リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design and synthesis of selective orexin 1 receptor antagonists with a morphinan skeleton and novel rearrangement reaction of morphinan skeleton」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design and synthesis of selective orexin 1 receptor antagonists with a morphinan skeleton and novel rearrangement reaction of morphinan skeleton

谷田, 誠浩 筑波大学 DOI:10.15068/00160440

2020.07.21

概要

1.1 Overview of morphinan derivatives
Morphinan is a general name for compounds containing a heterocyclic skeleton 1 composed of A-, B-, C-, and D-rings (Figure 1). Natural products with the morphinan skeleton include morphine (2) and thebaine (3), which are extracted from the unripe seed pods of opium poppy.1 These morphinan compounds with an oxygen-containing ring (E-ring) are called 4,5-epoxymorphinans. Morphinan derivatives typically bind with opioid receptors, which are classified into μ, δ, and κ opioid receptor types abbreviated MOR, DOR, and KOR, respectively.2 For example, 2, which shows agonistic activity for MOR, is a clinically used analgesic drugs. Naltrexone (4), a semi-synthetic opioid, shows antagonistic activity for MOR and is used as a therapeutic agent for drug addiction to morphine and their related drugs.

Other examples include hydromorphone (5), oxymorphone (6), and levorphanol (7), which are MOR agonists used as opioid analgesics. Naloxone (8), an MOR antagonist, is used to improve respiratory depression caused by overdose of opioid analgesics (Figure 2). These drugs exert pharmacological effects by acting on opioid receptors in the central nervous system (CNS).

Unlike drugs acting on the peripheral nervous system, CNS drugs must have proper physicochemical and pharmacokinetic properties to penetrate the blood–brain barrier (BBB).3 Thus, morphinan derivatives can be applied to study and develop CNS drugs.

The unique structures of morphinan derivatives can be utilized in organic synthesis and medicinal chemistry. For instance, naltrexone (4) has four consecutive asymmetric centers and five reactive functional groups: 3-phenolic hydroxy, 4,5-epoxy, 6-carbonyl, 14-hydroxy, and 17-basic tertiary amino groups (Figure 3). These structural features enable to arrange the functional groups to proper three-dimensional directions, which are essential for an adequate interaction with target receptors and enzymes. Thus, 4 is often used as an starting material or intermediate for the synthesis of drugs with the morphinan skeleton.

For the above reasons, various researchers reported the conversion of the naltrexone into other morphinan derivatives.

参考文献

1. (a) Brownstein, M. J. Proc. Natl. Acad. Sci. USA 1993, 90, 5391.; (b) Martin, B. In Opium: A History; Simon & Schuster, Ltd.: London, 1996.

2. (a) Martin, W. R.; Eades, C. G.; Thompson, J. A.; Huppler, R. E.; Gilbert, P. E. J. Pharmacol. Exp. Ther. 1976, 197, 517. (b) Evans, C. J.; Jr, D. E. K.; Morrison, H.; Magendzo, K.; Edwards, R. H. Science 1992, 258, 1952. (c) Wang, J. B.; Imai, Y.; Eppler, C. M.; Gregor, P.; Spivak, C. E.; Uhl, G. R. Proc. Natl. Acad. Sci. 1993, 90, 10230. (d) Yasuda, K.; Raynort, K.; Kongt, H.; Breder, C. D.; Takeda, J. U. N.; Reisinet, T.; Bell, G. I. Proc. Natl. Acad. Sci. 1993, 90, 6736.; (d) Martin, W. R.; Eades, C. G.; Thompson, J. A.; Huppler, R. E.; Gilbert, P. E. J. Pharmacol. Exp. Ther. 1976, 197, 517.

3. Rankovic, Z. J. Med. Chem. 2015, 58, 2584.

4. Nagase, H.; Nemoto, T.; Matsubara, A.; Saito, M.; Yamamoto, N.; Osa, Y.; Hirayama, S.; Nakajima, M.; Nakao, K.; Mochizuki, H.; Fujii, H. Bioorg. Med. Chem. Lett. 2010, 20, 6302.

5. Portoghese, P. S.; Sultana, M.; Nagase, H.; Takemori, A. E. J. Med. Chem. 1988, 31, 281.

6. Portoghese, P. S.; Nagase, H.; Maloney Huss, K. E.; Lin, C. E.; Takemori, A. E. J. Med. Chem. 1991, 34, 1715.

7. (a) Portoghese, P. S.; Garzon-Aburbeh, A.; Nagase, H.; Takemori A. E. J. Med. Chem. 1991, 34, 1292. (b) Miyata, Y.; Fujii, H.; Uenohara, Y.; Kobayashi, S.; Takeuchi, T.; Nagase, H. Bioorg. Med. Chem. Lett. 2012, 22, 5174. (c) Miyata, Y.; Fujii, H.; Osa, Y.; Kobayashi, S.; Takeuchi, T.; Nagase, H. Bioorg. Med. Chem. Lett. 2011, 21, 4710.

8. Nagase, H.; Hayakawa, J.; Kawamura, K.; Kawai, K.; Takezawa, Y.; Matsuura, H.; Tajima, C.; Endo, T. Chem. Pharm. Bull. 1998, 46, 366.

9. Nagase, H.; Watanabe, A.; Nemoto, T.; Yamaotsu, N.; Hayahida, K.; Nakajima, M.; Hasebe, K.; Nakao, K.; Mochizuki, H.; Hirono, S.; Fujii, H. Bioorg. Med. Chem. Lett. 2010, 20, 121.

10. (a) Portoghese, P. S.; Nagase, H.; Lipkowski, A. W.; Larson, D. L.; Takemori, A. E. J. Med. Chem. 1988, 31, 836. (b) Takemori, A. E.; Ho, B. Y.; Naeseth, J. S.; Portoghese, P. S. J. Pharmacol. Exp. Ther. 1988, 246, 255.

11. Dhawan, B. N.; Cesselin, F.; Raghubir, R.; Reisine, T.; Bradley, P. B.; Portoghese, P. S.; Hamon, M. Am. Soc. Pharmacol. Exp. Ther. 1996, 48, 567.

12. Kutsumura, N.; Koyama, Y.; Suzuki, Y.; Tominaga, K.; Yamamoto, N.; Saitoh, T.; Nagumo, Y.; Nagase, H. Org. Lett. 2018, 20, 1559.

13. (a) Palmer, R. B.; Upthagrove, A. L.; Nelson, W. L. J. Med. Chem. 1997, 40, 749. (b) Kutsumura, N.; Nakajima, R.; Koyama, Y.; Miyata, Y.; Saitoh, T.; Yamamoto, N.; Iwata, S.; Fujii, H.; Nagase, H. Bioorg. Med. Chem. Lett. 2015, 25, 4890. (c) Kutsumura, N.; Koyama, Y.; Nagumo, Y.; Nakajima, R.; Miyata, Y.; Yamamoto, N.; Saitoh, T.; Yoshida, N.; Iwata, S.; Nagase, H. Bioorg. Med. Chem. 2017, 25, 4375.

14. Hayahida, K.; Fujii, H.; Hirayama, S.; Nemoto, T.; Nagase, H. Tetrahedron 2011, 67, 6682.

15. (a) Fujii, H.; Hayahida, K.; Saitoh, A.; Yokoyama, A.; Hirayama, S.; Iwai, T.; Nakata, E.; Nemoto, T.; Sudo, Y.; Uezono, Y.; Yamada, H.; Nagase, H. ACS Med. Chem. Lett. 2014, 5, 368. (b) Hayahida, K.; Hirayama, S.; Iwai, T.; Watanabe, Y.; Takahashi, T.; Sakai, J.; Nakata, E.; Yamakawa, T.; Fujii, H.; Nagase, H. Bioorg. Med. Chem. Lett. 2017, 27, 2742.

16. (a) Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R. M.; Tanaka, H.; Williams, S. C.; Richardson, J. A.; Kozlowski, G. P.; Wilson, S.; Arch, J. R.; Buckingham, R. E.; Haynes, A. C.; Carr, S. A.; Annan, R. S.; McNulty, D. E.; Liu, W. S.; Terrett, J. A.; Elshourbagy, N. A.; Bergsma, D. J.; Yanagisawa, M. Cell 1998, 92, 573. (b) de Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.; Foye, P. E.; Danielson, P. E.; Fukuhara, C.; Battenberg, E. L.; Gautvik, V. T.; Bartlett, F. S., 2nd; Frankel, W. N.; van den Pol, A. N.; Bloom, F. E.; Gautvik, K. M.; Sutcliffe, J. G. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 322.

17. Yazdi, F.; Jahangirvand, M.; Pirasteh, A. H.; Moradi, M.; Haghparast, A. Pharmacol. Biochem. Behav. 2015, 139, 39.

18. (a) Lin, L.; Faraco, F.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P. J.; Nishino, S.; Mignot, E. Cell 1999, 98, 365. (b) Chemelli, R. M.; Willie, J. T.; Sinton, C. M.; Elmquist, J. K.; Scammell, T.; Lee, C.; Richardson, J. A.; Williams, S. C.; Xiong, Y.; Kisanuki, Y.; Fitch, T. E.; Nakazato, M.; Hammer, R. E.; Saper, C. B.; Yanagisawa, M. Cell 1999, 98, 437.

19. Hasegawa, E.; Yanagisawa, M.; Sakurai, T.; Mieda, M. J. Clin. Invest. 2014, 124, 604.

20. (a) Roecker, A. J.; Cox, C. D.; Coleman, P. J. J. Med. Chem. 2016, 59, 504. (b) Boss, C.; Roch, C. Bioorg. Med. Chem. Lett. 2015, 25, 2875. (c) Lebold, T. P.; Bonaventure, P.; Shireman, B. T. Bioorg. Med. Chem. Lett. 2013, 23, 4761. (d) Boss, C.; Brisbare-Roch, C.; Jenck, F. J. Med. Chem. 2009, 52, 891.

21. Haynes, A. C.; Jackson, B.; Chapman, H.; Tadayyon, M.; Johns, A.; Porter, R. A.; Arch, J. R. S. Regul. Pept. 2000, 96, 45.

22. Langmead, C. J.; Jerman, J. C.; Brough, S. J.; Scott, C.; Porter, R. A.; Herdon, H. J. Br. J. Pharmacol. 2004, 141, 340.

23. (a) Gozzi, A.; Turrini, G.; Piccoli, L.; Massagrande, M.; Amantini, D.; Antolini, M.; Martinelli, P.; Cesari, N.; Montanari, D.; Tessari, M.; Corsi, M.; Bifone, A. PLoS One 2011, 6, e16406. (b) Piccoli, L.; Micioni Di Bonaventura, M. V.; Cifani, C.; Costantini, V. JA.; Massagrande, M.; Montanari, D.; Martinelli, P.; Antolini, M.; Ciccocioppo, R.; Massi, M.; Merlo-Pich, E.; Di Fabio, R.; Corsi, M. Neuropsychopharmacology 2012, 37, 1999. (c) Gozzi, A.; Lepore, S.; Vicentini, E.; Merlo-Pich, E.; Bifone, A. Neuropsychopharmacology 2013, 38, 2120. (d) Merlo-Pich, E.; Melotto, S. Front. Neurosci. 2014, 8, 1. (e) Lopez, M. F.; Moorman, D. E.; Aston-Jones, G. A.; Becker, H. C. Brain Res. 2016, 1636, 74.

24. Huang, S.-C.; Dai, Y.-W. E.; Lee, Y.-H.; Chiou, L.-C.; Hwang, L. L. J. Pharmacol. Exp. Ther. 2010, 334, 522.

25. Roecker, A. J.; Reger, T. S.; Mattern, M. C.; Mercer, S. P.; Bergman, J. M.; Schreier, J. D.; Cube, R. V.; Cox, C. D.; Li, D.; Lemaire, W.; Bruno, J. G.; Harrell, C. M.; Garson, S. L.; Gotter, A. L.; Fox, S. V.; Stevens, J.; Tannenbaum, P. L.; Prueksaritanont, T.; Cabalu, T. D.; Cui, D.; Stellabott, J.; Hartman, G. D.; Young, S. D.; Winrow, C. J.; Renger, J. J.; Coleman, P. J. Bioorg. Med. Chem. Lett. 2014, 24, 4884.

26. Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Schreier, J. D.; McGaughey, G. B.; Bogusky, M. J.; Roecker, A. J.; Mercer, S. P.; Bednar, R. A.; Lemaire, W.; Bruno, J. G.; Reiss, D. R.; Harrell, C. M.; Murphy, K. L.; Garson, S. L.; Doran, S. M.; Prueksaritanont, T.; Anderson, W. B.; Tang, C.; Roller, S.; Cabalu, T. D.; Cui, D.; Hartman, G. D.; Young, S. D.; Koblan, K. S.; Winrow, C. J.; Renger, J. J.; Coleman, P. J. J. Med. Chem. 2010, 53, 5320.

27. Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; Hoever, P.; Aissaoui, H.; Flores, S.; Mueller, C.; Nayler, O.; van Gerven, J.; de Haas, S. L.; Hess, P.; Qiu, C.; Buchmann, S.; Scherz, M.; Weller, T.; Fischli, W.; Clozel, M.; Jenck, F. Nat. Med. 2007, 13, 150.

28. (a) Di Fabio, R.; Pellacani, A.; Faedo, S.; Roth, A.; Piccoli, L.; Gerrard, P.; Porter, R. A.; Johnson, C. N.; Thewlis, K.; Donati, D.; Stasi, L.; Spada, S.; Stemp, G.; Nash, D.; Branch, C.; Kindon, L.; Massagrande, M.; Poffe, A.; Braggio, S.; Chiarparin, E.; Marchioro, C.; Ratti, E.; Corsi, M. Bioorg. Med. Chem. Lett. 2011, 21, 5562.m (b) Bettica, P.; Squassante, L.; Zamuner, S.; Nucci, G.; Danker-Hopfe, H.; Ratti, E. Sleep 2012, 35, 1097.

29. Sakurai, T. Nat. Rev. Neurosci. 2014, 15, 719.

30. (a) Mahler, S. V.; Smith, R. J.; Moorman, D. E.; Sartor, G. C.; Aston-Jones, G. Prog. Brain Res. 2012, 198, 79. (b) Baimel, C.; Bartlett, S. E.; Chiou, L. C.; Lawrence, A. J.; Muschamp, J. W.; Patkar, O.; Tung, L. W.; Borgland, S. L. Br. J. Pharmacol. 2015, 172, 334.

31. (a) Harris, G. C.; Wimmer, M.; Aston-Jones, G. Nature 2005, 437, 556. (b) Borgland, S. L.; Taha, S. A.; Sarti, F.; Fields, H. L.; Bonci, A. Neuron 2006, 49, 589. (c) España, R. A.; Melchior, J. R.; Roberts, D. C.; Jones, S. R. Psychopharmacology 2011, 214, 415.

32. Harris, G. C.; Wimmer, M.; Randall-Thompson, J. F.; Aston-Jones, G. Behav. Brain Res. 2007, 183, 43.

33. (a) Quarta, D.; Valerio, E.; Hutcheson, D. M.; Hedou, G.; Heidbreder, C. Neurochem. Int. 2010, 56, 11. (b) Winrow, C. J.; Tanis, K. Q.; Reiss, D. R.; Rigby, A. M.; Uslaner, J. M.; Uebele, V. N.; Doran, S. M.; Fox, S. V.; Garson, S. L.; Gotter, A. L.; Levine, D. M.; Roecker, A. J.; Coleman, P. J.; Koblan, K. S.; Renger, J. J. Neuropharmacology 2010, 58, 185.

34. Smith, R. J.; Aston-Jones, G. Eur. J. Neurosci. 2012, 35, 798.

35. (a) Pasumarthi, R. K.; Reznikov, L. R.; Fadel, J. Eur. J. Pharmacol. 2006, 535, 172. (b) Hollander, J. A.; Lu, Q.; Cameron, M. D.; Kamenecka, T. M.; Kenny, P. J. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 19480. (c) Plaza-Zabala, A.; Martin-Garcia, E.; de Lecea, L.; Maldonado, R.; Berrendero, F. J. Neurosci. 2010, 30, 2300. (d) Plaza-Zabala, A.; Flores, Á.; Maldonado, R.; Berrendero, F. Biol. Psychiatry 2012, 71, 214.

36. (a) Lawrence, A. J.; Cowen, M. S.; Yang, H. J.; Chen, F.; Oldfield, B. Br. J. Pharmacol. 2006, 148, 752. (b) Dayas, C. V.; McGranahan, T. M.; Martin-Fardon, R.; Weiss, F. Biol. Psychiatry 2008, 63, 152. (c) Richards, J. K.; Simms, J. A.; Steensland, P.; Taha, S. A.; Borgland, S. L.; Bonci, A.; Bartlett, S. E. Psychopharmacology 2008, 199, 109. (d) Moorman, D. E.; Aston-Jones, G. Alcohol 2009, 43, 379. (e) Jupp, B.; Krstew, E.; Dezsi, G.; Lawrence, A. J. Br. J. Pharmacol. 2011, 162, 880. (f) Kim, A. K.; Brown, R. M.; Lawrence, A. J. Front. Behav. Neurosci. 2012, 6, 78. (g) Srinivasan, S.; Simms, J. A.; Nielsen, C. K.; Lieske, S. P.; Bito-Onon, J. J.; Yi, H.; Hopf, F. W.; Bonci, A.; Bartlett, S. E. PLoS One 2012, 7, e44726.

37. Flores, A.; Maldonado, R.; Berrendero, F. Front. Neurosci. 2013, 7, 1.

38. (a) Hutcheson, D. M.; Quarta, D.; Halbout, B.; Rigal, A.; Valerio, E.; Heidbreder, C. Behav. Pharmacol. 2011, 22, 173. (b) Sartor, G. C.; Aston-Jones, G. S. J. Neurosci. 2012, 32, 4623.

39. (a) Georgescu, D.; Zachariou, V.; Barrot, M.; Mieda, M.; Willie, J. T.; Eisch, A. J.; Yanagisawa, M.; Nestler, E. J.; DiLeone, R. J. J. Neurosci. 2003, 23, 3106. (b) Sharf, R.; Sarhan, M.; Dileone, R. J. Biol. Psychiatry 2008, 64, 175. (c) Sharf, R.; Guarnieri, D. J.; Taylor, J. R.; DiLeone, R. J. Brain Res. 2010, 1317, 24.

40. Perry, D. A.; Zhang, Y. Brain Res. 2018, https://doi.org/10.1016/j.brainres.2018.08.025.

41. Chou, T. C.; Lee, C. E.; Elmquist, J. K.; Hara, J.; Willie, J. T.; Beuckmann, C. T.; Chemelli, R. M.; Sakurai, T.; Yanagisawa, M.; Saper, C. B.; Scammel, T. E. J. Neurosci. 2001, 21, RC168.

42. Chen, J.; Zhang, R.; Chen, X.; Wang, C.; Cai, X.; Liu, H.; Jiang, Y.; Liu, C.; Bai, B. Cell. Signalling 2015, 27, 1426.

43. (a) Li, X.; Marchant, N. J.; Shaham, Y. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 5765. (b) Muschamp, J. W.; Hollander, J. A.; Thompson, J. L.; Voren, G.; Hassinger, L. C.; Onvani, S.; Kamenecka, T. M.; Borgland, S. L.; Kenny, P. J.; Carlezon, W. A., Jr. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, E1648. (c) Li, Y.; van den Pol, A. N. J. Neurosci. 2006, 26, 13037.

44. (a) Narita, M.; Nagumo, Y.; Hashimoto, S.; Narita, M.; Khotib, J.; Miyatake, M.; Sakurai, T.; Yanagisawa, M.; Nakamachi, T.; Shioda, S.; Suzuki, T. J. Neurosci. 2006, 26, 398. (b) Lei, K.; Wegner, S. A.; Yu, J. H.; Hopf, F. W. Neuropharmacology 2016, 110, 431.

45. Piercey, M. F.; Lahti, R. A.; Schroeder, L. A.; Einspahr, F. J.; Barsuhn, C. Life Sci. 1982, 31, 1197.

46. (a) Suzuki, T.; Shiozaki, Y.; Masukawa, Y.; Misawa, M.; Nagase, H. Jpn. J. Pharmacol. 1992, 58, 435. (b) Suzuki, T.; Funada, M.; Narita, M.; Misawa, M.; Nagase, H. Brain Res. 1993, 602, 45. (c) Land, B. B.; Bruchas, M.; Schattauer, S.; Giardino, W.; Aita, M.; Messinger, D.; Hnasko, T. S.; Palmiter, R. D.; Chavkin, C. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19168. (d) Robles, C. F.; McMackin, M. Z.; Campi, K. L.; Doig, I. E.; Takahashi, E. Y.; Pride, M. C.; Trainor, B. C. Behav. Brain Res. 2014, 262, 84. (e) Ehrich, J. M.; Messinger, D. I.; Knakal, C. R.; Kuhar, J. R.; Schattauer, S. S.; Bruchas, M. R.; Zweifel, L. S.; Kieffer, B. L.; Phillips, P. E.; Chavkin, C. J. Neurosci. 2015, 35, 129171.

47. (a) Kawai, K.; Hayakawa, J.; Miyamoto, T.; Imamura, Y.; Yamane, S.; Wakita, H.; Fujii, H.; Kawamura, K.; Matsuura, H.; Izumimoto, N.; Kobayashi, R.; Endo, T.; Nagase, H. Bioorg. Med. Chem. 2008, 16, 9188. (b) Nagase, H.; Fujii, H. Top. Curr. Chem. 2010, 299, 29. (c) Nagase, H.; Fujii, H. Top. Curr. Chem. 2010, 299, 187. (d) Nagase, H.; Fujii, H. Curr. Pharm. Des. 2013, 19, 7400. (e) Nagase, H.; Kutsumura, N. Arch. Pharm. 2015, 348, 375.

48. Saitoh, T.; Yamamoto, N.; Nakajima, R.; Irukayama, Y.; Ogawa, Y.; Tominaga, H., Ishikawa, Y.; Yanagisawa, M.; Nagase, H. Abstracts of Papers, The 32nd Medicinal Chemistry Symposium, Kobe, Japan, Nov 26–28, 2014; The Pharmaceutical Society of Japan, Division of Medicinal Chemistry: Tokyo, 2014; 1P-11.

49. Sayre, L. M.; Larson, D. L.; Takemori, A. E.; Portoghese, P. S. J. Med. Chem. 1984, 27, 1325.

50. Lahti, R. A.; VonVoigtlander, P. F.; Barsuhn, C. Life Sci. 1982, 31, 2257.

51. Yamamoto, N.; Ohrui, S.; Okada, T.; Saitoh, T.; Irukayama, Y.; Ogawa, Y.; Ishikawa, Y.; Yanagisawa, M.; Nagase, H. Abstracts of Papers, The 33rd Medicinal Chemistry Symposium, Makuhari, Japan, Nov 25– 27, 2015; The Pharmaceutical Society of Japan, Division of Medicinal Chemistry: Tokyo, 2015; 2P31.

52. Watanabe, Y.; Kitazawa, S.; Fujii, H.; Nemoto, T.; Hirayama, S.; Iwai, T.; Gouda, H.; Hirono, S.; Nagase, H. Bioorg. Med. Chem. Lett. 2014, 24, 4980.

53. (a) Nagase, H.; Imaide, S.; Hirayama, S.; Nemoto, T.; Fujii, H. Bioorg. Med. Chem. Lett. 2012, 22, 5071. (b) Nagase, H.; Kawai, K.; Kawamura, K.; Hayakawa, J.; Endo, T. Morphinan derivative and medicinal use. WO1993015081 A1, 1993.

54. Kawamura, K.; Horikiri, H.; Hayakawa, J.; Seki, C.; Yoshizawa, K.; Umeuchi, H.; Nagase, H. Chem. Pharm. Bull. 2004, 52, 670.

55. Tsujishita, H.; Hirono, S. J. Comput. Aided. Mol. Des. 1997, 11, 305.

56. (a) Nemoto, T.; Iihara, Y.; Hirayama, S.; Iwai, T.; Higashi, E.; Fujii, H.; Nagase, H. Bioorg. Med. Chem. Lett. 2015, 25, 2927. (b) Nemoto, T.; Yamamoto, N.; Wada, N.; Harada, Y.; Tomatsu, M.; Ishihara, M.; Hirayama, S.; Iwai, T.; Fujii, H.; Nagase, H. Bioorg. Med. Chem. Lett. 2013, 23, 268.

57. Yin, J.; Babaoglu, K.; Brautigam, C. A.; Clark, L.; Shao, Z.; Scheuermann, T. H.; Harrell, C. M.; Gotter, A. L.; Roecker, A. J.; Winrow, C. J.; Renger, J. J.; Coleman, P. J.; Rosenbaum, D. M. Nat. Struct. Mol. Biol. 2016, 23, 293.

58. (a) Barton, J. W.; Coop, A.; Lewis, J. W. Tetrahedron Lett. 1993, 34, 6777. (b) Fujii, H.; Narita, M.; Mizoguchi, H.; Murachi, M.; Tanaka, T.; Kawai, K.; Tseng, L. F.; Nagase, H. Bioorg. Med. Chem. 2004, 12, 4133. (c) Werner, L.; Machara, A.; Adams, D. R.; Cox, D. P.; Hudlicky, T. J. Org. Chem. 2011, 76, 4628.

59. Brion, F. Tetrahedron Lett. 1982, 23, 5299.

60. Chuang, K. V.; Navarro, R.; Reisman, S. E. Angew. Chem. Int. Ed. 2011, 50, 9447.

61. Xu, H.; Hashimoto, A.; Rice, K. C.; Jacobson, A. E.; Thomas, J. B.; Carroll, F. I.; Lai, J.; Rothman, R. B. Synapse 2001, 39, 64.

62. (a) Nagase, H.; Yamamoto, N.; Nemoto, T.; Yoza, K.; Kamiya, K.; Hirono, S.; Momen, S.; Izumimoto, N.; Hasebe, K.; Mochizuki, H.; Fujii, H. J. Org. Chem. 2008, 73, 8093. (b) Selfridge, B. R.; Wang, X.; Zhang, Y.; Yin, H.; Grace, P. M.; Watkins, L. R.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2015, 58, 5038.

63. Synthesis of 128 was performed to determine the stereochemistry of the major diastereomer of the compound 120 as follows. The recrystallization of the approximately 5:1 diastereomixture of 128 (12.3 mg) from refluxing MeOH afforded only 128a (5.0 mg) as a needle-like crystal and the stereochemistry of the 128a was determined by the NOESY experiments. As a result, the stereochemistry of the major isomer of 128 should be the same as that of 128a.

64. (a) Hashimoto, A.; Jacobson, A. E.; Rothman, R. B.; Dersch, C. M.; George, C.; Flippen-Anderson, J. L.; Rice, K. C. Bioorg. Med. Chem. 2002, 10, 3319. (b) Cheng, K.; Kim, I. J.; Lee, M. J.; Adah, S. A.; Raymond, T. J.; Bilsky, E. J.; Aceto, M. D.; May, E. L.; Harris, L. S.; Coop, A.; Dersch, C. M.; Rothman, R. B.; Jacobson, A. E.; Rice, K. C. Org. Biomol. Chem. 2007, 5, 1177. (c) Cheng, K.; Lee, Y. S.; Rothman, R. B.; Dersch, C. M.; Bittman, R. W.; Jacobson, A. E.; Rice, K. C. J. Med. Chem. 2011, 54, 957. (d) Truong, P. M.; Hassan, S. A.; Lee, Y. S.; Kopajtic, T. A.; Katz, J. L.; Chadderdon, A. M.; Traynor, J. R.; Deschamps, J. R.; Jacobson, A. E.; Rice, K. C. Bioorg. Med. Chem. 2017, 25, 2406.

65. Cheng, C. Y.; Hsin, L. W.; Lin, Y. P.; Tao, P. L.; Jong, T. T. Bioorg. Med. Chem. 1996, 4, 73.

66. Nagahara, T.; Saitoh, T.; Kutsumura, N.; Irukayama-Tomobe, Y.; Ogawa, Y.; Kuroda, D.; Gouda, H.; Kumagai, H.; Fujii, H.; Yanagisawa, Y.; Nagase, H. J. Med. Chem. 2015, 58, 7931.

67. Radwan, A. A.; Gouda, H.; Yamaotsu, N.; Torigoe, H.; Hirono, S. Drug Des. Discov. 2001, 17, 265.

68. Greenwood, J. R.; Calkins, D.; Sullivan, A. P.; Shelley, J. C. J. Comput. Aided Mol. Des. 2010, 24, 591.

69. Sherman, W.; Day, T.; Jacobson, M. P.; Friesner R. A.; Farid, R. J. Med. Chem. 2006, 49, 534.

70. Jacobson, M. P.; Pincus, D. L.; Rapp, C. S.; Day, T. J. F.; Honig, B.; Shaw, D. E.; Friesner, R. A. Proteins: Structure, Function and Bioinformatics 2004, 55, 351.

71. Suzuki, T.; Narita, M.; Takahashi, Y.; Misawa, M.; Nagase, H. Eur. J. Pharmacol. 1992, 213, 91.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る