all-optical laser-scanning imaging flow cytometer with biomolecular specificity and subcellular resolution," J. Biophotonics 11, e201700178 (2018).

147. S. Tan, X. Wei, J. Wu, L. Yang, K. K. Tsia, and K. K. Y. Wong, "Flexible pulse-stretching for a swept source at 2.0 μm using free-space angular-chirp-enhanced delay," Opt. Lett. 43, 102−105 (2018).

148. Y. Xu and S. G. Murdoch, "Real-time spectral analysis of ultrafast pulses using a free-space angular chirp-enhanced delay," Opt. Lett. 44, 3697 (2019).

149. Y. Ren, J. Wu, Q. T. K. Lai, H. M. Lai, D. M. D. Siu, W. Wu, K. K. Y. Wong, and K. K. Tsia, "Parallelized volumetric fluorescence microscopy with a reconfigurable coded incoherent light-sheet array," Light Sci. Appl. 9, 8 (2020).

150. C. Deeney and P. Choi, "Novel time and two‐dimensional space‐resolved x‐ray imaging technique," Rev. Sci. Instrum. 60, 3558–3559 (1989).

151. H. Shiraga, N. Miyanaga, M. Heya, M. Nakasuji, Y. Aoki, H. Azechi, T. Yamanaka, and K. Mima, "Ultrafast two-dimensional x-ray imaging with x-ray streak cameras for laser fusion research (invited)," Rev. Sci. Instrum. 68, 745–749 (1997).

152. H. Shiraga, M. Nakasuji, M. Heya, and N. Miyanaga, "Two-dimensional sampling-image x-ray streak camera for ultrafast imaging of inertial confinement fusion plasmas," Rev. Sci. Instrum. 70, 620–623 (1999).

153. A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar, "Femto-photography: capturing and visualizing the propagation of light," ACM Trans. Graph. 32, 44 (2013).

154. N. Abramson, "Light-in-flight recording by holography," Opt. Lett. 3, 121 (1978).

155. T. Kubota, K. Komai, M. Yamagiwa, and Y. Awatsuji, "Moving picture recording and observation of three-dimensional image of femtosecond light pulse propagation," Opt. Express 15, 14348 (2007).

156. G. Gariepy, N. Krstajić, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, "Single-photon sensitive light-in-fight imaging," Nat. Commun. 6, 6021 (2015).

157. T. Inoue, A. Matsunaka, A. Funahashi, T. Okuda, K. Nishio, and Y. Awatsuji, "Spatiotemporal observations of light propagation in multiple polarization states," Opt. Lett. 44, 2069 (2019).

158. H. Nemoto, T. Suzuki, Y. Yamaguchi, and F. Kannari, "Single-shot Ultrafast Burst Imaging by Spectrally Sweeping Pulse Train with 100-ps Interval," in CLEO Pacific Rim Conference (OSA, 2018), p. Th1B.3.

159. N. Yokota and H. Yasaka, "Multi-wavelength discrete pulse train generation using chromatic aberration of time lens for ultrafast single-shot optical imaging," Opt. Rev. 26, 713–718 (2019).

160. K. Hashimoto, H. Mizuno, K. Nakagawa, R. Horisaki, A. Iwasaki, F. Kannari, I. Sakuma, and K. Goda, "High-speed multispectral videography with a periscope array in a spectral shaper," Opt. Lett. 39, 6942–6945 (2014).

161. M. Tamamitsu, Y. Kitagawa, K. Nakagawa, R. Horisaki, Y. Oishi, S. Morita, Y. Yamagata, K. Motohara, and K. Goda, "Spectrum slicer for snapshot spectral imaging," Opt. Eng. 54, 123115 (2015).

162. J. P. Gordon, H. J. Zeiger, and C. H. Townes, "Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of NH3," Phys. Rev. 95, 282–284 (1954).

163. J. P. Gordon, H. J. Zeiger, and C. H. Townes, "The Maser—New Type of Microwave Amplifier, Frequency Standard, and Spectrometer," Phys. Rev. 99, 1264–1274 (1955).

164. A. L. Schawlow and C. H. Townes, "Infrared and Optical Masers," Phys. Rev. 112, 1940–1949 (1958).

165. T. H. Maiman, "Optical and Microwave-Optical Experiments in Ruby," Phys. Rev. Lett. 4, 564–566 (1960).

166. A. Javan, W. R. Bennett, and D. R. Herriott, "Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture," Phys. Rev. Lett. 6, 106–110 (1961).

167. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent Light Emission From GaAs Junctions," Phys. Rev. Lett. 9, 366–368 (1962).

168. N. Holonyak and S. F. Bevacqua, "COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS," Appl. Phys. Lett. 1, 82–83 (1962).

169. C. K. N. Patel, "Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2," Phys. Rev. 136, A1187–A1193 (1964).

170. J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, "Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets," Appl. Phys. Lett. 4, 182–184 (1964).

171. P. P. Sorokin and J. R. Lankard, "Stimulated Emission Observed from an Organic Dye, Chloro-aluminum Phthalocyanine," IBM J. Res. Dev. 10, 162–163 (1966).

172. N. G. Basov, E. M. Balashov, O. V. Bogdankevitch, V. A. Danilychev, G. N. Kashnikov, N. P. Lantzov, and D. D. Khodkevitch, "Luminescence of condensed Xe, Kr, Ar and their mixtures in vacuum region of spectrum under excitation by fast electrons," J. Lumin. 1–2, 834–841 (1970).

173. G. Bret and F. Gires, "Giant-pulse laser and light amplifier using variable transmission coefficient glasses as light switches," Appl. Phys. Lett. 4, 175–176 (1964).

174. H. W. Mocker and R. J. Collins, "Mode Competition and Self-Locking Effects in a Q-Switched Ruby Laser," Appl. Phys. Lett. 7, 270–273 (1965).

175. W. Schmidt and F. P. Schafer, "Self-mode-locking of dye-lasers with saturable absorbers," Phys. Lett. 26A, 558–559 (1968).

176. E. P. Ippen, C. V. Shank, and A. Dieness, "Passive mode locking of the cw dye laser," Appl. Phys. Lett. 21, 348–350 (1972).

177. C. V. Shank and E. P. Ippen, "Subpicosecond kilowatt pulses from a mode-locked cw dye laser," Appl. Phys. Lett. 24, 373–375 (1974).

178. R. L. Fork, B. I. Greene, and C. V. Shank, "Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking," Appl. Phys. Lett. 38, 671–672 (1981).

179. D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, "Regeneratively initiated self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 1762 (1991).

180. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

181. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, "Directly diode-laser-pumped Ti:sapphire laser," Opt. Lett. 34, 3334−3336 (2009).

182. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, "Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser," Appl. Phys. Express 7, 022702 (2014).

183. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, "Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power," Opt. Express 23, 30043−30048 (2015).

184. R. Sawada, H. Tanaka, N. Sugiyama, and F. Kannari, "Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser," Appl. Opt. 56, 1654 (2017).

185. A. M. Weiner, Ultrafast Optics (John Wiley & Sons, Inc., 2009).

186. A. M. Weiner, "Ultrafast optical pulse shaping: A tutorial review," Opt. Commun. 284, 3669–3692 (2011).

187. A. Monmayrant, S. Weber, and B. Chatel, "A newcomer’s guide to ultrashort pulse shaping and characterization," J. Phys. B At. Mol. Opt. Phys. 43, 103001 (2010).

188. I. A. Walmsley and C. Dorrer, "Characterization of ultrashort electromagnetic pulses," Adv. Opt. Photonics 1, 308 (2009).

189. J. A. Armstrong, "MEASUREMENT OF PICOSECOND LASER PULSE WIDTHS," Appl. Phys. Lett. 10, 16–18 (1967).

190. J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, "Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy," Appl. Opt. 24, 1270 (1985).

191. K. Naganuma, K. Mogi, and H. Yamada, "General method for ultrashort light pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225–1233 (1989).

192. L. Lepetit, G. Chériaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467 (1995).

193. D. Meshulach, D. Yelin, and Y. Silberberg, "Real-time spatial–spectral interference measurements of ultrashort optical pulses," J. Opt. Soc. Am. B 14, 2095 (1997).

194. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, "Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper," J. Opt. Soc. Am. B 19, 2795–2802 (2002).

195. R. Trebino and D. J. Kane, "Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating," J. Opt. Soc. Am. A 10, 1101–1111 (1993).

196. R. Trebino, P. Bowlan, P. Gabolde, X. Gu, S. Akturk, and M. Kimmel, "Simple devices for measuring complex ultrashort pulses," Laser Photonics Rev. 3, 314–342 (2009).

197. R. Trebino, "Measuring the seemingly immeasurable," Nat. Photon. 5, 189–192 (2011).

198. C. Iaconis and I. a Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792 (1998).

199. M. E. Anderson, A. Monmayrant, S.-P. Gorza, P. Wasylczyk, and I. A. Walmsley, "SPIDER: A decade of measuring ultrashort pulses," Laser Phys. Lett. 5, 259–266 (2008).

200. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, "Generation of Ultrahigh Peak Power Pulses by Chirped Pulse Amplification," IEEE J. Quantum Electron. 24, 398–403 (1988).

201. O. E. Martinez, "3000 Times Grating Compressor with Positive Group Velocity Dispersion : Application to Fiber Compensation in 1.3-1.6 μm Region," IEEE J. Quantum Electron. QE-23, 59– 64 (1987).

202. B. E. Lemoff and C. P. J. Barty, "Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses," Opt. Lett. 18, 1651–1653 (1993).

203. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, "Aberration-free stretcher design for ultrashort-pulse amplification," Opt. Lett. 21, 414–416 (1996).

204. J. Jiang, Z. Zhang, and T. Hasama, "Evaluation of chirped-pulse-amplification systems with Offner triplet telescope stretchers," J. Opt. Soc. Am. B 19, 678–683 (2002).

205. S. D. Brorson and H. A. Haus, "Diffraction gratings and geometrical optics," J. Opt. Soc. Am. B 5, 247 (1988).

206. G. Vaillancourt, T. B. Norris, J. S. Coe, P. Bado, and G. A. Mourou, "Operation of a 1-kHz pulse-pumped Ti:sapphire regenerative amplifier," Opt. Lett. 15, 317 (1990).

207. W. H. Lowdermilk and J. E. Murray, "The multipass amplifier: Theory and numerical analysis," J. Appl. Phys. 51, 2436 (1980).

208. C. Le Blanc, G. Grillon, J. P. Chambaret, A. Migus, and A. Antonetti, "Compact and efficient multipass Ti: sapphire system for femtosecond chirped-pulse amplification at the terawatt level," Opt. Lett. 18, 140–142 (1993).

209. E. B. Treacy, "Optical Pulse Comprssion With Diffraction Gratings," IEEE J. Quantum Electron. QE-5, 454–458 (1969).

210. P. Gabolde and R. Trebino, "Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography," Opt. Express 14, 11460–11467 (2006).

211. P. Gabolde and R. Trebino, "Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography," J. Opt. Soc. Am. B 25, A25–A33 (2008).

212. Z. Guang, M. Rhodes, M. Davis, and R. Trebino, "Complete characterization of a spatiotemporally complex pulse by an improved single-frame pulse-measurement technique," J. Opt. Soc. Am. B 31, 2736–2743 (2014).

213. Z. Guang, M. Rhodes, and R. Trebino, "Measurement of the ultrafast lighthouse effect using a complete spatiotemporal pulse-characterization technique," J. Opt. Soc. Am. B 33, 1955–1962 (2016).

214. P. Zhu, R. Jafari, T. Jones, and R. Trebino, "Complete measurement of spatiotemporally complex multi-spatial-mode ultrashort pulses from multimode optical fibers using delay-scanned wavelength-multiplexed holography," Opt. Express 25, 24015 (2017).

215. Z. Guang, M. Rhodes, and R. Trebino, "Measuring spatiotemporal ultrafast field structures of pulses from multimode optical fibers," Appl. Opt. 56, 3319 (2017).

216. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, "Measuring spatial chirp in ultrashort pulses using single-shot Frequency-Resolved Optical Gating," Opt. Express 11, 68–78 (2003).

217. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, "Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE," Opt. Express 11, 491–501 (2003).

218. P. H. Lissberger and W. L. Wilcock, "Properties of All-Dielectric Interference Filters II Filters in Parallel Beams of Light Incident Obliquely and in Convergent Beams," J. Opt. Soc. Am. 49, 126 (1959).

219. T. Suzuki, R. Hida, F. Isa, R. Ueda, and F. Kannari, "Single-shot Multispectral Imaging and Ultrafast 2D-imaging by Sequentially Timed All-optical Mapping Photography utilizing Spectral Filtering (SF-STAMP) system," in Imaging and Applied Optics 2016 (OSA, 2016), p. IW1E.3.

220. M. Tamamitsu, K. Nakagawa, R. Horisaki, A. Iwasaki, Y. Oishi, A. Tsukamoto, F. Kannari, I. Sakuma, and K. Goda, "Design for sequentially timed all-optical mapping photography with optimum temporal performance," Opt. Lett. 40, 633–636 (2015).

221. X. Mao, S. S. Mao, and R. E. Russo, "Imaging femtosecond laser-induced electronic excitation in glass," Appl. Phys. Lett. 82, 697–699 (2003).

222. X.-L. Liu, X. Lu, X. Liu, T.-T. Xi, F. Liu, J.-L. Ma, and J. Zhang, "Tightly focused femtosecond laser pulse in air: from filamentation to breakdown," Opt. Express 18, 26007 (2010).

223. W. Hu, Y. C. Shin, and G. King, "Early-stage plasma dynamics with air ionization during ultrashort laser ablation of metal," Phys. Plasmas 18, 093302 (2011).

224. H. Zhang, F. Zhang, X. Du, G. Dong, and J. Qiu, "Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum," Opt. Express 23, 1370–1376 (2015).

225. A. V Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, "Understanding the phase-change mechanism of rewritable optical media," Nat. Mater. 3, 703–708 (2004).

226. A. V. Kolobov, A. S. Mishchenko, P. Fons, S. M. Yakubenya, and J. Tominaga, "A possible mechanism of ultrafast amorphization in phase-change memory alloys: an ion slingshot from the crystalline to amorphous position," J. Phys. Condens. Matter 19, 455209 (2007).

227. M. Hase, P. Fons, K. Mitrofanov, A. V Kolobov, and J. Tominaga, "Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons," Nat. Commun. 6, 8367 (2015).

228. M. Hada, W. Oba, M. Kuwahara, I. Katayama, T. Saiki, J. Takeda, and K. G. Nakamura, "Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5," Sci. Rep. 5, 13530 (2015).

229. E. Matsubara, S. Okada, T. Ichitsubo, T. Kawaguchi, A. Hirata, P. F. Guan, K. Tokuda, K. Tanimura, T. Matsunaga, M. W. Chen, and N. Yamada, "Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials," Phys. Rev. Lett. 117, 135501 (2016).

230. S. Raoux, "Phase Change Materials," Annu. Rev. Mater. Res. 39, 25–48 (2009).

231. S.-Y. Kim, S. J. Kim, H. Seo, and M. R. Kim, "Variation of the complex refractive indices with Sb-addition in Ge-Sb-Te alloy and their wavelength dependence," in Proc. SPIE, S. R. Kubota, T. D. Milster, and P. J. Wehrenberg, eds. (1998), Vol. 3401, pp. 112–115.

232. N. Hagen and M. W. Kudenov, "Review of snapshot spectral imaging technologies," Opt. Eng. 52, 090901 (2013).

233. L. Gao and L. V. Wang, "A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel," Phys. Rep. 616, 1–37 (2016).

234. J. Shi, Y. Bie, W. Chen, S. Fang, J. Han, Z. Cao, T. Taniguchi, K. Watanabe, V. Bulović, E. Kaxiras, P. Jarillo-Herrero, and K. A. Nelson, "Terahertz-driven irreversible topological phase transition in two-dimensional MoTe2," arXiv:1910.13609 (2019).

235. A. V. Kolobov, P. Fons, and J. Tominaga, "Electronic excitation-induced semiconductor-to-metal transition in monolayer MoTe2," Phys. Rev. B 94, 094114 (2016).

236. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, "2D transition metal dichalcogenides," Nat. Rev. Mater. 2, 17033 (2017).

237. J. A. Wilson and A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Adv. Phys. 18, 193–335 (1969).

238. D. N. Basov, R. D. Averitt, and D. Hsieh, "Towards properties on demand in quantum materials," Nat. Mater. 16, 1077–1088 (2017).

239. X. Qian, J. Liu, L. Fu, and J. Li, "Quantum spin Hall effect in two-dimensional transition metal dichalcogenides," Science 346, 1344–1347 (2014).

240. S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D.-H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee, and H. Yang, "Phase patterning for ohmic homojunction contact in MoTe2," Science 349, 625–628 (2015).

241. D. H. Keum, S. Cho, J. H. Kim, D.-H. Choe, H.-J. Sung, M. Kan, H. Kang, J.-Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee, "Bandgap opening in few-layered monoclinic MoTe2," Nat. Phys. 11, 482–486 (2015).

242. L. Zhou, A. Zubair, Z. Wang, X. Zhang, F. Ouyang, K. Xu, W. Fang, K. Ueno, J. Li, T. Palacios, J. Kong, and M. S. Dresselhaus, "Synthesis of High-Quality Large-Area Homogenous 1T′ MoTe2 from Chemical Vapor Deposition," Adv. Mater. 28, 9526–9531 (2016).

243. S.-Y. Chen, C. H. Naylor, T. Goldstein, A. T. C. Johnson, and J. Yan, "Intrinsic Phonon Bands in High-Quality Monolayer T′ Molybdenum Ditelluride," ACS Nano 11, 814–820 (2017).

244. Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid, K. Y. Fong, Y. Zhou, S. Wang, W. Shi, Y. Wang, A. Zettl, E. J. Reed, and X. Zhang, "Structural phase transition in monolayer MoTe2 driven by electrostatic doping," Nature 550, 487–491 (2017).

245. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161 (2002).

246. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, "Generation of 10μJ ultrashort terahertz pulses by optical rectification," Appl. Phys. Lett. 90, 171121 (2007).

247. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, "Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities," J. Opt. Soc. Am. B 25, B6–B19 (2008).

248. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, "Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3," Appl. Phys. Lett. 98, 091106 (2011).

249. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature 487, 345–348 (2012).

250. T. Kampfrath, K. Tanaka, and K. A. Nelson, "Resonant and nonresonant control over matter and light by intense terahertz transients," Nat. Photon. 7, 680–690 (2013).

251. S. Ohkoshi, K. Imoto, A. Namai, M. Yoshikiyo, S. Miyashita, H. Qiu, S. Kimoto, K. Kato, and M. Nakajima, "Rapid Faraday Rotation on ε-Iron Oxide Magnetic Nanoparticles by Visible and Terahertz Pulsed Light," J. Am. Chem. Soc. 141, 1775–1780 (2019).

252. S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kimel, R. V. Mikhaylovskiy, and R. Huber, "Temporal and spectral fingerprints of ultrafast all-coherent spin switching," Nature 569, 383–387 (2019).

253. E. J. Sie, C. M. Nyby, C. D. Pemmaraju, S. J. Park, X. Shen, J. Yang, M. C. Hoffmann, B. K. Ofori-Okai, R. Li, A. H. Reid, S. Weathersby, E. Mannebach, N. Finney, D. Rhodes, D. Chenet, A. Antony, L. Balicas, J. Hone, T. P. Devereaux, T. F. Heinz, X. Wang, and A. M. Lindenberg, "An ultrafast symmetry switch in a Weyl semimetal," Nature 565, 61–66 (2019).

254. X. Li, T. Qiu, J. Zhang, E. Baldini, J. Lu, A. M. Rappe, and K. A. Nelson, "Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3," Science 364, 1079–1082 (2019).

255. B. C. Pein, W. Chang, H. Y. Hwang, J. Scherer, I. Coropceanu, X. Zhao, X. Zhang, V. Bulović, M. Bawendi, and K. A. Nelson, "Terahertz-Driven Luminescence and Colossal Stark Effect in CdSe– CdS Colloidal Quantum Dots," Nano Lett. 17, 5375–5380 (2017).

256. B. C. Pein, C. K. Lee, L. Shi, J. Shi, W. Chang, H. Y. Hwang, J. Scherer, I. Coropceanu, X. Zhao, X. Zhang, V. Bulović, M. G. Bawendi, A. P. Willard, and K. A. Nelson, "Terahertz-Driven Stark Spectroscopy of CdSe and CdSe–CdS Core–Shell Quantum Dots," Nano Lett. 19, 8125–8131 (2019).

257. F. Zhang, H. Zhang, S. Krylyuk, C. A. Milligan, Y. Zhu, D. Y. Zemlyanov, L. A. Bendersky, B. P. Burton, A. V. Davydov, and J. Appenzeller, "Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories," Nat. Mater. 18, 55–61 (2019).

258. S. M. Teo, B. K. Ofori-Okai, C. A. Werley, and K. A. Nelson, "Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy," Rev. Sci. Instrum. 86, 051301 (2015).

259. A. Krishnamoorthy, M.-F. Lin, X. Zhang, C. Weninger, R. Ma, A. Britz, C. S. Tiwary, V. Kochat, A. Apte, J. Yang, S. Park, R. Li, X. Shen, X. Wang, R. Kalia, A. Nakano, F. Shimojo, D. Fritz, U. Bergmann, P. Ajayan, and P. Vashishta, "Optical Control of Non-Equilibrium Phonon Dynamics," Nano Lett. 19, 4981–4989 (2019).

260. M. Y. Zhang, Z. X. Wang, Y. N. Li, L. Y. Shi, D. Wu, T. Lin, S. J. Zhang, Y. Q. Liu, Q. M. Liu, J. Wang, T. Dong, and N. L. Wang, "Light-Induced Subpicosecond Lattice Symmetry Switch in MoTe2," Phys. Rev. X 9, 021036 (2019).

261. Z. Jiang and X.-C. Zhang, "Measurement of spatio-temporal terahertz field distribution by using chirped pulse technology," IEEE J. Quantum Electron. 36, 1214–1222 (2000).

262. F. G. Sun, Z. Jiang, and X. C. Zhang, "Analysis of terahertz pulse measurement with a chirped probe beam," Appl. Phys. Lett. 73, 2233–2235 (1998).

263. C. Ruppert, O. B. Aslan, and T. F. Heinz, "Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals," Nano Lett. 14, 6231–6236 (2014).

264. J. Shi, B. C. Pein, Y. Zhang, P.-C. Shen, E. J. Sie, J. Siegel, K.-C. Chiu, C.-A. Chen, Y.-H. Lee, J. Kong, and K. A. Nelson, "Observation of Defect-Induced Exciton Polarization in Monolayer MoS2," Arxiv (2018).

265. G. Froehlicher, E. Lorchat, F. Fernique, C. Joshi, A. Molina-Sánchez, L. Wirtz, and S. Berciaud, "Unified Description of the Optical Phonon Modes in N-Layer MoTe2," Nano Lett. 15, 6481–6489 (2015).

266. K. Chen, A. Roy, A. Rai, H. C. P. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, "Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides," APL Mater. 6, 056103 (2018).

267. M. Hase, M. Kitajima, S. Nakashima, and K. Mizoguchi, "Dynamics of Coherent Anharmonic Phonons in Bismuth Using High Density Photoexcitation," Phys. Rev. Lett. 88, 067401 (2002).

268. J. C. Bernède, C. Amory, L. Assmann, and M. Spiesser, "X-ray photoelectron spectroscopy study of MoTe2 single crystals and thin films," Appl. Surf. Sci. 219, 238–248 (2003).

269. E. Revolinsky and D. J. Beerntsen, "Electrical properties of α- and β-MoTe2 as affected by stoichiometry and preparation temperature," J. Phys. Chem. Solids 27, 523–526 (1966).

270. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, "Ultrafast laser processing of materials: a review," Adv. Opt. Photonics 7, 684–712 (2015).

271. M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, "Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals," Opt. Express 19, 17780–17789 (2011).

272. G. Wang, Y. Yu, L. Jiang, X. Li, Q. Xie, and Y. Lu, "Cylindrical shockwave-induced compression mechanism in femtosecond laser Bessel pulse micro-drilling of PMMA," Appl. Phys. Lett. 110, 161907 (2017).

273. M. Vreugdenhil, D. van Oosten, and J. Hernandez-Rueda, "Dynamics of femtosecond laser-induced shockwaves at a water/air interface using multiple excitation beams," Opt. Lett. 43, 4899 (2018).

274. H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon," Phys. Rev. Lett. 49, 1955–1958 (1982).

275. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycioǧlu, A. Rybak, S. Yavaş, M. Erdoǧan, and F. Ö. Ilday, "Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses," Nat. Photon. 7, 897–901 (2013).

276. J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, "Laser-Induced Periodic Surface Structures— A Scientific Evergreen," IEEE J. Sel. Top. Quantum Electron. 23, 9000615 (2017).

277. Q. Wang, L. Jiang, J. Sun, C. Pan, W. Han, G. Wang, F. Wang, K. Zhang, M. Li, and Y. Lu, "Structure-Mediated Excitation of Air Plasma and Silicon Plasma Expansion in Femtosecond Laser Pulses Ablation," Research 2018, 5709748 (2018).

278. Q. Wang, L. Jiang, J. Sun, C. Pan, W. Han, G. Wang, H. Zhang, C. P. Grigoropoulos, and Y. Lu, "Enhancing the expansion of a plasma shockwave by crater-induced laser refocusing in femtosecond laser ablation of fused silica," Photonics Res. 5, 488 (2017).

279. Y. Ito, R. Shinomoto, A. Otsu, K. Nagato, and N. Sugita, "Dynamics of pressure waves during femtosecond laser processing of glass," Opt. Express 27, 29158 (2019).

280. X. Jia, T. Q. Jia, N. N. Peng, D. H. Feng, S. A. Zhang, and Z. R. Sun, "Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging," J. Appl. Phys. 115, 143102 (2014).

281. K. Cheng, J. Liu, K. Cao, L. Chen, Y. Zhang, Q. Jiang, D. Feng, S. Zhang, Z. Sun, and T. Jia, "Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film," Phys. Rev. B 98, 184106 (2018).

282. J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, and T. Jia, "Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse," Opt. Express 26, 6302 (2018).

283. A. Irizawa, S. Suga, T. Nagashima, A. Higashiya, M. Hashida, and S. Sakabe, "Laser-induced fine structures on silicon exposed to THz-FEL," Appl. Phys. Lett. 111, 251602 (2017).

284. R. R. Gattass, L. R. Cerami, and E. Mazur, "Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates," Opt. Express 14, 5279 (2006).

285. D. Esser, S. Rezaei, J. Li, P. R. Herman, and J. Gottmann, "Time dynamics of burst-train filamentation assisted femtosecond laser machining in glasses," Opt. Express 19, 25632 (2011).

286. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, "Ablation-cooled material removal with ultrafast bursts of pulses," Nature 537, 84–88 (2016).

287. K. Mishchik, G. Bonamis, J. Qiao, J. Lopez, E. Audouard, E. Mottay, C. Hönninger, and I. Manek-Hönninger, "High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source," Opt. Lett. 44, 2193–2196 (2019).

288. D. Metzner, P. Lickschat, and S. Weißmantel, "Laser micromachining of silicon and cemented tungsten carbide using picosecond laser pulses in burst mode: ablation mechanisms and heat accumulation," Appl. Phys. A 125, 462 (2019).

289. A. Žemaitis, P. Gečys, M. Barkauskas, G. Račiukaitis, and M. Gedvilas, "Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs-ps) pulses," Sci. Rep. 9, 12280 (2019).

290. C. Kerse, H. Kalaycıoğlu, P. Elahi, Ö. Akçaalan, and F. Ö. Ilday, "3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser," Opt. Commun. 366, 404–409 (2016).

291. H. Kalaycioglu, P. Elahi, O. Akcaalan, and F. O. Ilday, "High-Repetition-Rate Ultrafast Fiber Lasers for Material Processing," IEEE J. Sel. Top. Quantum Electron. 24, 8800312 (2018).

292. K. Takasawa, Y. Yamaguchi, H. Nemoto, T. Suzuki, M. Tani, H. Kitahara, D. S. Bulgarevich, and F. Kannari, "Single-shot 2-D burst ultrafast THz imaging utilizing SF-STAMP," in The European Conference on Lasers and Electro-Optics 2019 (IEEE, 2019), p. cc_3_5.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る