リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Orientation dependence of the wear resistance in the Co–Cr–Mo single crystal」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Orientation dependence of the wear resistance in the Co–Cr–Mo single crystal

Nakano, Takayoshi 大阪大学

2021.08.15

概要

This is the report clarifying the orientation dependence of the wear behavior of Co–Cr–Mo alloy. The wear resistance of the Co–Cr–Mo alloy with face-centered cubic (fcc) structure was found to be higher on the planes in order of {110}, {001} and {111}. Quantitatively, the wear resistance on {110} is 1.5 times larger than that on {111}. The tendency showed in coincident with the orientation dependence of the surface hardness, as empirically suggested. However, we additionally found in the observation of the worn surface in the fcc-single crystals that the volume fraction of the hexagonal close-packed (hcp)-phase, which was formed as the strain-induced martensite during the wear test, was larger in the same order of the wear resistance. The variation in formation frequency of the hcp-phase during the wear test can be explained by focusing on the Schmid factor along the resultant direction of the applied stress and the friction stress. On the {111} surface where the Schmid factor for the strain-induced ε-martensite formation is small, homogeneous deformation microstructure covered by it was not developed even after long-time wear, resulting in lower wear resistance. The results strongly suggest that not only the hardness, but the distribution of the ε-martensite is important to control the wear behavior of the Co–Cr alloys with the extremely low stacking fault energy, and it can be achieved by the crystal orientation control in the γ-phase.

参考文献

[1] A. Buford, T. Goswami, Review of wear mechanisms in hip implants Paper I – General, Mater. Des. 25 (2004) 385–393.

[2] A. Chiba, K. Kumagai, N. Nomura, S. Miyakawa, Pin-on-disk wear behavior in a like-on-like configuration in a biological environment of high carbon cast and low carbon forged Co–29Cr–6Mo alloys, Acta Mater. 55 (2007) 1309–1318.

[3] Y. Liao, R. Pourzal, P. Stemmer, M.A. Wimmer, J.J. Jacobs, A. Fischer, L.D. Marks, New insights into hard phases of CoCrMo metal-on-metal hip replacements, J. Mech. Behav. Biomed. 12 (2012) 39–49.

[4] D.M. Vasconcelos, S.G. Santos, M. Lamghari, M.A. Barbosa, The two faces of metal ions: from implants rejection to tissue repair/regeneration, Biomaterials 84 (2016) 262–275.

[5] E. Gibon, D.F. Amanatullah, F. Loi, J. Pajarinen, A. Nabeshima, Z. Yao, M. Hamadouche, S.B. Goodman, The biological response to orthopaedic implants for joint replacement: Part I: Metals, J. Biomed. Mater. Res. B Appl. Biomater. 105B (2017) 2162–2173.

[6] G.M. Keegan, I.D. Learmonth, C.P. Case, Orthopaedic metals and their potential toxicity in the arthroplasty patient: a review of current knowledge and future strategies, J. Bone Joint Surg. Br. 89 (2007) 567–573.

[7] H. Pandit, M. Vlychou, D. Whitwell, D. Crook, R. Luqmani, S. Ostlere, D.M. Murray, N.A. Athanasou, Necrotic granulomatous pseudotumours in bilateral resurfacing hip arthoplasties: evidence for a type IV immune response, Virchows Arch. 453 (2008) 529–534.

[8] I. Polyzois, D. Nikolopoulos, I. Michos, E. Patsouris, S. Theocharis, Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty, J. Appl. Toxicol. 32 (2012) 255–269.

[9] D.C. Mears, Metals in medicine and surgery, Int. Met. Rev. 22 (1977) 119–155.

[10] A.J. Dempsey, R.M. Pilliar, G.C. Weatherly, T. Kilner, The effects of nitrogen additions to a cobalt-chromium surgical implant alloy Part 2 Mechanical properties, J. Mater. Sci. 22 (1987) 575–581.

[11] A. Salinas-Rodriguez, J.L. Rodriguez-Galicia, Deformation behavior of low-carbon Co-Cr-Mo alloys for low-friction implant applications, J. Biomed. Mater. Res. 31 (1996) 409–419.

[12] P. Huang, H.F. Lopez, Strain induced ε-martensite in a Co–Cr–Mo alloy grain size effects, Mater. Lett. 39 (1999) 244–248.

[13] K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto, A. Chiba, Ultrafine grain refinement of biomedical Co-29Cr-6Mo alloy during conventional hot-compression deformation, Metall. Mater. Trans. 40A (2009) 1980–1994.

[14] M. Mori, K. Yamanaka, H. Matsumoto, A. Chiba, Evolution of cold-rolled microstructures of biomedical Co–Cr–Mo alloys with and without N doping, Mater. Sci. Eng. A 528 (2010) 614–621.

[15] A. Mani, Salinas-Rodriguez, H.F. Lopez, Deformation induced FCC to HCP transformation in a Co–27Cr–5Mo–0.05C alloy, Mater. Sci. Eng. A 528 (2011) 3037–3043.

[16] Y. Koizumi, S. Suzuki, K. Yamanaka, B.-S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, A. Chiba, Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy, Acta Mater. 61 (2013) 1648–1661.

[17] J.L. Tipper, P.J. Firkins, E. Ingham, J. Fisher, M.H. Stone, R. Farrar, Quantitative analysis of the wear and wear debris from low and high carbon content cobalt chrome alloys used in metal on metal total hip replacements, J. Mater. Sci. Mater. Med. 10 (1999) 353–362.

[18] J. Cawley, J.E.P. Metcalf, A.H. Jones, T.J. Band, D.S. Skupien, A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthroplasty, Wear 255 (2003) 999–1006.

[19] N. Maruyama, H. Kawasaki, A. Yamamoto, S. Hiromoto, H. Imai, T. Hanawa, Friction-wear properties of nickel-free Co–Cr–Mo alloy in a simulated body fluid, Mater. Trans. 46 (2005) 1588–1592.

[20] K. Kumagai, N. Nomura, T. Ono, M. Hotta, A. Chiba, Dry friction and wear behavior of forged Co–29Cr–6Mo alloy without Ni and C Additions for Implant Applications, Mater. Trans. 46 (2005) 1578–1587.

[21] L.C. Juli´an, A.I. Muno˜z, Influence of microstructure of HC CoCrMo biomedical alloys on the corrosion and wear behaviour in simulated body fluids, Tribol. Int. 44 (2011) 318–329.

[22] C.G. Figueiredo-Pina, A.A.M. Neves, B.M.B. Neves, Corrosion-wear evaluation of a UHMWPE/Co–Cr couple in sliding contact under relatively low contact stress in physiological saline solution, Wear 271 (2011) 665–670.

[23] R. Pourzal, I. Catelas, R. Theissmann, C. Kaddick, A. Fischer, Characterization of wear particles generated from CoCrMo alloy under sliding wear conditions, Wear 271 (2011) 1658–1666.

[24] H. Zhang, L.-G. Qin, M. Hua, G.-N. Dong, K.-S. Chin, A tribological study of the petaloid surface texturing for Co-Cr-Mo alloy artificial joints, Appl. Sur. Sci. 332 (2015) 557–564.

[25] F. Ren, W. Zhu, K. Chu, Fabrication, tribological and corrosion behaviors of ultra- fine grained Co-28Cr-6Mo alloy for biomedical applications, J. Mech. Beh. Biomed. Mater. 60 (2016) 139–147.

[26] F.Z. Hassani, M. Ketabchi, S. Bruschi, A. Ghiotti, Effects of carbide precipitation on the microstructural and tribological properties of Co–Cr–Mo–C medical implants after thermal treatment, J. Mater. Sci. 51 (2016) 4495–4508.

[27] K. Hagihara, T. Nakano, K. Sasaki, Anomalous strengthening behavior of Co–Cr–Mo alloy single crystals for biomedical applications, Scripta Mater. 123 (2016) 149–153.

[28] W. Kaita, K. Hagihara, L.A. Rocha, T. Nakano, Plastic deformation mechanisms of biomedical Co–Cr–Mo alloy single crystals with hexagonal close-packed structure, Scripta Mater. 142 (2018) 111–115.

[29] K.P. Gupta, The Co-Cr-Mo (Cobalt-Chromium-Molybdenum) system, J. Phase Equilibria Diffus. 26 (2005) 87–92.

[30] R.D. Arnell, Frictional deformation of cobalt single crystals by high angle diamond indenters, Wear 38 (1976) 361–370.

[31] Y. Ohno, J. Inotani, Y. Kaneko, S. Hashimoto, Orientation dependence of high- angle grain boundary formation during sliding wear in copper single crystals, J. Japan Inst. Metals 74 (2010) 384–391 (in Japanese).

[32] S.Y. Tarasov, D.V. Lychagin, A.V. Chumaevskii, Orientation dependence of subsurface deformation in dry sliding wear of Cu single crystals, Appl. Sur. Sci. 274 (2013) 22–26.

[33] X. Meng, C. Fang, K. Niu, Tribological behavior anisotropy in sliding interaction of asperities on single-crystal А-iron: a quasi-continuum study, Tribol. Int. 118 (2018) 347–359.

[34] S.-H. Lee, K. Hagihara, T. Nakano, Microstructural and orientation dependence of the plastic deformation behavior in β-type Ti-15Mo-5Zr-3Al alloy single crystals, Metall. Mater. Trans. 43 (2012) 1588–1597.

[35] S.-H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima, T. Nakano, Biocompatible low Young’s modulus achieved by Strong crystallographic elastic anisotropy in Ti- 15Mo-5Zr-3Al alloy single crystal, J. Mech. Beh. Biomed. Mater. 14 (2012) 48–54.

[36] K. Hagihara, T. Nakano, H. Maki, Y. Umakoshi, M. Niinomi, Isotropic plasticity of β-type Ti-29Nb-13Ta-4.6Zr alloy single crystals for the development of single crystalline β-Ti implants, Sci. Rep. 6 (2016) 20779.

[37] K. Hagihara, T. Nakano, Experimental clarification of the cyclic deformation mechanisms of β-type Ti–Nb–Ta–Zr-alloy single crystals developed for the single- crystalline implant, Int. J. Plast. 98 (2017) 27–44.

[38] K. Hagihara, T. Nakano, M. Todai, Unusual dynamic precipitation softening induced by dislocation glide in biomedical beta-titanium alloys, Sci. Rep. 7 (2017) 8056.

[39] T.H.C. Childs, The sliding wear mechanisms of metals, mainly steels, Tribol. Int. 13 (1980) 285–293.

[40] T.O. Mulhearn, L.E. Samuels, The abrasion of metals: a model of the process, Wear 5 (1962) 478–498.

[41] K. Hokkirigawa, K. Kato, Z.Z. Li, The effect of hardness on the transition of the abrasive wear mechanism of steels, Wear 123 (1988) 241–251.

[42] S.F. Castro, J. Gallego, F.J.G. Landgraf, H.-J. Kestenbach, Orientation dependence of stored energy of cold work in semi-processed electrical steels after temper rolling, Mater. Sci. Eng. A 427 (2006) 301–305.

[43] T. Miura, K. Fujii, K. Fukuya, K. Takashima, Influence of crystal orientation on hardness and nanoindentation deformation in ion-irradiated stainless steels, J. Nucl. Mater. 417 (2011) 984–987.

[44] M. Hayakawa, K. Tomatsu, E. Nakayama, K. Okamura, M. Yamamoto, K. Shizawa, Evaluating microscopic hardness in ferritic steel based on crystallographic measurements via electron backscatter diffraction, Mater. Sci. Eng. A 700 (2017) 281–290.

[45] G.Y. Chin, W.L. Mammel, Computer solutions of the Taylor analysis for axisymmetric flow, Trans. Met. Soc. AIME 239 (1967) 1400–1405.

[46] J.M. Rosenberg, H.R. Piehler, Calculation of the Taylor factor and lattice rotations for bcc metals deforming by pencil glide, Metall. Trans. 2 (1971) 257–259.

[47] A. Sato, Y. Sunaga, T. Mori, Contribution of the γ→ε transformation to the plastic deformation of stainless steel single crystals, Acta Metall. 25 (1977) 627–634.

[48] A.J. Saldívar-García, H.F. Lo´pez, Microstructural effects on the wear resistance of wrought and as-cast Co-Cr-Mo-C implant alloys, J. Biomed. Mater. Res. 74 (2005) 269–274.

[49] Microstructure and wear of materials, in: K.H. Zum Gahr (Ed.), Tribology Series 10, Elsevier, 1987.

[50] J. Schell, P. Heilmann, D.A. Rigney, Friction and wear of Cu-Ni alloys, in: S. K. Rhee, et al. (Eds.), Wear of Materials, ASME, 1981, pp. 53–62.

[51] L.-Y. Ti, R. Liz´arraga, H. Larsson, E. Holmstro¨m, L. Vitos, A first principles study of the stacking fault energies for fcc Co-based binary alloys, Acta Meter 136 (2017) 215–223.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る