リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「腎移植後のタクロリムス誘発性腎障害の軽減を目的としたエベロリムス併用効果に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

腎移植後のタクロリムス誘発性腎障害の軽減を目的としたエベロリムス併用効果に関する研究

重松, 智博 SHIGEMATSU, Tomohiro シゲマツ, トモヒロ 九州大学

2022.03.23

概要

【背景・目的】
 カルシニューリン阻害薬(calcineur ininhibitor; CNI)の1つであるタクロリムス(tacrolimus; TAC)は腎移植後の拒絶反応抑制で用いられる代表的な免疫抑制薬である。TACは優れた免疫抑制効果を有するが、代表的な副作用として腎線維化を伴う腎障害を引き起こす。CNIによる腎線維化の形成には、組織の線維化を促進する主なサイトカインであるtransforming growth factor-β(TGF-β)の発現上昇、レニン-アンジオテンシン-アルドステロン系の活性化などの関与が報告されてきた。これらの機序に基づき、抗TGF-β抗体やアンジオテンシン受容体拮抗薬などの線維化抑制効果が検証されてきたが、効果が不十分、あるいは臨床利用へのハードルが高いなどの点から、CNI誘発性の腎線維化抑制を目的とした実用には至っていない。このような背景の中、TAC誘発性の腎線維化に対して腎保護効果を有するのではないかと着目したのがmammalian of rapamycin(mTOR)阻害剤のエベロリムス(everolimus; EVR)である。EVRは腎移植後の免疫抑制療法でTACと併用されることのある免疫抑制薬の1つである。mTOR阻害剤が腎臓において抗線維化作用を有することに関しては過去に複数の基礎研究の報告がある。これらの研究で示されたmTOR阻害剤が有する抗線維化作用を考慮すると、TAC誘発性の腎線維化に対してもEVRが抗線維化作用を発揮することが期待されるが、TAC誘発性の腎線維化に対するEVRの効果を検討した研究はこれまでに報告例がない。以上の背景から、第1章ではTAC誘発性の腎線維化に対するEVRの抑制効果を検討するために、動物実験および細胞実験を中心とした基礎的検討を行った。第2章では、九州大学病院で腎移植を行った患者で、移植後免疫抑制薬としてTACを使用した患者の臨床データを収集し、EVR併用群および非併用群を比較することで移植後免疫抑制薬としてのEVR併用に関する効果の解析を行った。

【方法、結果】
第1章 タクロリムス誘発性の腎線維化に対するエベロリムスの抑制効果に関する基礎的研究
 既報に従って腎線維化を伴うTAC誘発性腎障害モデルラットを作成し、EVR併用効果を検討した。その結果、TAC単独投与で上昇した各種の腎障害マーカーはEVR併用で有意に低下した。また、TAC単独投与で腎尿細管間質線維化が亢進したが、EVR併用で有意に抑制された。一方、TAC投与で上昇した腎臓におけるTGF-β発現量は、EVRを併用しても有意に抑制されなかった。また、TAC単独投与によって腎尿細管間質領域へのマクロファージの浸潤が増加したが、EVR併用で有意に抑制された。さらに、ラット由来の腎線維芽細胞を用いた実験の結果から、TGF-β刺激によって活性化された線維化シグナルは、EVRの併用によって顕著に抑制されることが分かった。

第2章 腎移植患者における移植後免疫抑制薬としてのタクロリムスおよびエベロリムスの併用効果の解析
 腎移植後の免疫抑制療法として、TACとEVRを併用した患者(EVR群)85名、EVRを併用せずTACとミコフェノール酸モフェチル(MMF)を併用した患者(MMF群)86名を対象とし、移植後1年目までの両群のデータを比較することでEVRの併用効果を解析した。移植後腎生検による腎組織の病理診断の結果から、尿細管間質線維化、尿細管間質の炎症、尿細管炎、尿細管萎縮の各指標に関して、移植後1年時点で両群間に有意差は認められなかった。また、移植後3ヵ月目、1年目の腎生検における拒絶反応発生率に両群間で有意差は認められなかった。次に、各群における移植後1ヵ月目と12ヵ月目の2点間における推算糸球体ろ過量(estimated glomerular filtration rate; eGFR)の変化量を比較したところ、2群間のeGFR変化量に有意差は認められなかった。両群間における臨床検査値の推移を比較したところ、総コレステロール、中性脂肪、HDLコレステロール、LDLコレステロールといった脂質関連の項目でEVR群が顕著に高値を示した。また、移植後1年以内にEVRの使用を中断するに至った副作用としては脂質異常症によるものが最多であった。

【考察・まとめ】
 第1章では、EVRがTAC誘発性の腎尿細管間質線維化を減弱することを、ラットおよび培養細胞を用いた実験で明らかにした。第1章で得られた結果から、EVRは腎線維芽細胞とマクロファージを標的として、TAC誘発性の腎線維化に対する抗線維化作用を発揮しているものと考えられた。TAC投与は腎臓におけるTGF-βの発現量を増加させるが、そのTGF-βによって活性化された腎線維芽細胞のmTORシグナル経路を抑制することで、EVRは腎線維化を減弱しているものと考えられた。さらに、EVRはTAC誘発性の腎線維化のみならず、腎機能障害や形態学的異常も減弱した。今日の臓器移植医療において、TACと併用される免疫抑制薬は複数種類あるが、EVRはそのうちの1つであり、特に腎移植領域では頻繁に併用される薬剤の1つである。EVRが有するTAC誘発性腎線維化に対する保護効果を考慮すると、EVRはTACと併用する免疫抑制薬として有用性が高い可能性が考えられた。
 第2章では、腎移植後の免疫抑制薬としてのEVRのTACとの併用効果について、同用量のTACとMMFを使用した患者群と比較することで、移植後の成績、移植後腎機能、移植腎組織への影響、その他安全性や副作用などの観点から多角的に解析を行った。その結果、腎移植後1年目までは、移植後の腎機能変化、拒絶反応発生率、移植腎の組織学的変化などの複数の観点において、EVR群とMMF群の免疫抑制プロトコルは同等の免疫抑制効果を発揮すると考えられた。EVRおよびMMFは異なる副作用リスクを有しており、過去の報告からEVRは悪性腫瘍やウイルス感染症の発症リスクの低下が期待できるなど、両薬剤は異なる特徴を有している。したがって、個々の患者の特徴に応じてTACと併用する薬剤を選択することが重要と考えられた。今後、腎移植1年以降のEVRの併用効果について、さらなる詳細な解析を実施することが望まれる。

この論文で使われている画像

参考文献

1) M. P. Hoenig and M. L. Zeidel, Homeostasis, the milieu intérieur, and the wisdom of the nephron. Clin J Am Soc Nephrol, 9(7) (2014) 1272-81.

2) M. Wyss and R. Kaddurah-Daouk, Creatine and creatinine metabolism. Physiological Reviews, 80(3) (2000) 1107-1213.

3) K. Inui, S. Masuda, and H. Saito, Cellular and molecular aspects of drug transport in the kidney. Kidney International, 58(3) (2000) 944-958.

4) A. S. Dusso, A. J. Brown, and E. Slatopolsky, Vitamin D. American Journal of Physiology - Renal Physiology, 289(1 58-1) (2005) F8-F28.

5) A. C. Webster, E. V. Nagler, R. L. Morton, and P. Masson, Chronic Kidney Disease. The Lancet, 389(10075) (2017) 1238-1252.

6) M. Paul, A. P. Mehr, and R. Kreutz, Physiology of local renin-angiotensin systems. Physiological Reviews, 86(3) (2006) 747-803.

7) KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int, (2013) p3.

8) M. A. Abbasi, G. M. Chertow, and Y. N. Hall, End-stage renal disease. BMJ Clin Evid, 2010 (2010).

9) United States Renal Data System, 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.

10) 日本移植学会, Fact Book 2020 on Organ Transplantation in Japan. (2020) p31-42.

11) Y. W. Chiu, I. Teitelbaum, M. Misra, E. M. De Leon, T. Adzize, and R. Mehrotra, Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clinical Journal of the American Society of Nephrology, 4(6) (2009) 1089-1096.

12) M. Abecassis, S. T. Bartlett, A. J. Collins, C. L. Davis, F. L. Delmonico, J. J. Friedewald, et al., Kidney transplantation as primary therapy for end-stage renal disease: a National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clin J Am Soc Nephrol, 3(2) (2008) 471-80.

13) 山下 道雄, タクロリムス(FK506)開発物語. 生物工学会誌, 91(3) (2013) p141-154.

14) 日本 TDM 学会、日本移植学会 編, 免疫抑制薬 TDM 標準化ガイドライン (臓器移植編). (2018) p3.

15) アステラス製薬株式会社, グラセプターカプセル(医薬品インタビューフォーム).

16) A. C. Webster, R. C. Woodroffe, R. S. Taylor, J. R. Chapman, and J. C. Craig, Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data. Bmj, 331(7520) (2005) 810.

17) B. K. Krämer, G. Montagnino, D. Del Castillo, R. Margreiter, H. Sperschneider, C. J. Olbricht, et al., Efficacy and safety of tacrolimus compared with cyclosporin A microemulsion in renal transplantation: 2 year follow-up results. Nephrol Dial Transplant, 20(5) (2005) 968-73.

18) A. T. Rowshani, E. M. Scholten, F. Bemelman, M. Eikmans, M. Idu, M. C. Roos-van Groningen, et al., No difference in degree of interstitial Sirius red-stained area in serial biopsies from area under concentration-over-time curves-guided cyclosporine versus tacrolimus-treated renal transplant recipients at one year. J Am Soc Nephrol, 17(1) (2006) 305-12.

19) H. Ekberg, H. Tedesco-Silva, A. Demirbas, S. Vítko, B. Nashan, A. Gürkan, et al., Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med, 357(25) (2007) 2562-75.

20) Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group, KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant, 9(Suppl 3) (2009) S1–S157.

21) M. Naesens, D. R. J. Kuypers, and M. Sarwal, Calcineurin inhibitor nephrotoxicity. Clinical Journal of the American Society of Nephrology, 4(2) (2009) 481-508.

22) D. Rush, The impact of calcineurin inhibitors on graft survival. Transplantation Reviews, 27(3) (2013) 93-95.

23) B. D. Myers, J. Ross, L. Newton, J. Luetscher, and M. Perlroth, Cyclosporine-associated chronic nephropathy. N Engl J Med, 311(11) (1984) 699-705.

24) T. E. Starzl, J. Fung, M. Jordan, R. Shapiro, A. Tzakis, J. McCauley, et al., Kidney transplantation under FK 506. Jama, 264(1) (1990) 63-7.

25) P. S. Randhawa, R. Shapiro, M. L. Jordan, T. E. Starzl, and A. J. Demetris, The histopathological changes associated with allograft rejection and drug toxicity in renal transplant recipients maintained on FK506. Clinical significance and comparison with cyclosporine. Am J Surg Pathol, 17(1) (1993) 60-8.

26) B. J. Nankivell, R. J. Borrows, C. L. Fung, P. J. O'Connell, R. D. Allen, and J. R. Chapman, The natural history of chronic allograft nephropathy. N Engl J Med, 349(24) (2003) 2326-33.

27) A. O. Ojo, P. J. Held, F. K. Port, R. A. Wolfe, A. B. Leichtman, E. W. Young, et al., Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med, 349(10) (2003) 931-40.

28) F. S. Shihab, W. M. Bennett, A. M. Tanner, and T. F. Andoh, Mechanism of fibrosis in experimental tacrolimus nephrotoxicity. Transplantation, 64(12) (1997) 1829-1837.

29) S. M. Flechner, J. Kobashigawa, and G. Klintmalm, Calcineurin inhibitor-sparing regimens in solid organ transplantation: Focus on improving renal function and nephrotoxicity. Clinical Transplantation, 22(1) (2008) 1-15.

30) N. Issa, A. Kukla, and H. N. Ibrahim, Calcineurin inhibitor nephrotoxicity: A review and perspective of the evidence. American Journal of Nephrology, 37(6) (2013) 602-612.

31) B. J. Nankivell, C. H. PʼNg, P. J. OʼConnell, and J. R. Chapman, Calcineurin Inhibitor Nephrotoxicity Through the Lens of Longitudinal Histology: Comparison of Cyclosporine and Tacrolimus Eras. Transplantation, 100(8) (2016) 1723-31.

32) B. J. Nankivell, R. J. Borrows, C. L. Fung, P. J. O'Connell, J. R. Chapman, and R. D. Allen, Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation, 78(4) (2004) 557-65.

33) P. Bing, L. Maode, F. Li, and H. Sheng, Comparison of expression of TGF-beta1, its receptors TGFbeta1R-I and TGFbeta1R-II in rat kidneys during chronic nephropathy induced by cyclosporine and tacrolimus. Transplant Proc, 38(7) (2006) 2180-2.

34) S. Deng, T. Jin, L. Zhang, H. Bu, and P. Zhang, Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1. Mol Med Rep, 14(5) (2016) 4124-4134.

35) S. W. Lim, L. Jin, S. G. Piao, B. H. Chung, and C. W. Yang, Inhibition of dipeptidyl peptidase IV protects tacrolimus-induced kidney injury. Lab Invest, 95(10) (2015) 1174-85.

36) K. Luo, S. W. Lim, J. Jin, L. Jin, H. W. Gil, D. S. Im, et al., Cilastatin protects against tacrolimus-induced nephrotoxicity via anti-oxidative and anti-apoptotic properties. BMC Nephrol, 20(1) (2019) 221.

37) D. Ninova, M. Covarrubias, D. J. Rea, W. D. Park, J. P. Grande, and M. D. Stegall, Acute nephrotoxicity of tacrolimus and sirolimus in renal isografts: differential intragraft expression of transforming growth factor-beta1 and alpha-smooth muscle actin. Transplantation, 78(3) (2004) 338-44.

38) A. Khanna, M. Plummer, C. Bromberek, B. Bresnahan, and S. Hariharan, Expression of TGF-beta and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity. Kidney Int, 62(6) (2002) 2257-63.

39) M. C. Roos-van Groningen, E. M. Scholten, P. M. Lelieveld, A. T. Rowshani, H. J. Baelde, I. M. Bajema, et al., Molecular comparison of calcineurin inhibitor-induced fibrogenic responses in protocol renal transplant biopsies. J Am Soc Nephrol, 17(3) (2006) 881-8.

40) R. H. Pichler, N. Franceschini, B. A. Young, C. Hugo, T. F. Andoh, E. A. Burdmann, et al., Pathogenesis of cyclosporine nephropathy: roles of angiotensin II and osteopontin. J Am Soc Nephrol, 6(4) (1995) 1186-96.

41) F. S. Shihab, W. M. Bennett, A. M. Tanner, and T. F. Andoh, Angiotensin II blockade decreases TGF-beta1 and matrix proteins in cyclosporine nephropathy. Kidney Int, 52(3) (1997) 660-73.

42) J. M. Campistol, P. Iñigo, W. Jimenez, S. Lario, P. H. Clesca, F. Oppenheimer, et al., Losartan decreases plasma levels of TGF-beta1 in transplant patients with chronic allograft nephropathy. Kidney Int, 56(2) (1999) 714-9.

43) M. Islam, J. F. Burke, Jr., T. A. McGowan, Y. Zhu, S. R. Dunn, P. McCue, et al., Effect of anti-transforming growth factor-beta antibodies in cyclosporine-induced renal dysfunction. Kidney Int, 59(2) (2001) 498-506.

44) H. Ling, X. Li, S. Jha, W. Wang, L. Karetskaya, B. Pratt, et al., Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J Am Soc Nephrol, 14(2) (2003) 377-88.

45) C. Li, B. K. Sun, S. W. Lim, J. C. Song, S. W. Kang, Y. S. Kim, et al., Combined effects of losartan and pravastatin on interstitial inflammation and fibrosis in chronic cyclosporine-induced nephropathy. Transplantation, 79(11) (2005) 1522-9.

46) ノバルティスファーマ株式会社, サーティカン錠(医薬品インタビューフォーム).

47) S. Wullschleger, R. Loewith, and M. N. Hall, TOR signaling in growth and metabolism. Cell, 124(3) (2006) 471-84.

48) W. Lieberthal and J. S. Levine, The role of the mammalian target of rapamycin (mTOR) in renal disease. J Am Soc Nephrol, 20(12) (2009) 2493-502.

49) J. Pascual, S. P. Berger, O. Witzke, H. Tedesco, S. Mulgaonkar, Y. Qazi, et al., Everolimus with Reduced Calcineurin Inhibitor Exposure in Renal Transplantation. J Am Soc Nephrol, 29(7) (2018) 1979-1991.

50) D. Fantus, N. M. Rogers, F. Grahammer, T. B. Huber, and A. W. Thomson, Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat Rev Nephrol, 12(10) (2016) 587-609.

51) C. Sommerer, B. Suwelack, D. Dragun, P. Schenker, I. A. Hauser, O. Witzke, et al., An open-label, randomized trial indicates that everolimus with tacrolimus or cyclosporine is comparable to standard immunosuppression in de novo kidney transplant patients. Kidney Int, 96(1) (2019) 231-244.

52) H. M. Kauffman, W. S. Cherikh, Y. Cheng, D. W. Hanto, and B. D. Kahan, Maintenance immunosuppression with target-of-rapamycin inhibitors is associated with a reduced incidence of de novo malignancies. Transplantation, 80(7) (2005) 883-889.

53) S. G. Mallat, B. Y. Tanios, H. S. Itani, T. Lotfi, C. McMullan, S. Gabardi, et al., CMV and BKPyV infections in renal transplant recipients receiving an mtor inhibitor–based regimen versus a cni-based regimen: A systematic review and meta-analysis of randomized, controlled trials. Clinical Journal of the American Society of Nephrology, 12(8) (2017) 1321-1336.

54) M. Kurdián, I. Herrero-Fresneda, N. Lloberas, P. Gimenez-Bonafe, V. Coria, M. T. Grande, et al., Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model. PLoS One, 7(3) (2012) e32516.

55) G. Chen, H. Chen, C. Wang, Y. Peng, L. Sun, H. Liu, et al., Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. PLoS One, 7(3) (2012) e33626.

56) M. J. Wu, M. C. Wen, Y. T. Chiu, Y. Y. Chiou, K. H. Shu, and M. J. Tang, Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int, 69(11) (2006) 2029-36.

57) L. Jiang, L. Xu, J. Mao, J. Li, L. Fang, Y. Zhou, et al., Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis. J Am Soc Nephrol, 24(7) (2013) 1114-26.

58) Yuan Gui and Chunsun Dai, mTOR Signaling in Kidney Diseases. Kidney360, 1(11) (2020) 1319-1327.

59) K. Budde, T. Becker, W. Arns, C. Sommerer, P. Reinke, U. Eisenberger, et al., Everolimus-based, calcineurin-inhibitor-free regimen in recipients of de-novo kidney transplants: an open-label, randomised, controlled trial. Lancet, 377(9768) (2011) 837-47.

60) K. Budde, F. Lehner, C. Sommerer, W. Arns, P. Reinke, U. Eisenberger, et al., Conversion from cyclosporine to everolimus at 4.5 months posttransplant: 3-year results from the randomized ZEUS study. Am J Transplant, 12(6) (2012) 1528-40.

61) F. Lehner, K. Budde, M. Zeier, R. P. Wüthrich, P. Reinke, U. Eisenberger, et al., Efficacy and safety of conversion from cyclosporine to everolimus in living-donor kidney transplant recipients: an analysis from the ZEUS study. Transpl Int, 27(11) (2014) 1192-204.

62) K. Budde, F. Lehner, C. Sommerer, P. Reinke, W. Arns, U. Eisenberger, et al., Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am J Transplant, 15(1) (2015) 119-28.

63) U. Eisenberger, K. Budde, F. Lehner, C. Sommerer, P. Reinke, O. Witzke, et al., Histological findings to five years after early conversion of kidney transplant patients from cyclosporine to everolimus: an analysis from the randomized ZEUS study. BMC Nephrol, 19(1) (2018) 154.

64) H. Tedesco-Silva, J. Pascual, O. Viklicky, N. Basic-Jukic, E. Cassuto, D. Y. Kim, et al., Safety of Everolimus With Reduced Calcineurin Inhibitor Exposure in De Novo Kidney Transplants: An Analysis From the Randomized TRANSFORM Study. Transplantation, 103(9) (2019) 1953-1963.

65) S. P. Berger, C. Sommerer, O. Witzke, H. Tedesco, S. Chadban, S. Mulgaonkar, et al., Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant, 19(11) (2019) 3018-3034.

66) P. F. Halloran, Immunosuppressive drugs for kidney transplantation. N Engl J Med, 351(26) (2004) 2715-29.

67) U.S. Multicenter FK506 Liver Study Group, A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med, 331(17) (1994) 1110-5.

68) A. C. Wiseman, Immunosuppressive Medications. Clin J Am Soc Nephrol, 11(2) (2016) 332-43.

69) J. R. Azzi, M. H. Sayegh, and S. G. Mallat, Calcineurin inhibitors: 40 years later, can't live without. J Immunol, 191(12) (2013) 5785-91.

70) M. Zeisberg and E. G. Neilson, Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol, 21(11) (2010) 1819-34.

71) W. A. Border and N. A. Noble, Transforming growth factor beta in tissue fibrosis. N Engl J Med, 331(19) (1994) 1286-92.

72) G. Wolf, Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int, 70(11) (2006) 1914-9.

73) R. Fu, S. Tajima, T. Shigematsu, M. Zhang, A. Tsuchimoto, N. Egashira, et al., Establishment of an experimental rat model of tacrolimus-induced kidney injury accompanied by interstitial fibrosis. Toxicol Lett, 341 (2021) 43-50.

74) S. Nakagawa, K. Nishihara, K. Inui, and S. Masuda, Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Eur J Pharmacol, 696(1-3) (2012) 143-54.

75) N. Liu, E. Tolbert, M. Pang, M. Ponnusamy, H. Yan, and S. Zhuang, Suramin inhibits renal fibrosis in chronic kidney disease. J Am Soc Nephrol, 22(6) (2011) 1064-75.

76) W. K. Han, V. Bailly, R. Abichandani, R. Thadhani, and J. V. Bonventre, Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney International, 62(1) (2002) 237-244.

77) A. K. Mandal and D. B. Mount, The molecular physiology of uric acid homeostasis. Annu Rev Physiol, 77 (2015) 323-45.

78) B. J. Nankivell, R. J. Borrows, C. L. Fung, P. J. O'Connell, R. D. Allen, and J. R. Chapman, Evolution and pathophysiology of renal-transplant glomerulosclerosis. Transplantation, 78(3) (2004) 461-8.

79) Y. Liu, Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol, 7(12) (2011) 684-96.

80) D. Wojciechowski and A. Wiseman, Long-Term Immunosuppression Management: Opportunities and Uncertainties. Clin J Am Soc Nephrol, (2021).

81) X. M. Meng, D. J. Nikolic-Paterson, and H. Y. Lan, TGF-β: The master regulator of fibrosis. Nature Reviews Nephrology, 12(6) (2016) 325-338.

82) S. Wang, M. C. Wilkes, E. B. Leof, and R. Hirschberg, Noncanonical TGF-beta pathways, mTORC1 and Abl, in renal interstitial fibrogenesis. Am J Physiol Renal Physiol, 298(1) (2010) F142-9.

83) R. Qi and C. Yang, Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis, 9(11) (2018) 1126.

84) B. Kaissling and M. Le Hir, The renal cortical interstitium: morphological and functional aspects. Histochem Cell Biol, 130(2) (2008) 247-62.

85) R. J. Tan, D. Zhou, and Y. Liu, Signaling Crosstalk between Tubular Epithelial Cells and Interstitial Fibroblasts after Kidney Injury. Kidney Dis (Basel), 2(3) (2016) 136-144.

86) L. Gewin, R. Zent, and A. Pozzi, Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int, 91(3) (2017) 552-560.

87) G. Wolf, F. Thaiss, and R. A. Stahl, Cyclosporine stimulates expression of transforming growth factor-beta in renal cells. Possible mechanism of cyclosporines antiproliferative effects. Transplantation, 60(3) (1995) 237-41.

88) D. W. Johnson, H. J. Saunders, F. J. Johnson, S. O. Huq, M. J. Field, and C. A. Pollock, Cyclosporin exerts a direct fibrogenic effect on human tubulointerstitial cells: roles of insulin-like growth factor I, transforming growth factor beta1, and platelet-derived growth factor. J Pharmacol Exp Ther, 289(1) (1999) 535-42.

89) J. Bennett, H. Cassidy, C. Slattery, M. P. Ryan, and T. McMorrow, Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells. J Clin Med, 5(5) (2016).

90) D. J. Nikolic-Paterson, S. Wang, and H. Y. Lan, Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011), 4(1) (2014) 34-38.

91) S. Tamada, T. Nakatani, T. Asai, K. Tashiro, T. Komiya, T. Sumi, et al., Inhibition of nuclear factor-kappaB activation by pyrrolidine dithiocarbamate prevents chronic FK506 nephropathy. Kidney Int, 63(1) (2003) 306-14.

92) M. Koch, M. Mengel, D. Poehnert, and B. Nashan, Effects of everolimus on cellular and humoral immune processes leading to chronic allograft nephropathy in a rat model with sensitized recipients. Transplantation, 83(4) (2007) 498-505.

93) P. Andrikopoulos, J. Kieswich, S. Pacheco, L. Nadarajah, S. M. Harwood, C. E. O'Riordan, et al., The MEK Inhibitor Trametinib Ameliorates Kidney Fibrosis by Suppressing ERK1/2 and mTORC1 Signaling. J Am Soc Nephrol, 30(1) (2019) 33-49.

94) Y. E. Zhang, Non-Smad pathways in TGF-beta signaling. Cell Res, 19(1) (2009) 128-39.

95) L. H. Mariani, S. Martini, L. Barisoni, P. A. Canetta, J. P. Troost, J. B. Hodgin, et al., Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrol Dial Transplant, 33(2) (2018) 310-318.

96) P. Boor, T. Ostendorf, and J. Floege, Renal fibrosis: Novel insights into mechanisms and therapeutic targets. Nature Reviews Nephrology, 6(11) (2010) 643-656.

97) H. Tedesco Silva, Jr., D. Cibrik, T. Johnston, E. Lackova, K. Mange, C. Panis, et al., Everolimus plus reduced-exposure CsA versus mycophenolic acid plus standard-exposure CsA in renal-transplant recipients. Am J Transplant, 10(6) (2010) 1401-13.

98) K. Takahashi, K. Uchida, N. Yoshimura, S. Takahara, S. Teraoka, R. Teshima, et al., Efficacy and safety of concentration-controlled everolimus with reduced-dose cyclosporine in Japanese de novo renal transplant patients: 12-month results. Transplant Res, 2(1) (2013) 14.

99) S. M. Santos, C. M. Carlos, C. B. Cabanayan-Casasola, and R. A. Danguilan, Everolimus with reduced-dose cyclosporine versus full-dose cyclosporine and mycophenolate in de novo renal transplant patients: a 2-year single-center experience. Transplant Proc, 44(1) (2012) 154-60.

100) Y. Watarai, R. Danguilan, C. Casasola, S. S. Chang, P. Ruangkanchanasetr, T. Kee, et al., Everolimus-facilitated calcineurin inhibitor reduction in Asian de novo kidney transplant recipients: 2-year results from the subgroup analysis of the TRANSFORM study. Clin Transplant, (2021).

101) H. Noguchi, A. Tsuchimoto, K. Ueki, K. Kaku, Y. Okabe, and M. Nakamura, One-year Outcome of Everolimus With Standard-dose Tacrolimus Immunosuppression in De Novo ABO-incompatible Living Donor Kidney Transplantation: A Retrospective, Single-center, Propensity Score Matching Comparison With Mycophenolate in 42 Transplants. Transplant Direct, 6(1) (2020) e514.

102) 日本腎臓学会, 腎生検ガイドブック 2020. (2020) p91.

103) C. Roufosse, N. Simmonds, M. Clahsen-Van Groningen, M. Haas, K. J. Henriksen, C. Horsfield, et al., A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation, 102(11) (2018) 1795-1814.

104) 勝馬 愛、清水 章,【腎移植-最新の知見】Banff 分類. 腎と透析, 85(4) (2018) 499-506.

105) D. R. Kuypers, H. de Jonge, M. Naesens, E. Lerut, K. Verbeke, and Y. Vanrenterghem, CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther, 82(6) (2007) 711-25.

106) G. Thölking, C. Fortmann, R. Koch, H. U. Gerth, D. Pabst, H. Pavenstädt, et al., The tacrolimus metabolism rate influences renal function after kidney transplantation. PLoS ONE, 9(10) (2014).

107) J. M. Ginsberg, B. S. Chang, R. A. Matarese, and S. Garella, Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med, 309(25) (1983) 1543-6.

108) S. Nishioka, T. Ishimura, T. Endo, N. Yokoyama, S. Ogawa, and M. Fujisawa, Suppression of Allograft Fibrosis by Regulation of Mammalian Target of Rapamycin-Related Protein Expression in Kidney-Transplanted Recipients Treated with Everolimus and Reduced Tacrolimus. Ann Transplant, 26 (2021) e926476.

109) 西 愼一, 【高齢者の腎疾患】腎移植患者の高齢化とその対応. Geriatric Medicine, 58(10) (2020) 923-926.

110) E. Imai, M. Horio, K. Yamagata, K. Iseki, S. Hara, N. Ura, et al., Slower decline of glomerular filtration rate in the Japanese general population: A longitudinal 10-year follow-up study. Hypertension Research, 31(3) (2008) 433-441.

111) A. O. Ojo, Cardiovascular complications after renal transplantation and their prevention. Transplantation, 82(5) (2006) 603-11.

112) A. C. Wiseman, K. McCague, Y. Kim, F. Geissler, and M. Cooper, The effect of everolimus versus mycophenolate upon proteinuria following kidney transplant and relationship to graft outcomes. Am J Transplant, 13(2) (2013) 442-9.

113) C. Morath, M. Mueller, H. Goldschmidt, V. Schwenger, G. Opelz, and M. Zeier, Malignancy in renal transplantation. J Am Soc Nephrol, 15(6) (2004) 1582-8.

114) J. F. Buell, T. G. Gross, and E. S. Woodle, Malignancy after transplantation. Transplantation, 80(SUPPL. 2) (2005) S254-S264.

115) A. Gutierrez-Dalmau and J. M. Campistol, Immunosuppressive therapy and malignancy in organ transplant recipients: A systematic review. Drugs, 67(8) (2007) 1167-1198.

116) G. B. Klintmalm, S. Saab, J. C. Hong, and B. Nashan, The role of mammalian target of rapamycin inhibitors in the management of post-transplant malignancy. Clin Transplant, 28(6) (2014) 635-48.

117) W. H. Lim, G. R. Russ, G. Wong, H. Pilmore, J. Kanellis, and S. J. Chadban, The risk of cancer in kidney transplant recipients may be reduced in those maintained on everolimus and reduced cyclosporine. Kidney Int, 91(4) (2017) 954-963.

118) H. Holdaas, P. De Simone, and A. Zuckermann, Everolimus and Malignancy after Solid Organ Transplantation: A Clinical Update. J Transplant, 2016 (2016) 4369574.

119) B. Nashan, R. Gaston, V. Emery, M. D. Säemann, N. J. Mueller, L. Couzi, et al., Review of cytomegalovirus infection findings with mammalian target of rapamycin inhibitor-based immunosuppressive therapy in de novo renal transplant recipients. Transplantation, 93(11) (2012) 1075-1085.

120) A. C. Wiseman, Polyomavirus nephropathy: a current perspective and clinical considerations. Am J Kidney Dis, 54(1) (2009) 131-42.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る