リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A new off-point-less observing method for millimeter and submillimeter spectroscopy with a frequency-modulating local oscillator」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A new off-point-less observing method for millimeter and submillimeter spectroscopy with a frequency-modulating local oscillator

Taniguchi, Akio Tamura, Yoichi Kohno, Kotaro Takahashi, Shigeru Horigome, Osamu Maekawa, Jun Sakai, Takeshi Kuno, Nario Minamidani, Tetsuhiro 名古屋大学

2020.02

概要

We propose a new observing method for single-dish millimeter and submillimeter spectroscopy using a heterodyne receiver equipped with a frequency-modulating local oscillator (FMLO). Unlike conventional switching methods, which extract astronomical signals by subtracting the reference spectra of off-sources from those of on-sources, the FMLO method does not need to obtain any off-source spectra; rather, it estimates them from the on-source spectra themselves. The principle uses high-dump-rate (10 Hz) spectroscopy with radio frequency modulation achieved by fast sweeping of a local oscillator of a heterodyne receiver. Because sky emission (i.e., off-source) fluctuates as 1/f and is spectrally correlated, it can be estimated and subtracted from time series spectra (a timestream) by principal component analysis. Meanwhile, astronomical signals remain in the timestream since they are modulated to a higher time-frequency domain. The FMLO method therefore achieves (1) a remarkably high observation efficiency, (2) reduced spectral baseline wiggles, and (3) software-based sideband separation. We developed an FMLO system for the Nobeyama 45m telescope and a data reduction procedure for it. Frequency modulation was realized by a tunable and programmable first local oscillator. With observations of Galactic sources, we demonstrate that the observation efficiency of the FMLO method is dramatically improved compared to conventional switching methods. Specifically, we find that the time to achieve the same noise level is reduced by a factor of 3.0 in single-pointed observations and by a factor of 1.2 in mapping observations. The FMLO method can be applied to observations of fainter (⁠∼mK) spectral lines and larger (∼deg^2) mapping. It offers much more efficient and baseline-stable observations compared to conventional switching methods.

参考文献

Ag´undez, M., Fonfr´ıa, J. P., Cernicharo, J., Kahane, C., Daniel, F., &

Gu´elin, M. 2012, A&A, 543, A48

Astropy Collaboation, et al. 2013, A&A, 558, A33

Astropy Collaboation, et al. 2018, AJ, 156, 123

Bailey, S. 2012, PASP, 124, 1015

Blain, A. W., et al. 2002, Phys. Rep., 369, 111

Cernicharo, J., et al. 2010, A&A, 521, L8

Chapin, E. L., Berry, D. S., Gibb, A. G., Jenness, T., Scott, D., Tilanus,

R. P. J. Economou, F., & Holland, W. S. 2013, MNRAS, 430, 2545

Emerson, D. T. & Graeve, R. 1988, A&A, 190, 353

Heiles, C. 2007, PASP, 119, 643

Hoyer, S. & Hamman, J. 2017, Journal of Open Research Software, 5, 10

Hunter, J. D. 2001, Computing in Science & Engineering, 9, 90

Jolliffe, I. 2002, Principal Component Analysis (New York: Supringer)

Kamazaki, T., Ezawa, H., Tatematsu, K., et al. 2005, ASP Conf. Ser., 347,

533

Kamazaki, T., et al. 2012, PASJ, 64, 29

Klein, B., Hochg¨urtel, S., Kr¨amer, I., Bell, I., Meyer, K., & G¨usten, R.

2012, A&A, 542, L3

Kov´acs, A. 2008, Proc. SPIE, 7020, 70201S

Lam, S. K., Pitrou, A., & Seibert, S. 2015 Proceedings of the Second

Workshop on the LLVM Compiler Infrastructure in HPC, 7

Laurent, G. T., et al. 2005, ApJ, 623, 742

Lay, O. P., & Halverson, N. W. 2000, ApJ, 543, 787

Mauersberger, R., Gu´elin, M., Mart´ın-Pintado, J., Thum, C.,

11

Jones et al. 2001–, Scipy: Open Source Scientific Tools for Python, https:

//www.scipy.org

Cernicharo, J., Hein, H., & Navarro, S. 1989, A&AS, 79, 217

Minamidani, T., et al. 2016, Proc. SPIE, 9914

Mizuno, I., et al. 2014, Journal of Astronomical Instrumentation, 03,

03n04, 1450010

Morita, K.-I., Nakai, M., Takahashi, T., Miyazawa, K., Onishi, M., &

Tsutsumi, T. 2003, ASP Conf. Ser., 295, 166

McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007,

ASP Conf. Ser., 376, 127

Nakajima, T., et al. 2013, PASP, 125, 252

Pedregosa, F., et al. 2011, Journal of Machine Learning Research, 12,

2825

Savitzky, A. & Golay, M. J. E. 1964, Analytical Chemistry, 36, 1627

Sawada, T., et al. 2008, PASJ, 60, 445

Schuster, K. F., et al. 2004, A&A, 423, 1171

Scott, K. S., et al. 2008, MNRAS, 385, 2225

Shimajiri, Y., et al. 2011, PASJ, 63, 105

Shimajiri, Y., et al. 2014, A&A, 564, 68

Sorai, K., Sunada, K., Okumura, S., K., Isawa, T., Tanaka, A., Natori, K.,

& Onuki, H. 2000, Proc. SPIE, 4015, 86

Tamura, Y., Tatamitani, Y., Takahashi, S., Horigome, O., Maekawa, J.,

Kohno, K., Sakai, T., & Taniguchi, A. 2013, ASP Conf. Ser., 476,

401

Turner, B.,E. 1989, A&AS, 70, 539

Van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in

Science & Engineering, 13, 22

Vieira, J. D., et al. 2013, Nature, 495, 344

Weiß, A., et al. 2013, ApJ, 767, 88

Wilson, T. L., Rohlfs, K., & H¨uttemeister, S. 2013, Tools of Radio

Astronomy Sixth Edition (Berlin, Heidelberg: Springer)

Yamaki, H., Kameno, S., Beppu, H., Mizuno, I., & Imai, H. 2012, PASJ,

64, 118

Yun, M. S., et al. 2015, MNRAS, 454, 3485

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る