リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「First molecular identification of Trypanosoma evansi from cattle in Syria」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

First molecular identification of Trypanosoma evansi from cattle in Syria

Megasari, Marsela Kyoko, Hayashida Alaa, Terkawi Xuenan, Xuan Chihiro, Sugimoto Junya, Yamagishi 北海道大学

2020.05

概要

Trypanosoma evansi, the “surra” disease-causing agent, is a blood protozoan parasite that infects a wide range of mammalian species within an unlimited geographical region. It causes anemia, weight loss, and even death of the infected livestock that heavily affect animal husbandry. However, the full epidemiological information of T. evansi is lacking, especially in developing countries, and the risk of the disease is largely underestimated. In this study, 207 samples of blood DNA collected from Holstein Friesian crossbred cattle in the central region of Syria in May 2010 were screened for T. evansi, aiming to determine the prevalence of the parasite. T. evansi was screened by PCR targeting the internal transcribed spacer (ITS) 1 region, and 27 samples were found positive out of 207 (13%), which is relatively high considering that no clinical symptoms were observed. The ITS1 amplicons were later subjected to RoTat1.2-PCR for detection of T. evansi type A. This is the first report of molecular detection of T. evansi in Syria. Our study suggests that advanced investigations in cattle and other domestic animals are necessary in Syria.

参考文献

1) Aregawi WG, Agga GE, Abdi RD, Büscher P. Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasit Vectors 12, 1–25, 2019.

2) Bajyana Songa E, Hamers R. A card agglutination test (CATT) for veterinary use based on an early VAT RoTat 1/2 of Trypanosoma evansi. Ann Soc Belg Med Trop 68, 233–240, 1988.

3) Birhanu H, Fikru R, Said M, Kidane W, Gebrehiwot T, Hagos A, Alemu T, Dawit T, Berkvens D, Goddeeris BM, Büscher P. Epidemiology of Trypanosoma evansi and Trypanosoma vivax in domestic animals from selected districts of Tigray and Afar regions, Northern Ethiopia. Parasit Vectors 8, 1–11,2015.

4) Birhanu H, Gebrehiwot T, Goddeeris BM, Büscher P, Van Reet N. New Trypanosoma evansi Type B Isolates from Ethiopian Dromedary Camels. PLoS Negl Trop Dis 10, e0004556, 2016.

5) Bitter W, Gerrits H, Kieft R, Borst P. The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature 391, 499–502, 1998.

6) Borst P, Fase-Fowler F, Gibson WC. Kinetoplast DNA of Trypanosoma evansi. Mol Biochem Parasitol 23, 31–38, 1987.

7) Borst P, Hoeijmakers J H. Kinetoplast DNA. Plasmid 2, 20-40, 1979.

8) Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, Cestari I, Desquesnes M, Gendrin C, Hertz-Fowler C, Imamura H, Ivens A, Kořený L, Lai DH, MacLeod A, McDermott SM, Merritt C, Monnerat S, Moon W, Myler P, Phan I, Ramasamy G, Sivam D, Lun ZR, Lukeš J, Stuart K, Schnaufer A. Genome and Phylogenetic Analyses of Trypanosoma evansi Reveal Extensive Similarity to T. brucei and Multiple Independent Origins for Dyskinetoplasty. PLoS Negl Trop Dis 9, e3404, 2015.

9) Claes F, Radwanska M, Urakawa T, Majiwa PAO, Goddeeris B, Büscher P. Variable Surface Glycoprotein RoTat1.2 PCR as a specific diagnostic tool for the detection of Trypanosoma evansi infections. Kinetoplastid Biol Dis 3, 1–6, 2004.

10) Davis MW. ApE: a plasmid editor. http:// www.biology.utah.edu/jorgensen/wayned/ ape/. 2012.

11) Desquesnes M, Dargantes A, Lai DH, Lun Z, Holzmuller P, Jittaplapong S. Trypanosoma evansi and Surra: A Review and Perspectives on Transmission, Epidemiology and Control, Impact, and Zoonotic Aspects. Biomed Res Int 1-20, 2013a.

12) Desquesnes M, Holzmuller P, Lai DH, Dargantes A, Lun ZR, Jittapalapong S. Trypanosoma evansi and Surra: A Review and Perspectives on Origin, History, Distribution, Taxonomy, Morphology, Hosts, and Pathogenic Effects. Biomed Res Int 1–22, 2013b.

13) Desquesnes M. Livestock Trypanosomoses and their Vectors in Latin America. CIRAD- EMVT publication, OIE, Paris, France, 2004.

14) Donelson JE, Artama WT. Diagnosis of Trypanosoma evansi by the polymerase chain reaction (PCR). J Protozool Res 8, 204-213, 1998.

15) Elsaid HM, Nantulya VM, Hilali M. Diagnosis of Trypanosoma evansi Infection Among Sudanese Camels Imported to Egypt Using Card Agglutination Test (CATT) and Antigen Detection Latex Agglutination Test (Suratex). J Protozool Res 8, 194-200, 1998.

16) Gaithuma AK, Yamagishi J, Martinelli A, Hayashida K, Kawai N, Marsela M, Sugimoto C. A single test approach for accurate and sensitive detection and taxonomic characterization of Trypanosomes by comprehensive analysis of internal transcribed spacer 1 amplicons. PLoS Negl Trop Dis 13, e0006842, 2019.

17) Gerrits H, Mußmann R, Bitter W, Kieft R, Borst P. The physiological significance of transferrin receptor variations in Trypanosoma brucei. Mol Biochem Parasitol 119, 237–247, 2002.

18) Hagos A, Yilkal A, Esayass T, Alemu T, Fikru R, Ab Feseha G, Goddeeris BM, Claes F. Parasitological and serological survey on trypanosomis (surra) in camels in dry and wet areas of Bale Zone, Oromyia Region, Ethiopia. Rev Med Vet (Toulouse) 160, 569–573, 2009.

19) Hoare CA. The trypanosomes of mammals. A zoological monograph. Blackwell Scientific Publications, Oxford. 1972.

20) Holland WG, Claes F, My LN, Thanh NG, Tam PT, Verloo D, Büscher P, Goddeeris B, Vercruysse J. A comparative evaluation of parasitological tests and a PCR for Trypanosoma evansi diagnosis in experimentally infected water buffaloes. Vet Parasitol 97, 23–33, 2001.

21) Isobe T, Holmes EC, Rudenko G. The Transferrin Receptor Genes of Trypanosoma equiperdum Are Less Diverse in Their Transferrin Binding Site than Those of the Broad-Host Range Trypanosoma brucei. J Mol Evol 56, 377–386, 2003.

22) Kabiri M, Steverding D. Trypanosoma evansi: Demonstration of a Transferrin Receptor Derived from Expression Site-Associated Genes 6 and 7. J Parasitol 87, 1189–1191,2001.

23) Kamidi CM, Saarman NP, Dion K, Mireji PO, Ouma C, Murilla G, Aksoy S, Schnaufer A, Caccone A. Multiple evolutionary origins of Trypanosoma evansi in Kenya. PLoS Negl Trop Dis 11, e0005895, 2017.

24) Kashiwazaki Y, Pholpark M, Polsar C, Pholpark S. Haemoparasite infections in newly introduced dairy cattle in Loei Province, Thailand: Trypanosoma evansi antigen levels by ELISA referring to abortion. Vet Parasitol 80, 99–109, 1998.

25) Konnai S, Mekata H, Mingala CN, Abes NS, Gutierrez CA, Herrera JR, Dargantes AP, Witola WH, Cruz LC, Inoue N, Onuma M, Ohashi K. Development and application of a quantitative real-time PCR for the diagnosis of Surra in water buffaloes. Infect Genet Evol 9, 449–452, 2009.

26) Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33, 1870-4, 2016.

27) Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukes J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci USA 105, 1999–2004, 2008.

28) Luckins AG. Trypanosoma evansi in Asia. Parasitol Today 4, 137–142, 1988.

29) Lun ZR, Desser SS. Is the Broad Range of Hosts and Geographical Distribution of Trypanosoma evansi Attributable to the Loss of Maxicircle Kinetoplast DNA? Parasitol Today 11, 131-133, 1995.

30) Masiga DK, Gibson WC. Specific probes for Trypanosoma (Trypanozoon) evansi based on kinetoplast DNA minicircles. Mol Biochem Parasitol 40, 279-284, 1990.

31) Mekata H, Konnai S, Witola WH, Inoue N, Onuma M, Ohashi K. Molecular detection of trypanosomes in cattle in South America and genetic diversity of Trypanosoma evansi based on expression-site-associated gene 6. Infect Genet Evol 9, 1301–1305, 2009.

32) Ngaira JM, Olembo NK, Njagi ENM, Ngeranwa JJN. The detection of non-RoTat1.2 Trypanosoma evansi. Exp Parasitol 110,30–38, 2005.

33) Njiru ZK, Constantine CC, Guya S, Crowther J, Kiragu JM, Thompson RCA, Dávila AMR. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol Res 95, 186–192, 2005.

34) Njiru ZK, Constantine CC, Masiga DK, Reid SA, Thompson RC, Gibson W. Characterization of Trypanosoma evansi type B. Infect Genet Evol 6, 292–300, 2006.

35) Njiru ZK, Constantine CC, Masiga DK, Reid SA, Thompson RC, Gibson WC. Characterization of Trypanosoma evansi type B. Infect Genet Evol 6: 292–300, 2006.

36) Njiru ZK, Ouma JO, Enyaru JC, Dargantes AP. Loop-mediated Isothermal Amplification (LAMP) test for detection of Trypanosoma evansi strain B. Exp Parasitol 125: 196–201, 2010.

37) Payne RC, Sukanto IP, Bazeley K, Jones TW. The effect of Trypanosoma evansi infection on the oestrous cycle of Friesian Holstein heifers. Vet Parasitol 51, 1–11, 1993.

38) Payne RC, Sukanto IP, Partoutomo S, Polytedi F. Experimental infection of Friesian Holstein calves with an Indonesian isolate of Trypanosoma evansi. Trop Med Parasitol 43, 115-117, 1992.

39) Pholpark S, Pholpark M, Polsar C, Charoenchai A, Paengpassa Y, Kashiwazaki Y. Influence of Trypanosoma evansi infection on milk yield of dairy cattle in northeast Thailand. Prev Vet Med 42, 39-44, 1999.

40) Reid SA. Trypanosoma evansi control and containment in Australasia. Trends Parasitol 18, 219–224, 2002.

41) Salim B, Bakheit MA, Kamau J, Nakamura I, Sugimoto C. Molecular epidemiology of camel trypanosomiasis based on ITS1 rDNA and RoTat 1.2 VSG gene in the Sudan. Parasit Vectors 4, 2–6, 2011.

42) Salim B, Hayashida K, Mossaad E, Nakao R, Yamagishi J, Sugimoto C. Development and validation of direct dry loop mediated isothermal amplification for diagnosis of Trypanosoma evansi. Vet Parasitol 260, 53–57, 2018.

43) Salmon D, Paturiaux-Hanocq F, Poelvoorde P, Vanhamme L, Pays E. Trypanosoma brucei: growth differences in different mammalian sera are not due to the species-specificity of transferrin. Exp Parasitol 109, 188-194, 2005.

44) Sarkhel SP, Gupta SK, Kaushik J, Singh J, Saini VK, Kumar S, Kumar R. Intra and inter species genetic variability of transferrin receptor gene regions in Trypanosoma evansi isolates of different livestock and geographical regions of India. Acta Parasitol 62, 133–140, 2017.

45) Steverding D. On the significance of host antibody response to the Trypanosoma brucei transferrin receptor during chronic infection. Microbes Infect 8, 2777-2782, 2006.

46) Steverding D. The significance of transferrin receptor variation in Trypanosoma brucei. Trends Parasitol 19, 125–127, 2003.

47) Terkawi MA, Alhasan H, Huyen NX, Sabagh A, Awier K, Cao S, Goo YK, Aboge G, Yokoyama N, Nishikawa Y, Kalb-Allouz AK, Tabbaa D, Igarashi I, Xuan X. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in cattle from central region of Syria. Vet Parasitol 187, 307–311, 2012.

48) Trevor CE, Gonzalez-Munoz AL, Macleod OJ, Woodcock PG, Rust S, Vaughan TJ, Garman EF, Minter R, Carrington M, Higgins MK. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nature microbiology 4, 2074-2081, 2019.

49) Urakawa T, Verloo D, Moens L, Büscher P, Majiwa PA. Trypanosoma evansi: Cloning and Expression in Spodoptera fugiperda Insect Cells of the Diagnostic Antigen RoTat1.2. Exp Parasitol 99, 181–189, 2001.

50) Verloo D, Magnus E, Büscher P. General expression of RoTat 1.2 variable antigen type in Trypanosoma evansi isolates from different origin. Vet Parasitol 97, 183-189, 2001.

51) Vreysen MJ, Seck MT, Sall B, Bouyer J. Tsetse flies: Their biology and control using area-wide integrated pest management approaches. J Invertebr Pathol 112, S15–S25, 2013.

52) Witola WH, Sarataphan N, Inoue N, Ohashi K, Onuma M. Genetic variability in ESAG6 genes among Trypanosoma evansi isolates and in comparisons to other Trypanozoon members. Acta Trop 93, 63-73, 2005.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る